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What kind of problems?

Ultrahigh strain hardening in thin Pd films with nanoscale twins
Schryvers, Pardoen et al.
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Figure @ Partial disclinations in fcc crystals. They are edge lines of twin boundaries and
passthrough the point A, a: The T0°32 partial disclination. b: The 7°207 (=360 =5 x T0°32")
partial disclination (star disclination) that borders five twin boundaries. After deWit {39),

from: Kroner and Anthony describing concepts from deWit  vians ICRIT Mellon



(essentially) complex model -
Any prior evidence it should work?

= Mesoscale Field Dislocation Mechanics (M)FDM
- (AA-20/01,03,04,11; Roy, AA — 05, 06)
« Some Example applications
> Engineering

— Puri, Das, AA — modeling of Xiang and Vlassak’s thin film experiments
— JMPS (2011)

— Mach, Beaudoin, AA — modeling of inter/intra-grain orientation texture
heterogeneities; Winther etc. — JMPS (2010)

> Physics of Complexity

— Fressengeas, Beaudoin et al. — dislocation transport + intermittency —
Phys. Rev. B (2009)

— Sethna et al. — self-organized critical pattern formation — Phys. Rev
Lett., Phys. Rev. B, JMPS - (2006, 2007, 2008, 2010)

> Mathematics

— Tartar, AA — global existence and uniqueness of FDM system for
nonlinear transport — Bull. of Italian Math. Union — (2011)

— Zhu, Chapman, AA — Instability of dislocation motion — prediction of
heterogeneous slip band microstructures — (2011)



Discontinuity within a Discontinuity

Terminating curve of displacement Terminating curve of a distortion/
discontinuity = DISLOCATION strain discontinuity = G. DISCLINATION
displacement discontinuity surface distortion discontinuity surface
= slip ‘boundary’ if identifiable; = phase boundary/grain boundary

stacking fault



Context

= Generalize the work of Dewit (1970) and collaborators

Beyond ‘rotational’ higher order defects - disclinations

« Give disclinations unambiguous physical basis even in
materials without any director dofs

 Finite deformation theory

« Dynamics (even for quasi-static momentum balances)

« Theory not constrained to differential geometric constructs
(Kondo, 1950s....; Kroner, Lagoudas, 1992; Clayton, McDowell, Bammann,
2006)

> As aresult, simpler



Physical Realizations

As terminating curve moves, the slip/phase/grain boundary region
Is ‘drawn out’ or translates
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1. Dislocation loops + identifiable slip surfaces, stacking
faults
2. G. disclinations + phase boundaries, grain boundaries

3. Finite shear bands

4. ‘Triple’ points terminating phase/grain boundaries

5. Faceted inclusions in phase transforming materials /

6. Smooth inclusions in phase transforming materials



Example Applications

= Dynamics of
 Plasticity

* Phase transformations
» Coupled plasticity and phase transformations

« Shear band dynamics in
» amorphous materials (metallic glasses)

> Soft active materials

— Classical theory + modifications good for inception but do not
yield a physically sound basis for post-inception, well-set
evolution

— e.g. finite-extent shear bands — almost no theory
» exception — Bigoni et al. — line inclusion models



Smooth compatible strain/strain gradient fields
in punctured domains

Screw dislocation

X5 C

X4 B

Phase boundary /

For simplicity, consider small defmns.

r. | Discontinuous
In A and B, uniform strain fields of

2
ug =0 = arCtan[— Displacement

X . rank-one connected displ. gradient
17 (even apart from origin) fields P9

b sinf * In C connect A to B smoothly
€13 = — 4— Except origin, satisfying strain compatibility; can

T T g iai

b eosy  Smooth strain field 11 be done (except origin)
Eo3 = . . o « Consider smooth strain gradient
4w r  So, dislocation strain fields are field except at origin, forgetting

Moral ——> not really the ones from taking disc. on phase boundary

a deriv. of the displacement field



Mathematical Modeling - Kinematics

Dump primary *elastic* displacement/distortion fields and work with their
incompatible gradients

Consider irrotational (curl-free) 1,2 distortion fields, say A, in punctured
domains

What is line integral of field along circuits enclosing hole? @

« If l. integral around hole does not vanish, we have field with topological
content

What sort of potential ¢ (displacement/1-distortion) corresponds to A?
* j.e.grad @ = A?

Potential necessarily has to be discontinuous on surfaces
» Dislocations and g. Disclinations are terminating discontinuities



Kinematics

= Up until here, simpler version of Weingarten/Volterra
Since do not need to work on symmetric tensors
generalized to higher order and works as well for finite deformation
= Take the continuously distributed defects approach (in principle, applicable
to modeling single defects)

«  Make domain simple-connected, fill in hole with field which is not curl-
free there.

* So, A is curl-free outside hole and not curl free inside

» Curl A has interpretation of line-density (carrying tensorial attributes)
and integrated over area patches including its support gives the
topological strength of the defect.

» Of course, now generalize to

— a whole (fattened) surface, instead of a single hole, being non-
curl free - Somigliana

— the whole body being non-curl free ( for instance transition of a
crystal to a liquid under extreme shock loading)



Want to make a dynamical theory of
such defect curves and (meta) slipped
regions, taking into account forces,
moments and dissipation

leitmotif — ‘when gradients are no longer
gradients’



The fundamental kinematical decomposition

All derivatives on current configuration
F — F°¢ = elastic distortion; F* ! = W ielastic 2-distortion — 2-tensor
grad F' = grad W — Y = ielastic 2-distortion — 3-tensor
e Outside layer can make good determination of W and
grad W from data. Inside layer, cannot tell.
e So, outside layer construct Y = grad W. Assume field
W exists inside layer, but undetermined from coarse
g-discl. core n measurements.
T W e Inside layer, do obvious interpolation for closest 'gradient’
Y = f(zf)(WJr — W_/l) ®mn =8 strip field

t = x-t and f constant in layer outside core

and decays to zero inside core

So, Yzj(n) is only non-zero component (any i, j)

VY (1) = 0 and Y;j<n),t =Y.

ij ij(t)m
e So, in core curlY = 0. Hence, field Y cannot be a

gradient.

Outside layer, S = 0. Hence, Y = gradW + S everywhere.
Do Stokes-Helmholtz on S = P + grad Z.

Hence, Y = P + grad(W + Z).

e Note, P = —grad Z outside layer



Kinematical ingredients of model - |

define curlY = curl(Y — gde) =: II < g. Disclination
density
‘Stokes-Helmholtz’ of Y —gradW = P + grad Z
Incompatible 2-distortion curl P = I1I Compatible 2-distortion
divP = 0

Pn = 0 on boundary



Kinematical ingredients of model - |l
Y =P+ gradZ + grad W

Y

Compatible part of ielastic
2-distortion field- represents
phase/grain boundaries
without kinks and corners

Incompatible part of ielastic
2-distortion field - represents
Phase/grain boundaries
with kinks and corners

grad A : X = —curl A

P:X+gradZ : X +gradW : X =Y : X = «

. Di |/t' [induced \ [ \
g ISClInation-inauce S|Ip

transformation Transformation Dislocation density

dislocations dislocations dislocations

« It is clear why an infinite g.bdry/incoherent p.bdry can often be
represented by slip dislocations

« Also clear what of a bdry cannot be so represented
« Symmetric parts; transformation/g. disclination-induced parts



Topological conservation law for evolution of
g.disclination density

T — Cwl(w(y _ gradW>2T) I, = ey [sz (erk -W,,, )]]

Line density with tensorial attribute

@)

(divo) *TT + *IT — *TIL" = *IT = —curl ( “IT x V")

o fam *.Hnda = —L(t) “II x V2 dx

= W(Y — gde)2T = —W(Y — gde)QT — W(Y — gde)2T L
—(*HXVH) + grad K



Topological conservation law for evolution of
slip dislocation density

—curlW = gradW : X = a=a—P: X —gradZ : X

Line density with

= divo = diU(P : X + grad Z - X) vectorial attribute

(; — —curl(a X VO‘)

<:>f (.xnda——f o x Ve

:>W—|—WL—04><VOZ—>(‘* Z]—:L”]

Only phase transformation with no dislocation plasticity @ = 0 (, Zi; = G

Only phase boundaries with no g.disclinations and no dislocations a = 0,P = 0

P: X+ gradZ : X + gradW : X = «



Thermomechanics

= Two frame-indifferent theories possible
* With couple stress w(w, Y, *H) /
- Without couple stress zp(W,Y — gradW,*II, grad W : X)

= Both have objective dissipaton —— ( }J: 2 =0
* Critical test of kinematic structure of theory
> In particular, evolution equations
= Theory without couple stress

 not clear if regularizes conventional theory in pure
phase-bdry case (no dislocations/g. disclinations)

 Definitely works for only dislocation plasticity



Relation with ‘standard’ differential geometric
kinematics - |

W invertible ; da — We& e, is a natural basis
— for current config.
— X
da’ g = I aﬁdﬂ

Iy =e W ([{ bes ] )
= I =e W' (|{gradW}e,|e, + We,_,
So, now define as fundamental statement for affine connection:

eﬁ}ea)

Fgﬂ = Z:gﬁ +f3p -W_l({[P%—ngdZ

p
af

Clearly, in this case d@ may not be a basis



Relation with ‘standard’ differential geometric
kinematics - |l

(F =TI + *Q) R<F>°uﬁ7 =Lpy = Ling T L Lus = Ll
=R(T),, + R(*Q).m + /(I e)

invertibility and smoothness of W = R(f ) =0

g R(F)a = R( *Q)a + huge no. of nonlinear cross-terms
1By

*IT is only a part of R( *Q)

1By

(8%
* ~ *)Q _ x)Q
_> ( 1 X)-uﬁv ~ Quﬁ,v 1,3

Metric affine geometry — Kroner, Lagoudas; Minagawa; Clayton, McDowell, Bammann
Gw *Qgﬂ should be skew in (fy,@) Standard ‘rotational’ disclination density

G, Qs = d, HP + gde}eﬁ}ea =e, -lWT{P + gde}eﬁ}e

«

Our model does not have this symmetry — phase transformations require going
beyond Metric Affine Geometry of classical disclinations — but our model is simpler!



Exact ansatz in FDM

| 0 | .
? ) . L artar, AA, 2011
®, 59%1; - %v% Py i,k =1to4d Bull. ltalian Math. Union
2 0 AA, JMPS, 2010
Scalar equation @, = (9035) EQ.. — 3_ Zimmer, Matthies, AA, JMPS, 2010
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