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What kind of problems?

from: Kröner and Anthony describing concepts from deWit

Ultrahigh strain hardening in thin Pd films with nanoscale twins
Schryvers, Pardoen et al.



(essentially) complex model -
Any prior evidence it should work?

 Mesoscale Field Dislocation Mechanics (M)FDM 
• ( AA – 20/01,03,04,11; Roy , AA – 05, 06)
• Some Example applications

 Engineering
– Puri, Das, AA – modeling of Xiang and Vlassak’s thin film experiments 

– JMPS (2011)
– Mach, Beaudoin, AA – modeling of inter/intra-grain orientation texture 

heterogeneities; Winther etc. – JMPS (2010)

 Physics of Complexity
– Fressengeas, Beaudoin et al. – dislocation transport + intermittency –

Phys. Rev. B (2009)
– Sethna et al. – self-organized critical pattern formation – Phys. Rev 

Lett., Phys. Rev. B, JMPS – (2006, 2007, 2008, 2010)

 Mathematics
– Tartar, AA – global existence and uniqueness of FDM system for 

nonlinear transport – Bull. of Italian Math. Union – (2011)
– Zhu, Chapman, AA – Instability of dislocation motion – prediction of 

heterogeneous slip band microstructures – (2011)



Discontinuity within a Discontinuity

Terminating curve of displacement
discontinuity  = DISLOCATION 

Terminating curve of a distortion/
strain discontinuity = G. DISCLINATION

displacement discontinuity surface
= slip ‘boundary’ if identifiable;

stacking fault

distortion discontinuity surface 
= phase boundary/grain boundary



Context

 Generalize the work of DeWit (1970) and collaborators

• Beyond ‘rotational’ higher order defects - disclinations

• Give disclinations unambiguous physical basis even in 
materials without any director dofs

• Finite deformation theory

• Dynamics (even for quasi-static momentum balances)

• Theory not constrained to differential geometric constructs 
(Kondo, 1950s….; Kröner, Lagoudas, 1992; Clayton, McDowell, Bammann, 
2006)
 As a result, simpler



Physical Realizations
As terminating curve moves, the slip/phase/grain boundary region
Is ‘drawn out’ or translates

1. Dislocation loops + identifiable slip surfaces, stacking 
faults

2. G. disclinations + phase boundaries, grain boundaries

3. Finite shear bands

4. ‘Triple’ points terminating phase/grain boundaries

5. Faceted inclusions in phase transforming materials

6. Smooth inclusions in phase transforming materials



Example Applications
 Dynamics of

• Plasticity

• Phase transformations

• Coupled plasticity and phase transformations

• Shear band dynamics in
 amorphous materials (metallic glasses)
 Soft active materials

– Classical theory + modifications good for inception but do not 
yield a physically sound basis for post-inception, well-set 
evolution 

– e.g. finite-extent shear bands – almost no theory
» exception – Bigoni et al. – line inclusion models



Smooth compatible strain/strain gradient fields 
in punctured domains
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Screw dislocation

Discontinuous
Displacement
(even apart from origin)

Except origin,
smooth strain field !!!!

So, dislocation strain fields are
not really the ones from taking
a deriv. of the displacement field

Moral

Phase boundary

A

B

C

For simplicity, consider small defmns.

• In A and B, uniform strain fields of 
rank-one connected displ. gradient 
fields

• In C connect  A to B smoothly 
satisfying strain compatibility; can 
be done (except origin)

• Consider smooth strain gradient 
field except at origin, forgetting 
disc. on phase boundary



Mathematical Modeling - Kinematics
 Dump primary *elastic* displacement/distortion fields and work with their 

incompatible gradients

 Consider irrotational (curl-free) 1,2 distortion fields, say A, in punctured 
domains

 What is line integral of field along circuits enclosing hole?

• If l. integral around hole does not vanish, we have field with topological 
content

 What sort of potential φ (displacement/1-distortion) corresponds to A?
• i.e. grad φ = A?

 Potential necessarily has to be discontinuous on surfaces
• Dislocations and g. Disclinations are terminating discontinuities



Kinematics
 Up until here, simpler version of Weingarten/Volterra

• Since do not need to work on symmetric tensors
• generalized to higher order  and works as well for finite deformation

 Take the continuously distributed defects approach (in principle, applicable 
to modeling single defects)

• Make domain simple-connected, fill in hole with field which is not curl-
free there.

• So, A is curl-free outside hole and not curl free inside

 Curl A has interpretation of line-density (carrying tensorial attributes) 
and integrated over area patches including its support gives the 
topological strength of the defect.

 Of course, now generalize to 
– a whole (fattened) surface, instead of a single hole, being non-

curl free - Somigliana
– the whole body being non-curl free ( for instance transition of a 

crystal to a liquid under extreme shock loading)



Want to make a dynamical theory of 

such defect curves and (meta) slipped 

regions, taking into account forces, 

moments and dissipation

leitmotif – ‘when gradients are no longer 
gradients’



The fundamental kinematical decomposition
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Kinematical ingredients of model - I

define ( ) :curl curl grad= - = PY Y W

‘Stokes-Helmholtz’ of

 on boundary
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g. Disclination
density

Compatible 2-distortionIncompatible 2-distortion



Kinematical ingredients of model - II

Compatible part of ielastic
2-distortion field- represents

phase/grain boundaries 
without kinks and corners

grad grad= + +Y P Z W


Incompatible part of ielastic
2-distortion field - represents

Phase/grain boundaries
with kinks and corners

:grad curl= -A AC

: : : : :grad grad+ + = =C C C C aP Z W Y

Dislocation densitySlip 
dislocations

Transformation
dislocations

g. Disclination-induced
transformation
dislocations

• It is clear why an infinite g.bdry/incoherent p.bdry can often be 
represented by slip dislocations

• Also clear what of a bdry cannot be so represented
• Symmetric parts; transformation/g. disclination-induced parts
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Topological conservation law for evolution of 
g.disclination density
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Line density with tensorial attribute



Topological conservation law for evolution of 
slip dislocation density
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Line density with
vectorial attribute
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: : :grad grad+ + =C C C aP Z W

Only phase transformation with no dislocation plasticity

Only phase boundaries with no g.disclinations and no dislocations
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Thermomechanics
 Two frame-indifferent theories possible

• With couple stress

• Without couple stress

 Both have objective dissipation
• Critical test of kinematic structure of theory

 In particular, evolution equations
 Theory without couple stress

• not clear if regularizes conventional theory in pure 
phase-bdry case (no dislocations/g. disclinations)

• Definitely works for only dislocation plasticity 
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Relation with ‘standard’ differential geometric 
kinematics - I
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Clearly, in this case         may not be a basisad

 is a natural basis

for current config.
ae



Relation with ‘standard’ differential geometric 
kinematics - II
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( )QG G *= +

Metric affine geometry – Kröner, Lagoudas; Minagawa; Clayton, McDowell, Bammann
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Standard ‘rotational’ disclination density

Our model does not have this symmetry – phase transformations require going 
beyond Metric Affine Geometry of classical disclinations – but our model is simpler!



Exact ansatz in FDM
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Scalar equation

Tartar, AA, 2011
Bull. Italian Math. Union

AA, JMPS, 2010
Zimmer, Matthies, AA, JMPS, 2010
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