Discontinuity and Incompatibility

Amit Acharya, *CMU*, *Pittsburgh*, *US*. Claude Fressengeas, *LEM3*, *Univ. Paul-Verlaine*, *Metz*, *Fr*.

What kind of problems?

Ultrahigh strain hardening in thin Pd films with nanoscale twins Schryvers, Pardoen et al.

Figure 9 Partial disclinations in fcc crystals. They are edge lines of twin boundaries and pass through the point A. a: The 70°32' partial disclination. b: The 7°20' (= $360^{\circ} - 5 \times 70^{\circ}32'$) partial disclination (star disclination) that borders five twin boundaries. After deWit (39). Var nog ver Mellon

from: Kröner and Anthony describing concepts from deWit

(essentially) complex model -Any prior evidence it should work?

- Mesoscale Field Dislocation Mechanics (M)FDM
 - (*AA* 20/01,03,04,11; *Roy*, *AA* 05, 06)
 - Some Example applications
 - Engineering
 - *Puri, Das, AA* modeling of Xiang and Vlassak's thin film experiments
 JMPS (2011)
 - Mach, Beaudoin, AA modeling of inter/intra-grain orientation texture heterogeneities; Winther etc. – JMPS (2010)
 - Physics of Complexity
 - Fressengeas, Beaudoin et al. dislocation transport + intermittency –
 Phys. Rev. B (2009)
 - Sethna et al. self-organized critical pattern formation Phys. Rev. Lett., Phys. Rev. B, JMPS (2006, 2007, 2008, 2010)
 - > Mathematics
 - Tartar, AA global existence and uniqueness of FDM system for nonlinear transport – Bull. of Italian Math. Union – (2011)
 - Zhu, Chapman, AA Instability of dislocation motion prediction of heterogeneous slip band microstructures – (2011)

Discontinuity within a Discontinuity

Terminating curve of displacement discontinuity = DISLOCATION

Terminating curve of a distortion/ strain discontinuity = G. DISCLINATION

displacement discontinuity surface = slip 'boundary' if identifiable; stacking fault

distortion discontinuity surface = phase boundary/grain boundary

Context

- Generalize the work of *DeWit* (1970) and collaborators
 - Beyond 'rotational' higher order defects *disclinations*
 - Give *disclinations* unambiguous physical basis even in materials without any director dofs
 - Finite deformation theory
 - Dynamics (even for quasi-static momentum balances)
 - Theory not constrained to differential geometric constructs (*Kondo, 1950s....; Kröner, Lagoudas, 1992; Clayton, McDowell, Bammann,* 2006)
 - > As a result, simpler

Physical Realizations

As terminating curve moves, the slip/phase/grain boundary region Is 'drawn out' or translates

- 1. Dislocation loops + identifiable slip surfaces, stacking faults
- 2. G. disclinations + phase boundaries, grain boundaries,
- 3. Finite shear bands
- 4. 'Triple' points terminating phase/grain boundaries
- 5. Faceted inclusions in phase transforming materials -
- 6. Smooth inclusions in phase transforming materials

Example Applications

- Dynamics of
 - Plasticity
 - Phase transformations
 - Coupled plasticity and phase transformations
 - Shear band dynamics in
 - > amorphous materials (metallic glasses)
 - Soft active materials
 - Classical theory + modifications good for inception but do not yield a physically sound basis for post-inception, well-set evolution
 - e.g. finite-extent shear bands almost no theory
 - » exception Bigoni et al. line inclusion models

Smooth compatible strain/strain gradient fields in punctured domains

Moral —

So, dislocation strain fields are not really the ones from taking a deriv. of the displacement field

For simplicity, consider small defmns.

- In A and B, uniform strain fields of rank-one connected displ. gradient fields
- In C connect A to B smoothly satisfying strain compatibility; can be done (except origin)
- Consider smooth strain gradient field except at origin, forgetting disc. on phase boundary

Mathematical Modeling - Kinematics

- Dump primary *elastic* displacement/distortion fields and work with their incompatible gradients
- Consider irrotational (curl-free) 1,2 distortion fields, say A, in punctured domains
- What is line integral of field along circuits enclosing hole?
 - If I. integral around hole does not vanish, we have field with topological content
- What sort of potential φ (displacement/1-distortion) corresponds to A?
 - i.e. grad φ = A?
- Potential necessarily has to be discontinuous on surfaces
 - Dislocations and g. Disclinations are terminating discontinuities

Kinematics

- Up until here, simpler version of *Weingarten/Volterra*
 - Since do not need to work on symmetric tensors
 - generalized to higher order and works as well for finite deformation
- Take the continuously distributed defects approach (in principle, applicable to modeling single defects)
 - Make domain simple-connected, fill in hole with field which is not curlfree there.
 - So, A is curl-free outside hole and not curl free inside
 - Curl A has interpretation of line-density (carrying tensorial attributes) and integrated over area patches including its support gives the topological strength of the defect.
 - > Of course, now generalize to
 - a whole (fattened) surface, instead of a single hole, being non-
 - curl free Somigliana
 - the whole body being non-curl free (for instance transition of a crystal to a liquid under extreme shock loading)

Want to make a dynamical theory of such defect curves and (meta) slipped regions, taking into account forces, moments and dissipation **leitmotif** – 'when gradients are no longer gradients'

The fundamental kinematical decomposition

All derivatives on current configuration

 $\boldsymbol{F} \rightarrow \boldsymbol{F}^e$ = elastic distortion; $\boldsymbol{F}^{e-1} = \boldsymbol{W}$ ielastic 2-distortion \rightarrow 2-tensor

 $grad \mathbf{F}^{e-1} = grad \mathbf{W} \rightarrow \mathbf{Y} = \text{ielastic 2-distortion} \rightarrow 3\text{-tensor}$

- Outside layer can make good determination of W and grad W from data. Inside layer, cannot tell.
- So, outside layer construct Y = grad W. Assume field
 W exists inside layer, but undetermined from coarse measurements.
- Inside layer, do obvious interpolation for closest 'gradient' $Y = f(t)(W^+ - W^-/l) \otimes n =: S$ strip field $t = x \cdot t$ and f constant in layer outside core and decays to zero inside core So, $Y_{ij(n)}$ is only non-zero component (any i, j) $\therefore Y_{ij(t)} = 0$ and $Y_{ij(n),t} \neq Y_{ij(t),n}$
- So, in core $curl Y \neq 0$. Hence, field Y cannot be a gradient.
- Outside layer, S = 0. Hence, Y = gradW + S everywhere.
- Do Stokes-Helmholtz on S = P + grad Z.
- Hence, $\boldsymbol{Y} = \boldsymbol{P} + grad(\boldsymbol{W} + \boldsymbol{Z}).$
- Note, P = -grad Z outside layer

Kinematical ingredients of model - I

define
$$curl Y = curl (Y - grad W) =: \Pi$$

"Stokes-Helmholtz' of $Y - grad W = P + grad Z$
Incompatible 2-distortion $curl P = \Pi$ Compatible 2-distortion $div P = 0$
 $Pn = 0$ on boundary

- g. Disclination-induced transformation Transf dislocations dislo
 - Transformation dislocations
- Slip dislocations

Dislocation density

- It is clear why an infinite g.bdry/incoherent p.bdry can often be represented by slip dislocations
- Also clear what of a bdry cannot be so represented
 - Symmetric parts; transformation/g. disclination-induced parts

Topological conservation law for evolution of g.disclination density

$$^{*}\boldsymbol{\Pi} \coloneqq curl \Big(\boldsymbol{W} \big(\boldsymbol{Y} - grad \, \boldsymbol{W} \big)^{2T} \Big) \qquad ^{*}\boldsymbol{\Pi}_{rli} = e_{ijk} \left[W_{lp} \left(\boldsymbol{Y}_{rpk} - W_{rp,k} \right) \right]_{,j}$$

Line density with tensorial attribute

$$\begin{array}{l} \left(div\boldsymbol{v} \right)^{*}\boldsymbol{\Pi} + {}^{*}\dot{\boldsymbol{\Pi}} - {}^{*}\boldsymbol{\Pi}\boldsymbol{L}^{T} =: {}^{\circ}\overset{\circ}{\boldsymbol{\Pi}} = -curl\left({}^{*}\boldsymbol{\Pi} \times \boldsymbol{V}^{\Pi}\right) \\ \Leftrightarrow \overbrace{\boldsymbol{J}_{a(t)}}^{*}\boldsymbol{\Pi}\boldsymbol{n} \, da = -\int_{c(t)}^{*}\boldsymbol{\Pi} \times \boldsymbol{V}^{\Pi} d\boldsymbol{x} \\ \Rightarrow \overbrace{\boldsymbol{W}}^{*} \left(\overbrace{\boldsymbol{Y} - grad} \boldsymbol{W} \right)^{2T} = -\dot{\boldsymbol{W}} \left(\widecheck{\boldsymbol{Y}} - grad \boldsymbol{W} \right)^{2T} - \widecheck{\boldsymbol{W}} \left(\widecheck{\boldsymbol{Y}} - grad \boldsymbol{W} \right)^{2T} \boldsymbol{L} \\ - \left({}^{*}\boldsymbol{\Pi} \times \boldsymbol{V}^{\Pi} \right) + grad \, \boldsymbol{K} \end{array}$$

Topological conservation law for evolution of slip dislocation density

$$-curl \mathbf{W} = grad \mathbf{W} : \mathbf{X} =: \tilde{\boldsymbol{\alpha}} = \boldsymbol{\alpha} - \boldsymbol{P} : \mathbf{X} - grad \, \boldsymbol{Z} : \mathbf{X}$$

Line density with vectorial attribute
$$\Rightarrow div \, \boldsymbol{\alpha} = div \Big(\boldsymbol{P} : \mathbf{X} + grad \, \boldsymbol{Z} : \mathbf{X} \Big)$$

$$\hat{\boldsymbol{\alpha}} = -curl(\boldsymbol{\alpha} \times \boldsymbol{V}^{\alpha})$$

$$\Leftrightarrow \overbrace{\int_{a(t)} \tilde{\boldsymbol{\alpha}} n \, da}^{\cdot} = -\int_{c(t)} \boldsymbol{\alpha} \times \boldsymbol{V}^{\alpha} d\boldsymbol{x}$$

$$\Rightarrow \dot{\boldsymbol{W}} + \boldsymbol{W} \boldsymbol{L} = \boldsymbol{\alpha} \times \boldsymbol{V}^{\alpha} \longrightarrow W_{ij} = x_{i,j}^{e-1}$$
Only phase transformation with no dislocation plasticity $\boldsymbol{\alpha} \equiv \boldsymbol{0} \qquad \boldsymbol{Z}_{ij} = \zeta_{i,j}$
Only phase boundaries with no g.disclinations and no dislocations $\boldsymbol{\alpha} \equiv \boldsymbol{0}, \boldsymbol{P} \equiv \boldsymbol{0}$

$$\boldsymbol{P} : \boldsymbol{X} + grad \, \boldsymbol{Z} : \boldsymbol{X} + grad \, \boldsymbol{W} : \boldsymbol{X} = \boldsymbol{\alpha}$$

Thermomechanics

Two frame-indifferent theories possible

• With couple stress
$$\psi(oldsymbol{W},oldsymbol{Y},^*oldsymbol{\Pi})$$

• Without couple stress $\psi(\mathbf{W}, \mathbf{Y} - grad \mathbf{W}, *\mathbf{\Pi}, grad \mathbf{W} : \mathbf{X})$

Ω

- Both have objective dissipation \longrightarrow (): $\Omega = 0$
 - Critical test of kinematic structure of theory
 - In particular, evolution equations
- Theory without couple stress
 - not clear if regularizes conventional theory in pure phase-bdry case (no dislocations/g. disclinations)
 - Definitely works for only dislocation plasticity

Relation with 'standard' differential geometric kinematics - I

$$\begin{split} \boldsymbol{W} \text{ invertible }; \quad \boldsymbol{d}_{\alpha} &= \boldsymbol{W} \boldsymbol{e}_{\alpha} \quad \stackrel{\boldsymbol{e}_{\alpha} \text{ is a natural basis}}{\text{ for current config.}} \\ \boldsymbol{d}_{\alpha,\beta} &= \bar{\Gamma}^{\mu}_{\alpha\beta} \boldsymbol{d}_{\mu} \\ \Rightarrow \bar{\Gamma}^{\rho}_{\alpha\beta} &= \boldsymbol{e}^{\rho} \cdot \boldsymbol{W}^{-1} \left(\left[\left\{ grad \boldsymbol{W} \right\} \boldsymbol{e}_{\beta} \right] \boldsymbol{e}_{\alpha} + \boldsymbol{W} \boldsymbol{e}_{\alpha,\beta} \right) \end{split}$$

So, now define as fundamental statement for affine connection:

$$\Gamma^{\rho}_{\alpha\beta} \coloneqq \overline{\Gamma}^{\rho}_{\alpha\beta} + \underbrace{e^{\rho} \cdot \boldsymbol{W}^{-1} \left(\left\{ \begin{bmatrix} \boldsymbol{P} + grad \, \boldsymbol{Z} \end{bmatrix} \boldsymbol{e}_{\beta} \right\} \boldsymbol{e}_{\alpha} \right)}_{^{*}Q^{\rho}_{\alpha\beta}}$$

Clearly, in this case $\, {oldsymbol d}_{\!lpha} \,$ may not be a basis

Relation with 'standard' differential geometric kinematics - II

$$\begin{split} \left(\Gamma = \overline{\Gamma} + {}^{*}Q \right) & R\left(\Gamma \right)_{\bullet\mu\beta\gamma}^{\alpha} \coloneqq \Gamma_{\mu\beta,\gamma}^{\alpha} - \Gamma_{\mu\gamma,\beta}^{\alpha} + \Gamma_{\nu\gamma}^{\alpha}\Gamma_{\mu\beta}^{\nu} - \Gamma_{\nu\beta}^{\alpha}\Gamma_{\mu\gamma}^{\nu} \\ &= R\left(\overline{\Gamma}\right)_{\bullet\mu\beta\gamma}^{\alpha} + R\left({}^{*}Q\right)_{\bullet\mu\beta\gamma}^{\alpha} + f\left(\overline{\Gamma},{}^{*}Q\right) \\ &\text{invertibility and smoothness of } \boldsymbol{W} \Rightarrow \boldsymbol{R}\left(\overline{\Gamma}\right) = \boldsymbol{0} \\ &\stackrel{\cdot}{\ldots} R\left(\Gamma\right)_{\bullet\mu\beta\gamma}^{\alpha} = R\left({}^{*}Q\right)_{\bullet\mu\beta\gamma}^{\alpha} + \text{huge no. of nonlinear cross-terms} \\ & {}^{*}\boldsymbol{\Pi} \text{ is only a part of } \boldsymbol{R}\left({}^{*}Q\right) \\ &\to \left({}^{*}\boldsymbol{\Pi}\cdot\boldsymbol{X}\right)_{\bullet\mu\beta\gamma}^{\alpha} \approx {}^{*}Q_{\mu\beta,\gamma}^{\alpha} - {}^{*}Q_{\mu\gamma,\beta}^{\alpha} \end{split}$$

Metric affine geometry – Kröner, Lagoudas; Minagawa; Clayton, McDowell, Bammann

 $G_{\gamma\rho} * Q_{\alpha\beta}^{\rho} \text{ should be skew in } (\gamma, \alpha) \quad \text{Standard 'rotational' disclination density} \\ G_{\gamma\rho} * Q_{\alpha\beta}^{\rho} = \boldsymbol{d}_{\gamma} \cdot \left[\left\{ \boldsymbol{P} + grad \, \boldsymbol{Z} \right\} \boldsymbol{e}_{\beta} \right] \boldsymbol{e}_{\alpha} = \boldsymbol{e}_{\gamma} \cdot \left[\boldsymbol{W}^{T} \left\{ \boldsymbol{P} + grad \, \boldsymbol{Z} \right\} \boldsymbol{e}_{\beta} \right] \boldsymbol{e}_{\alpha}$

Our model does not have this symmetry – phase transformations require going beyond Metric Affine Geometry of classical disclinations – but our model is simpler!

Exact ansatz in FDM

$$\varphi_t^i = \left(\varepsilon \varphi_{xx}^k - \frac{\partial \psi}{\partial \varphi^k}, \varphi_x^k\right) \varphi_x^i \qquad i, k = 1 \text{ to } 4$$

Tartar, AA, 2011 Bull. Italian Math. Union

Scalar equation

 $arphi_t = \left(arphi_x
ight)^2 \left(arepsilon arphi_{xx} - rac{\partial \psi}{\partial arphi}
ight)$ AA, JMPS, 2010 Zimmer, Matthies, AA, JMPS, 2010

presentations

- ISDMM July 2011
- Plasticity, Jan 2012
- SES, Oct. 2012

