3.3 A TRUSS ELEMENT BASED ON GREEN'S STRAIN

In devising the governing equations for the various truss clements. we will not
necessarily adopt the most computationally efficient formulation. Instead. we intend
to introduce the concepts in forms that can be readily extended to continud, beams
and shells. Hence, we will adopt standard finite element procedures using shape
functions etc., although such procedures are not strictly necessary for these simple
elements. Detail will be given for two-dimensional ‘planar truss elements’, but it will
be shown in Section 3.7 that the procedures and formulae are casily extendible to
three-dimensional ‘space truss elements’,

3.3.1 Geometry and the strain—displacement relationships

Figure 3.5 shows a truss element P_Q_ in its original configuration with a non-
dimensional coordinate. ¢, being used to define the posiion of a point A, lying
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Figure 3.5 Deformation ol general truss element

between P, and Q.. As the truss experiences deformation, points A, and the adjacent

B, move to A, and B, respectively. During this process, the position vector. r,, of
point A, moves to the position vector, r. of A, where:

T=rtu (3.45)
and, in two dimensions,

=iz, u =luow) (3.46)

Equivalent nodal coordinates will be written as



X, =X =X, +p=x+p (3.47)
where the initial coordinates x (or x,. but the subscript o will ofien be omitted) are
x =X, x.00.0) (3.48)

and the nodal displacements arc (sec Figure 3.6)
p' =1y Uy Wy w,). (3.49)

{Note the non-standard ordering of the components of p and sec the footnote on
page 25.)

In Figures 3.5 and 3.6, we have introduced the non-dimensional coordinate, &, for
use with standard finite element shape functions. However, we will initially avoid the
use of such shape functions which are not strictly necessary for these simple elements,

By Pythagoras’ theorem, the initial length of the element is given by

I2=4dal =(x3, + 21, ) = X3, X2, (3.50)
where
X =Xy — Xy, In =I5 (3.51)
and -
XD, =(xy,.2y,).  [Matrix (3.52)

In {3.50), we have. for compatibility with later developments using shape functions

{Section 3.3.4), introduced the original "length parameter’, x., which is half the original
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Figure 3.6 Geometry and modes for general truss element.

length, /. For the current length, [, the equivalent of (3.50) is
12=dal=(x;, +up )l + (22, +wzy ) =%, + p2y) ' (2, +p2y) (3.53)

where in a similar manner to (3.52), p3, = (4,,. w,,). Using (3.9), (3.50) and (3.53),
Green's strain is given by



_ -1 (X3, +Pay) (Xay + Pay) — X5, X5,
_T_ 2%}, Xz

B 1
_415

&

(X3, P21 + 3P3 P21 - (3.54)

Equation (3.54) can be re-expressed as // how this is

1 got?
L= b}—p"l' 2,2 l]TAp Lpepen |
where L
1 1
bl = (= X3 X3y0 —239022,) = x)’ 3.56
1 4»15 215 %2 217523 4150{ ( )
and
[ symmetric
L 3.57
“Ta4l 00 1 : (3.37)
00 —1 1t

From (3.54)-(3.57), the incremental Green strain (caused by Ap) is given by

1 .
ﬁf: - 412[()(2] + Ilg]}rlipli + %Ap;‘ﬁpzll

o

_ I . (I
=(b, +bz(|l)]"Ap+-2 ZAp'AAp:b[p}'Ap+2 ~Ap'AAp (3.58)
10 il:

where (compare (3.56))

. 1 1 1
thpJT = 4!‘12{ "'HZI‘ uzl. _w2|. W2|}= 4IEdP]T = aiIAp}T [359]

Comparing (3.58) with a Taylor series expansion for Ag,

e 1 ik 1 b
Ac= _"Ap+ Ap' ~Ap=b(p)’Ap+ Ap" - Ap (3.60)
ap 2 dpAp 2 p

we can see that (1/22)A is the second partial derivative of £ with respect to the dis-
placements, p or the first partial derivative of b with respect to p.
For a small virtual displacement, with dp, instead of Ap, the last term in (3.58)
becomes negligible and
. de
de, =



3.3.2 Equilibrium and the internal force vector

The principle of virtual work (Sections 1.3.2, 2.1 and 3.1) can now be used to provide
internal nodal forces. g, that are in a weighted average sense [C2.2]. in equili-
brium with a set of stresses, o, that relate to total displacements, p. To this end, using
(3.61),

S oplq =Y J‘d(_;ﬁ.sv dav,=% ép{jond v, (3.62)

[

where 3’ involves a4 ‘summation’ over the elements. For the following developments,
we will drop this summation sign and hence will only directly deal with force vectors
or stiffness matrices at the element level. The ‘merging process’ to the structural level
is identical to that adopted for linear analysis [C2.2].

while the subscript G on ¢ follows the work of Section 3.1.5, where it was shown
that we musl take note of the type of stress. The stress o, is the stress that is work

conjugate to the Green strain (later ~Chapter 4 —to be called the second Piola-
Kirchhoff stress).

Equation (3.62) must stand for arbitrary dp, and hence using (3.61), (3.56) and
(3.59),

-A
4= J“(ibd Ve=20,A4,0;b=22,4,04(b, + b,(p)) = r:r; “lelx) + e(p) = qiy +q;2-
ax

(1]
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Using (3.62), the procedure for computing the internal forces, g;, from a set of nodal
displacements, p, is as follows:

Using {3.62), the procedure for computing the internal forces, g;, from a set of nodal
displacements, p, is as follows:

(1) compute the strain from (3.54) or (3.55);
{2) compute the stress, o ; (here, constant over the element). assuming a linear material

response from o, = E&;




(3} compute the internal forces, g;. from (3.63) with b, and b, being defined in (3.56)
and (3.59),

3.3.3 The tangent stiffness matrix

From (2.20) and (3.63) how?

(3.64)

dag 06 . T gyt
= E—=E{b, +by(p)}" = Eb(p)". (3.63)

ap ap
From (3.64) and {3.65), the first term of (3.64) can be written as

23,40 7¢ 2 2Ex A Db = K,, + K, (3.66)

cp -

where
~ T EA T
K, =2EA2,bb] = R";d"]d"} (3.67)
a

» = 2EAa,[b,b] + b,b} + b,b3] =K., + K, + K. {3.68)

‘‘‘‘‘‘

‘initial displacement (or slope) matrix’ (compare (1.10)). The ‘seometnc’ or ‘initial-
stress matrix’ (Section 1.2) comes from the second term in (3.64). Noting that, of the
constituents of b (see (3.58)), only b, is a function of p, from (3.64) and (3.59),

| symmetric
Eb l:'lbz 2-4 G(. 1‘{ [5(“ ‘—I I
K”=21A T = 22 A T = A= "
t ] o‘.l, G Q u;, G %, 210 0 0 1
0O 0 -1 1
{3.69)
Equations (3.67) and (3.68) can be expanded to give
2
X3, .
B A symmetric
EA | —X X EA,
=y ! H ) = Jelx)ex) (3.70)
8 X2 —XuaZa o 8,
— X373 Xa1Zpy 23, I3
Xpgllpy  —Xgly X2 1Wa — X W
. EA Xyl Xpygliyy  — X7 Wy X3 Wy
K. =2EA2,bbi= 7 (3.71)
LEN TagUyy  — I My Z31Wap T IpgWa

— Uy D Uy TEZnWn I21Way
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“%l .
K. _FAl- U3, U3, symmetrie (3.72)
'2"_813 Uy Wy, —Uy Wy w3, ‘
— U Wy Uy Wy _ng “’il

with the fina) tangent stilfness matrix being given by

K=K, +K.:+K,=K, +K, + K}, + K, +K,. (3.73)

The internal force vector, g;, tangent stiffness matrix, K,. and strain/displacement
relationships that have just been derived can be incorporated into a computer program
using a very similar procedure to that adopted for a shallow-truss theory in Chapter 2.
(This is discussed further in Section 3.9.) The technique is known as ‘'total Lagrangian’
because all measures are related back to the imitial configuration. While the detail
has been given in relation 1o a two-dimensional analysis, the concepts are equally
valid in three dimensions—-s i




