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STRESSES AND FAILURE MODES IN THIN

FILMS AND MULTILAYERS

1.AN OVERVIEW

Thin films and multilayers are widely used in technology, and their mechanical perfor-

mance under severe environmental conditions often dictates design. Examples include

electronic packages, coatings for thermal, chemical or abrasion protection, and ferroelec-

tric actuators. This set of notes addresses both the origins and details of the stresses which

develop in thin films and multilayers and the failure modes stemming from these stresses.

The notes draw from many sources in the literature but two articles, in particular, are used.

An overview article (Evans and Hutchinson, 1995) provides an integrated picture of the

subject which goes beyond the scope of the notes. Much of the quantitative mechanics,

which will be the focus of the notes, is contained in the article by Hutchinson and Suo

(1992). Specific sections from these papers will be cited and integrated into the notes as part

of the reading. These two articles have an extensive list of references, which serve these

notes as well. Detailed citations to the literature are not provided in these notes.

1.1 Stresses: Origins and Terminology

Stresses in thin films and multilayers have three primary origins: intrinsic, thermal and
mechanical. Intrinsic and thermal stresses are often referred to as residualstresses.Stresses

which arise from mechanical (as opposed to thermal) loads are labeled "mechanical

stresses" for the present discussion.

Intrinsic stresses arise during the deposition process, which include sputtering, spraying,

painting, spin coating, vapor deposition, and electro-deposition. These processes are used

to create films and multilayers from metals, ceramics, polymers and intermetallics.

Depending on the process, the deposition temperature can be "low" or "high" or room tem-

perature. Intrinsic stresses are distinct from thermal stresses in that they are the stresses

present at the deposition temperature. The mechanisms which generate intrinsic stresses

are not well characterized quantitatively. They include grain growth, defect annihilation,

phase transition, and evaporation of a solvent. For example, vacancy annihilation would

reduce volume were a film free to contract. Thus, a film on a substrate would develop intrin-

sic tensile stress if it experienced vacancy annihilation.

When a single crystal thin film is deposited epitaxiallyon a single crystal substrate (one per-

fect atomic lattice on top of another), there will usually be an intrinsic stress in the film due

to the difference between the unstrained lattice spacings of the film and substrate materials.
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Thermal stresses arise due to changes in temperature when the film and substrate (or the

layers in a multilayer) have different coefficients of thermal expansion (CTE). For some

systems, these stresses can be huge (i.e. several GPa), and they are frequently provide the

driving force for mechanical failure.

When the temperature is different from the deposition temperature, the residual stresses

comprise both intrinsic and thermal contributions.

1.2 Failure Modes: An Overview

There are many modes of failure of films and multilayers which result from stresses which

are too large. Interfaces are intrinsic to these systems, and they are susceptible to interface

debonding or delamination. Cracking of a film or layer is possible when tensile stresses

develop, while buckling-driven delamination can occur if stresses are compressive.

@
~
C~y
~j)

LJ)

Surface Crack

Channeling

Substrate Damage

SpaJling

Debonding

Fig. 1.1. Cracking modes in films stressed in tension.

Several modes of cracking are depicted in Fig. 1.1 for a film on a substrate where the film

is in tension. Isolated surface cracks can propagate and channel across the film. If the sub-

strate is brittle the crack may penetrate into the substrate, even though it is essentially

unstressed. The interface may debond, or a debond crack may dive into the substrate pro-

ducing delamination via cracking parallel to the interface in the substrate. Combined film

cracking and interface debonding can also take place if the combination of film toughness

and interface toughness lies within certain limits.

Each of the lower four modes shown in Fig. 1.1 involvessteady-state propagation once it has

advanced beyond a distance typicallyon the order of the film thickness. These steady - state

propagation modes will be analysed later in the notes for both films and multilayers.
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Although the modes are 3 dimensional, they can be analysed with 2D solutions. They pro-

vide robust fail-safe criteria for ensuring that the respective failure modes will not occur.

The combination of parameters which form the crit~ria always has the nondimensional
form

Q = ha2
Ef (1.1)

where h is a film or layer thickness, a a stress, E a modulus, and f a toughness (in units

Jm-2) . If the "cracking number", Q, is less than a critical value, Qc (depending on the

specific mode), the mode is excluded. Thus, for example, film debonding (Fig. 1.1) is

excluded if Q < 2 ,where h is the film thickness, a the film stress, E is the plane strain

tensile modulus, and f is the interface toughness.

When the stress in the film is compressive, there are two dominant failure modes: buckling-

driven interface delamination and edge delamination, as depicted in Fig. 1.2. The shapes

and propagation patterns of the buckle delamination modes can be quite extraordinary.

These modes are also characterized by criteria which can be expressed in the form (1.1).

circular blister
"telephone cord"

blister

section A - I'\. I
interface delaminations

a) b)

Fig. 1.2.Failure modes for compressed films. (a) Buckling driven interface delamination, and (b) Edge dela-
mination.

Internal layers of a multilayer can undergo cracking and interface debonding, and in com-

bination when the ratio of the toughnesses of the layer and interface isbetween certain lim-

its. Fig. 1.3 depicts a tunnel crack propagating in a layer accompanied by interface debond-

ing and sliding.
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Fig. 1.3. A schematic of crack growth in a multilayer by tunnelling with slip or debonding at the interfaces.

Inteifaces are inherent to thin films and multilayers. There are critical issues which influ-

ence the integrity of the system. Will an interface crack propagate? Or will it kink into an

adjoining layer? Will a crack intersecting an interface pass through or will it be deflected

into the interface? Interface toughness and its magnitude relative to that of adjoining layers

is central to the answers to these questions.

Plasticity accompanying crack growth can have a major influence. In most instances plastic-

ity increases the resistance to crack growth. However there are certain problems for films

and layers where plasticity enhances crack propagation. The first sections of the notes

address behavior from the vantage of elastic crack mechanics. Some of the issues surround-

ing the role of plastic deformation in films, substrates and layers are taken up in the final
sections.

2. STRESSES IN FILMS AND MULTILAYERS

2.1 Intrinsic Stresses

As mentioned in Section 1.1, intrinsic stresses are defined to be those stresses which arise

during the deposition process which are not due to thermal expansion mismatches. Most

mechanisms generating intrinsic stress result in a change in volume which then produce

stresses due to the constraint of the substrate or other layers. The mechanisms are not well

quantified and most estimates of intrinsic stress levels are obtained by experimental mea-

surement. Several models for mechanisms which give rise to tensile stresses in thin film

deposition are presented in the Appendix of the paper by Evans and Hutchinson (1995).

These include grain growth, defect annihilation and sintering.

2.2 Thermal Stresses in a Thin Film

To fix some of the ideas and notation, consider a very thin film on a thick substrate

(h/H < < 1), as shown in Fig. 2.1. The film and substrate are each isotropic with (E, v, a)

and (Es, vs, as) as the respective Young's modulus, Poisson's ratio and CTE.
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Fig. 2.1. Thin film on a thick substrate.

Attention is directed first to stresses which develop in the interior of thefilm away from the

edges. The film is deposited at temperature To with intrinsic stresses all = 022 = 01,

which may very with x3 . Assuming an elastic response, consider the effect of changing tem-

perature from To to T with ~T = T - To' Let ~Oij be the associated stress changes

(i.e. the thermal stresses) such that the total stress at T will be °ij = O~j + ~Oij . Let Eij

be the strains measured relative to the state at To' For h/H < < 1 , the film has little effect

on the substrate and the substrate imposes its inplane strains on the film. Thus, away from

the edges,

(E a~ )film = (Ea~ ) substrate
a=12.R=12, , I-' , (2.1)

There is no bending. The substrate expands freely, effectively uninfluenced by the film. In

the next section, the effect of interaction between film and substrate with finite hlH will

be analysed accounting for bending.

By (2.1), for both the film and substrate

Ea~ = as~T6a~ a=12.R=12, , IJ , (2.2)

(This is valid if as is independent of T. If as depends on T, then as ~ T should be

replaced by
T

f a, dT
To
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Equivalently, (2.2) holds rigoriusly if as is taken as the average of the CTE on the interval

Toto T) . The component E33in the film is unconstrained and 033 = 0 , corresponding
to plane stress conditions. The inplane components (a = 1,2 ; ~ = 1,2) in the filmsatisfy

Ea~ = 1 ~ v ~oa~ - ~ ~oYY()a~+ a~T()a~ (2.3)

with inverse

E
[ ]

Ea~T
~oa~ = 1 - v2 (1 - V)Ea~+ VEYY()a~- 1 - v ()a~ (2.4)

Imposition of (2.2) gives the thermal stresses in the film away from the edges

E~a~T
~oa~ = 1 - v ()a~ ' ~033 = 0 (2.5)

where the CTE mismatch is ~a == as - a . (Again,note that (2.5)is rigorousfor tempera-

ture dependent CTE's if ~a is taken to be the average on the interval Toto T).

h

(au)", ~ k f a udx3
0

t x3 OR--
E,v h'--

0 --
Xl = X

OR
Es,vs

0 x/h

0 (x, 0)
13

00

aRh = f a4x, O)dx
0

0 , (x 0)
33 '

0 x/h

00

f a3{x,0)dx = °
0

0 x/h

Fig. 2.2. Qualitativ~ behavior of stresses near the edge of a thin film (away from the corners).

(Oll(X,X3)tc = h-1 f Olldx3 is the average through the thickness at x == Xl' odx,O) and ozz(x,O) are the

traction componen(sOon the interface at x.
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In summary, the interior of the film is subject to the equi - biaxial inplane stress state

OR = OI + E~a~T
I-v (2.6)

Closed form results for stresses near the edges or corners of the film are not available. The

qualitative behaviour near an edge of a thin film (away from the corners) is sketched in Fig.

2.2. In general, the stress state maybe singular at (0,0) if Es ~ E.

An approximate analysis of the shear traction on the interface by Freund and Hu (1988)

results in the normalized results presented in Fig. 2.3. The parameter A is given by

A = Es(1 - v2)
E(l - v;)

(2.7)

Thus, if the substrate is stiff compared to the film (A > > 1) , the shear transfer zone is nar-

row and on the order of h. Conversely, if the substrate is relatively compliant, the shear
transfer zone is wide.

.5 °12(x,O)
AOR

.4

.3
(\

I \
I \ ,

I \
I \, \, ,,,,,f,I Freund - Hu model.2

. 1
actual behavior

0

0 1 2 3 4 5
AX
h

Fig. 2.3. Shear traction O12(x,0) on the interface near the edge of the film from an approximate analysis of
Freund and Hu (1988) - see that reference for an accurate plot. Very near the edge the approximate solution
breaks down.
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2.3 Stresses in a Multilayer: Layer by Layer Deposition and Release from the Substrate

As depicted in Fig. 2.4, a multilayer with N layers is deposited layer by layer on a thick sub-

strate. The intrinsic stress and deposition temperature for the i'th layer are o~ and T~, and
the properties are designated by the subscript i . Assuming the subsfrate is very thick (and

stiff) compared to the multilayer, the stress in each layer at temperature T will be given

by (2.6), i.e.

R = - Ej(aj - as)(T - T~) + o~
OJ (l-vJ

where °11 = °22 = or.

/ zN+1

/ZN

~ /Z2

/ zl

a)

(2.8)

I
IlK

b)

Fig. 2.4. Multilayer deposition. (a) Layer bylayer deposition on a very thick substrate. (b) Release of the multi-
layer from the substrate at temperature T .

The multilayer is released from the substrate at temperature T .The inplane strain change
relative to the attached state at T is

I:1E11 = I:1E22 == I:1E = I:1E0 - ZK (2.9)

where I:1EOis the value at the bottom at Z = 0, and K is the curvature change at release.

The inplane stress change in the i'th layer is

(N)

I

(2)

(1)

SUBSTRATE
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E.

L10ll = °22 == L10 = 1 _IV. (L1EO- ZK)I
(2.10)

The total stress in the i'th layer after release is (°11 = °22 = 0)

E.
° = 0~ + L10 = I (L1E - ZK) + 0~

I 1 - v. 0 II
(2.11)

The equations for determining L1EOand K are

ZN+l ZN+l

f adz = 0 and f azdz = 0
0 0

(2.12a,b)

These can be written as

Cll L1EO- C12K = Al

(2.13)

C12L1EO- C22K = A2

where

N N E (z2 - z2) N E ( 3 - 3)~ Eiti ~ i i+I i ~ i Zi+I Zi
Cll = L ' Cl2 = L ' C22 = L

i=1(1 - vi) i=1 2(1 - vi) i=1 3(1 - vi)

N N
A - ~ R A - ~ 1( 2 2) R

1 - - L tj OJ' 2 - - L"2 Zj+ 1 - Zj OJ
i=I j=I

Once L1EOand K are obtained, o can be evaluated from (2.11).The stress at the top of

the i'th layer is given by (2.11) with Z = Zj+ 1 and at the bottom with Z = zi' The average

stress a in the i'th layer is

- Ej
[

1
( ) ]

R

o = 1 - Vj L1EO - "2 Zi + Zi + 1 K + oi
(2.14)

These results hold for the released multilayer at any temperature T, not only the release

temperature. This follows from the fact that the deformation is elastic. The state at T does

not depend on the temperature at which release occurs. This statement would not be true

if plastic deformation occurred in any of the layers.
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2.4 An Example: A Bilayer

We consider an example (taken from Evans and Hutchinson (1995» of a bilayer by special-

izing the above results for N = 2. Suppose both layers are deposited at To and that the

intrinsic stresses are zero a~ = 0 , i = 1,2 .We seek the stresses at temperature T . Recall
that the stress will be independent of the release temperature. The problem is completely

equivalent to one in which the two flat layers are bonded together at To'

The equations in Section 2.3 can be reduced with algebraic manipulation to the following

equations for the stress a at the top of layer 2 and the average stress 0 in layer 2 . With

hz - Ez/(l - Vz) aT = Ez (al - az)(T - To)
S = hI ' L - Ed(l - VI) , 1 - Vz

(2.15)

- 1 + :L't:3a_,:>

aT - (:Lsz- l)z + 4LS(S+ 1/
(2.16)

~ = 1-3:Lsz-2LS3

aT (:LsZ-1)z+ 4:Ls(s + 1/
(2.17)

The curvature of the bilayer is

1<: = 6sZ(1 + s)
[

(1 - VI)aT

](:LsZ-1)z+ 4:Ls(s + l)z EI hz
(2.18)

Plots of a/aT and 0/ aT for the entire range of relative layer thicknesses are given in Fig.
2.5.

The misfit stress aT defined in (2.15) is the stress in the upper layer which would occur if

the lower layer were infinitely thick (s = hz/hI ~ 0), as can be seen from (2.6). The above
results indicate that the averageresidual stress is essentially the misfit stress, aT, when the

film is thin (s < < 1), but is reduced to a fraction of aT when the film and substrate have

comparable thicknesses, as plotted in Fig. 2.5 for three values of :L. Bending has its maxi-

mum effect when the two layers have about equal thickness, resulting in substantial redis-

tribution of the misfit stress. Specifically, and most importantly, the stress at the top of layer

#2 develops the oppositesign from the misfit stress and becomes substantially larger in mag-

nitude than the average stress in that layer, 0, as seen in Fig. 2.5. The key features brought

out in Fig. 2.5 are summarized as follows: (a) When layer 2 is sufficiently thin, (s < < 1),

the residual stress in this layer is everywhere approximately the misfit stress aT. (b) Con-

versely, when layer 1 is relatively thin, (s~ 00) , the stress throughout layer 2 approaches
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cr- stress at top of layer 2

cr-aV~ay.r 2

lliTI

0 10 102 103

Relative LayerThickness, h2/h1

Fig. 2.5. Stress at the top surface, a, and average stress in the top layer, "0, of a bilayer.

zero. (c) Yet, in the intervening range of S, the stress a at the top surface of layer 2 can

have the opposite signto aT and canbe largecomparedto ° .In particular,tensilestresses
can arise at the surface of a film that would be in compressionin the absence of bending.

The range of S corresponding to such tensile stresses is of direct relevance to the crazing

mode of film cracking.From Eqn. (2.11)it is seen that a tensile stress willexistat the top
surface for all thickness ratios Sgreater than that satisfying 3LS2 + 2LS3 = 1. For small

L, the minimum S corresponds to S == (1/2L)1/3; for L = 1,s = 1/2; while for large

L, S == (1/3L)1/2.

When the film (layer 2) is thin compared to the substrate (layer 1), the curvature 1< is

directly related to the stress in the film and is commonly used as a means of measuring film

stress. To see this eliminate aT from (2.16) and (2.18) to obtain the following relation

between 1<and the average stress in the upper layer:

1 + s 6(1 - vl)h201<=
1 + L~3 E h2

':> 1 1
(2.19)

0.8

r- 0.6b
........
b

(/)
0.4

(/)
Q)'-+-'

0.2(f)
Q)
>

:;:;
C'C! 0
Q)
a:

-0.2

-0.4
r I I I I I I I I I ,

10'3 10'2 10-1
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For s < < 1 and LS3 < < 1 , one obtains the well known relation

6(1 - vl)hz0

1<= Elhi
(2.20)

Note that the properties of the substrate on which the bilayer is deposited have no influence

on the stresses or curvature of the released bilayer in this example, as should be expected

in physical grounds. In general, however, as does effect the stresses and curvature of a

released bilayer (or multilayer) when the deposition temperature differs from layer to
layer.

2.5 Stresses in a Multilayer due to Through-Thickness Temperature Gradients

The results in Sections 2.2 and 2.3were restricted to multilayers subject to uniform temper-

ature. The analysis can be extended to account for a temperature difference between the

top and bottom surfaces. When the temperature distribution has reached steady-state (i.e.

independent of time), the temperature varies linearly in each layer. The steady-state tem-

perature distribution is readily obtained. An analysis similar to that in Section 2.2 provides

the stresses in each layer and the curvature of the multilayer.
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3. SELECTED RESULTS FROM ELASTIC FRACTURE MECHANICS

The topics in this Section are selected from elastic crack mechanics because of their rele-

vance to cracking of films and layers and their interfaces. Most of the topics are covered in

more detail, including references, in the review article by Hutchinson and Suo (1992). The

organization into subsections is

(3.1) Cracks in homogeneous solids - stress intensity factors, energy release rate and

toughness.

(3.2)

(3.3)

Interface cracks and interface toughness. Mixed mode effects.

Crack kinking out of an interface.

(3.4) Crack deflection by an interface.

3.1 Cracks in Homogeneous Solids - Stress Intensity Factors, Energy Release Rate and

Toughness

We consider linear isotropic solids with Young's modulus E and Poisson's ratio v . Results

from crack mechanics for 2D, plane strain elasticity will be cited.

Consider the generic body in Fig. 3.1. Take the origin of the (xl' x2)-axes at the crack tip

and align the xl - axissuch that it isparallel to the crack. (If the crack is curved, xl is aligned

with the tangent to the crack at the tip). Let (r, 8) be the associated planar polar coordi-

nates. The body is loaded in the plane. For any loading, the crack tip fields as the crack tip

approached (for either plane strain or plane stress) have the universalform (as r --,)00)

KI -I KII -II
°ij = ~ oij(8) + ~ Oij (8)

'12m y2Jtr
(3.1)

where KI and KII are the mode I and II stressintensityfactors. The mode I field is symmetric

about the crack line, while the mode II field is anti -symmetric. The intensity factors are

normalized such that on the line ahead of the tip (8 = 0)

KI KII
°22 = ~ ' °12 = ~

y2Jtr y2Jtr
(3.2)

-I -II
where 012(0) = 0 and 022(0) = o.
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X2

~
I
I

I r/
I/~I
! _l~ xl

a ...

P

Fig. 3.1. Generic plane strain crack problem.

A crack problem is said to be a mode I problem if Kn = 0 and viseversa. Any problem
where the geometry and loading is symmetric with respect to a straight crack is necessarily

mode I. If the geometry is symmetric and the loading is anti -symmetric, the problem is

mode II. (Out-of-plane loads induce shear tractions, °13' on the plane ahead of the tip.

These are called mode III problems). Stress intensity factors have dimension

stress x length V2. Comprehensive compilations of results for stress intensity factors are

given by Tada, Paris and Irwin (1985) and Murakami (1987). Two results which will be used

later in these notes are those for the two problems shown in Fig. 3.2. The classical problem

for a straight crack of length 2a in an infinite body subject to remote stress air has

KI = °2'2[ita , Kn = °12[ita , Km = °n [ita (3.3)

The problem of an edge crack of length a in a semi-infinite half-space subject to remote

stress °2'2 parallel to the free surface has

KI = 1.1215°2'2[ita (3.4)

Elasticity theory provides the elastic energy released by the solid to the crack tip under crack

advance. In elastic fracture mechanics, this is the energy available to the fracture process.

. In what followswe state Irwin's relation between the energyreleaserate, G, and the stress
intensity factors. (Derivations are given in most texts on fracture mechanics).
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t "n .
~a12

00

a22

j

j
~

a

I j

Fig. 3.2. Two crack problems.

The result given below is limited to crack advance straight ahead of the current crack direc-

tion. Crack kinking is excluded - it will be discussed later. Let PEea) be the potential

energy per unit thickness in the x3- direction for an elastic body loaded either under pre-

scribed load or prescribeddisplacement. Define the energy release rate to be the energy lost

by the system (per unit thickness) due to crack advance:

G = - dPE
da (3.5)

In a given state, G is independent of whether the load is prescribed or displacement is pre-

scribed or any combination thereof. The Irwin connection for plane strain is

G = 1 E v2 (Kf + KfI) (3.6)

(The lead coefficient is lIE for plane stress). G has dimensions of surface energy, energy

per unit area, which is usually quoted in units J m-2 in fracture mechanics.

For homogeneous solids, the fracture toughness is defined as the critical value of KI or G

as determined by a test of a mode I specimen. The details required for a valid mode I frac-

ture toughness test are described in fracture mechanics texts. In particular, for elastic

results such as (3.3) and (3.6) to apply any plasticity must be confined to a small region at

. the crack tip - conditions referred to as small scaleyielding. The critical value of KI mea-

sured in a valid mode I test is denoted by KIc and is called the fracture toughness. Equiva-

r'
Xl\ !

)

I, ..
2a
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lently, by (3.6), one can use the critical value of G as the toughness. Here the critical G

willbe denoted by r c (units J m-z) . For mode I, the two toughness measures are related

by

r = 1 - vZKZ
c E Ie (3.7)

3.2 Interface Cracks and Interface Toughness. Mixed Mode Effects

As shown in Fig. 3.3, a crack lies on the interface between two dissimilar, but isotropic, elas-

tic solids. Plane strain is again assumed. Because of the dissimilarity in elastic properties,

there will usually be some asymmetry near the crack tip even if the geometry and loading

are symmetric. By their nature (and because of the loadings), interface cracks tend to be

mixed mode. Universal crack tip fields exist for the bimaterial interface crack with two stress

intensity factors, but the fields are somewhat more complicated than those for the homoge-

neous solid. Details are discussed in Section ILC of Hutchinson and Suo (1992). Here,

attention will be limited to a sub-class of elastic mismatches for which the near tip stress

fields are identical to those for the homogeneous solid. Little is lost by restricting consider-

ation in this way.

For the general bimaterial interface problem in plane strain, two elastic mismatch parame-

ters - the Dundurs mismatchparameters - playa role in any traction boundary value prob-
lem:

EI' vI

. XzI

I
I
I
I
I

-~ x~---- Interfacea

EZ' Vz

P

Fig. 3.3. An interface crack for a bimaterial.
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El - E2 - 1 !Al(l - 2v2) - !A2(1- 2vl)
aD = - , ~D - "2 ( ) ( )E1 + E2 !AI1 - v2 + !A21 - vI

(3.8)

where E = E/(1 - v2) is the plane strain tensile modulus and !A= E/[ 2(1 + v)] is the
shear modulus. The complications in the crack tip fields referred to above arise when ~D

is non-zero. When ~D = 0, the stressesat the crack tip are the same as for the homoge-
neous solid (3.1), and, in particular, (3.2) apply such that Kr controls the normal stress act-

ing on the interface ahead of the tip and Kn controls the shear stress. Discussion of the

role of ~D and the justification for ignoring this role (by taking ~D = 0) isgivenin Section
II.C of the reference cited. The first mismatch parameter aD does play an important role

in some problems. In some cases below, the role of ~D will also be displayed.

The relation between the energy release rate and stress intensity factors for crack advance

in the inteiface is

1 - ~2

[

1 - v2 1 - V2

]G = 2 D El 1 + E2 2 (Kf + Kfr) (3.9)

generalizing (3.6). This is the expression for arbitrary ~D' It can be seen that the second

Dundurs parameter plays a very minor role in this connection, since ~~ is usually much
smaller than 0.1 .

Given the mixed mode nature of most interface crack problems, both Kr and Kn are

needed to characterize the stresses on the interface. Equivalently, one can use G and the

following measure of the relative proportion of mode II to mode I

1IJ = tan-l (Kn/Kr) (3.10)

Thus, 1IJ= 0° corresponds to pure mode I and 1IJ= :!: 90° to pure mode II. The pair

(G, 1IJ)is now commonly used to characterize the intensity of an interface crack. Two crack

problems are shown in Fig. 3.4. For the crack of length 2a on interface of an infinite bimat-

erial, elastic mismatch has no influence on the crack tip intensities when ~D = 0 . Thus,
(3.3) still holds and

- 1

[

1 - vi 1 - v~

] (
co2 co2

) - -1

(
°12

)G -"2 El + E2 Jta °22 + °12 ,1IJ - tan °2'2
(3.11)

For the thin film subject to uniform residual tension ° in the bonded state

1(1-vi)02h ,1IJ=w(aD)G = "2 E1
(3.12)
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where w is sketched in Fig. 3.4. The result is valid once the crack length exceeds several

film thicknesses where steady-state has set in and G is independent of crack length. Note

that G is independent of aD but 1/Jhas some dependence. Note also that the interface

experiences roughly equally levels of normal and shear stress in this case. The method for

obtaining this solution will be discussed later in the notes. It and solutions for other inter-

face crack problems are given in the article by Hutchinson and Suo (1992).

Kn

KI

I
h

OJ

60°

---T ~= IJ

40°
CD

-1 0 aD 1

Fig. 3.4. Two interface crack problems: an interface crack for a remotely stressed bimaterial and an interface
crack between a thin film and substrate.

Interface toughness is defined as the critical value of G needed to advance the crack, assum-

ingitpropagatesintheinterface.It isagaindenotedby r c .It hasbeen found that the inter-

face toughness depends strongly on the mode mixity 1/Jfor the interfaces for which exper-

imental data exists. This is emphasized by writing the interface toughness as r c(1/J). Data

from Liechti and Chai (1992) for an epoxy/glass interface is presented in Fig. 3.5. The lowest

toughness for thus interface, and others for which data is available, is the mode I toughness.

In this case, the near mode II toughness is nearly ten times larger. The toughness values

presented in Fig. 3.5 correspond to "steady-state" toughness for which initial resistance

Loc al2
--------......-

Q)

I f ---, : --- 1
'-02a
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Fig. 3.5. Toughness rcC1jJ)of a glass/epoxy interface as dependent on the mode mixity 1jJ.Data from Liechti
and Chai (1992).

to growth (G increasing with a) is overcome and the crack propagates at essentially

constant G .The two 'ljJ-measures in Fig. 3.5 are related to the role of ~D for this system.

The elastic mismatch is large and ~D == .2. This affects the definition of 'ljJ,as discussed

in the article by Hutchinson and Suo (1992).

3.3 Crack Kinking Out of an Interface

Will a loaded interface crack propagate in the interface or will it kink out of the interface

and propagate into either of the adjoining materials? The answer depends on the energy

release rates for interface advance versus kinking, and on the relative toughnesses of the

interface and the adjoining materials.

We begin with the mechanics of interface kinking first. An interface crack is loaded to

(G, 'ljJ). Consider a putative kink crack (Fig. 3.6) of length a. Denote the intensity of the

kink crack tip by (G tip' 'ljJtiP) . In the limit where a is very small compared to the parent
interface crack, .

Gtip

G=fl(Q,'ljJ,aD) and'ljJtip=fz(Q,'ljJ,aD) (3.13)

where Q is the kink crack angle and it is again assumed that ~D = 0 . We take 'ljJ> 0

and anticipate that the crack will kink into the lower material (#2). (The results which fol-

low permit the roles of #1 and #2 to be switched when 'ljJ< 0) .The solution to the elastic-

ity problem for the putative kink crack provides fl and fz in (3.13). In the plot in Fig. 3.6,

(Gtip)max denotes the maximum value of Gtip over all Q for a given (G, 'ljJ). Except for

aD < - 2/3 , the angle Q which maximizes Gtip also gives 'ljJtip == O. In other words, to
a reasonably good approximation, the kink angle which maximizes the energy release rate

. of the kink crackcorrespondsto mode 1.(Kinkanglesare presented byHe and Hutchinson
(1989».
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Fig. 3.6. Crack kinking out of an interface. Rates of energy release rate for advance in the interface to the maxi-
mum energy release rate for the kinked crack as a function of mode mixity 'l\Jfor various elastic mismatches
(~D = 0).

The ratio G/(Gtip)max in Fig. 3.6 is ratio of energy release rate for advance in the interface
to that for kinking into material #2. The kinked crack's rate can be as much as twice that

for propagation in the interface, depending on 1jJand elastic mismatch. Whether the crack

kinks or advances in the interface depends on the relative toughnesses. Let r~2) be the

toughnessof material#2, and let r c(1jJ)be the toughness of the interface. Consider loading

such that G increases monotonically with 1jJfixed. If

~ < rc(1jJ)

(G . ) r(2)
tip cmax

(3.14)

the condition (Gtip)max= r~2) willbe met prior to the condition G = rc(1jJ) , and the
crack will kink. Conversely, of the inequality in (3.14) is switched the crack will advance in

the interface. Graphically, ifthe point rc(1jJ)/r~2) is plotted in Fig. 3.6 and if it falls above

the curve for the appropriate elastic mismatch, then kinking will occur. Otherwise, it will
not.

3.4 Crack Deflection at an Interface

Consider the competition depicted in Fig. 3.7 between penetration of a crack through an

interface and crack deflection into the interface (kinking into the interface). The parent

crack has its tip at the interface and is aligned perpendicular to the interface. Stressing is

taken to be symmetric with respect to the parent crack. Let (Gtip)P denote the energy

release rate of the penetrating crack, which by symmetry is a mode I crack. Let (Gtip)d

- denote the energy release rate of the deflected interface crack and let 1jJtip denote its mode
mixity.
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~ a ~
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--., .--
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(

double

a

(

single

Fig. 3.7. Crack arrested at an interface under symmetric loading. Under increasing load, will the crack advance
by penetrating the interface or by deflecting into the interface?

At equal putative crack lengths, a, the ratio of the energy release rates of the competing

crack propagation modes depends only on aD (with BD = 0) (see He et al. (1994) for full

details). Plots of this ratio are given in Fig. 3.8, along with the corresponding '4Jtipfor the
deflected interface crack. There is very little difference between the doubly-deflected

crack and the singly-deflected crack.

The competition between deflection and penetration is settled by the ratio of the interface

toughness to that of material #1. As in the argument made for kinking, if

(Gtipt < rc('4J)

( . ) r~l)GtJp p

(3.15)

conditions for penetration will be attained prior to those for deflection, and vise versa. Note

. from Fig. 3.8,that exceptfor large elasticmismatches,penetration is likelyif the interface
toughness exceeds about 1/4 of the toughness of the material across the interface.
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4. THROUGH -CRACKS IN FILMSAND LAYERS

The principles underlying through -cracks in a embedded layer are similar to those for a

film. The first sub-section focuses of films, the second on embedded layers. The concept

of steady-state crack propagation is central to the mechanics of film and layer cracking, as
well as interface cracking, and we address this issue next.

4.1 Single Cracks in Films under Tension

Consider the 3- D crack in Fig. 4.1 of length a advancing quasi - statically in the x3- direc-
tion. A tensile residual stress ° exists in the film prior to cracking. The results derived below

apply to either °11 = ° and °33 = 0 or °11 = °33 = o . The crack extends to the sub-

strate interface. Symmetry dictates that the crack front advancing through the film experi-

ences mode I conditions, with KI varying along the front edge in a manner dependent on

the shape of the front. With G = (1 - vi)KifEl ' let G be the average of G through the
thickness,

h

- 1

1G = 11 G dxz
0

(4.1)

X2

Fig. 4.1. A 3D through-crack channeling across a film.

A qualitative plot of G as a function of a/h is shown in Fig. 4.2. For cracks shorter than

about one film thickness, the energy release rate falls well below the asymptote Gss. As

the crack grows beyond about 2 film thicknesses, G increases monotonically and the crack

front very quickly settles into steady-state conditions such that G becomes independent of

. crack length a. The advancing tip no longer "feels" any influence of the other end of the

crack. The steady-state energy release rate is
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- - Jt (1 - vi) 2 ( )Gss-2 E ahgaD'~D1
(4.2)

where g will be presented below along with its derivation. Few fully 3D solutions for film

or layer cracks exist which show the quantitative transition to steady state. One such solution

is available for a crack interior to a film with an initial elliptical-type shape (Nakamura and

Kumar). That solution displays a transition to steady-state in accord with the depiction in
Fig. 4.2.

G

Gss

0 1 2
a/h

3 4

Fig. 4.2. Qualitative approach to steady-state channeling.

To analysesteady-state channelingwe make use of Fig.4.3which depictshow Gss can be
determined from a 2D plane strain solution. In steady-state, the energy released for an

advance da of the crack is Gsshda. This must be equal to the potential energy difference

between slabs of thickness da upstream and downstream. Since the remote stress a in the

film does no work during cracking, this is the same as the strain energy difference between
the slabs, i.e.

h Gss = [(SE)upstream - (SE)Downstream] (4.3)

where SE denotes the strain energy per unit thickness in the x3- direction. Each of the two

slabs is in a state of plane strain. Bythe cartoon in the lower half of Fig. 4.3, the strain energy

difference in (4.3) is precisely the work done by tractions in the reducedproblem such that

b

hG" = h fa(b)db = !abh
0

where b is the average crack opening displacement.

(4.4)
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Fig. 4.3. Energy accounting in steady-state channeling. The energy release rate can be determined from the
reduced problem - a plane strain problem.
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The reduced problem is a plane strain problem. By dimensional considerations and linear-

ity, it follows that "6 = c(l - vDah/EI where c is a dimensionless function of aD and

~D . The form (4.2) follows directly from (4.4). Computed values of g in (4.2) are plotted

in Fig. 4.4 from Beuth (1992). The effect of elastic mismatch is substantial, especially when

the film is stiff compared to the substrate (aD> 0) .

It is useful to record an alternative expression to (4.4) for Gss. Denote the energy release

rate of a plane strain edge crack of depth b (b s; h) in the reduced problem by Gps(b) .
The work done (4.4) by the tractions in the reduced problem is precisely the energy released

by the edge crack in advancing from b = 0 to b = h (since it is an elastic problem). Thus,
one can also write

h

hG" ~ fGp,(b)db
0

(4.5)

Noting the edge crack result (3.4) and (3.6), it can immediately be shown that for no elastic

mismatch (aD = ~D= 0)

G" = ~(1.1215)2 (1 - v;)a2hEI
(4.6)

The condition excluding steady-state channel cracking in a thin film is Gss < r~I) ,where

r~I) is the mode I toughness of the film. By (4.2) this condition can be written in the form
(1.1) introduced in the Overview, i.e.

(1 - v2)a2h 21 and Q =
)Q < Qc ; where Q = E rei) c ng(aD' ~D1 c

(4.7)

Because the energy release rate approaches Gss from below (c.f. Fig. 4.2), condition (4.7)

ensures that no film cracks will propagate. In this sense it is afai! safe criterion. If the initial

flaws in the film are all sufficiently small compared to h, (4.7) may be overly conservative.

With respect to the discussion of the possibility of crack penetration and deflection at an

interface in Section 3.4, it is of interest to note that

- 1
Gss = 2Gps(h) (4.8)

for the case of no elastic mismatch (aD = ~D = 0). In this case, for channel crackingto
. occur unaccompanied by either interface cracking or substrate penetration, it is required

that (c.f. Section 3.4)
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r(2) > 2r(I) and r (111 ) > 1 rei)
c c c,!, 2 c (4.9)

Another connection can be noted between (4.8) and steady-state film debonding (3.12)
such that

(G ss) cracking = Jt g( G 5S)debonding

= 3.95(GsS)debondincrfor aD = ~D = 0'"
(4.10)

Steady-state debonding constitutes complete debonding of the film. Thus, assuming sub-

strate penetration is excluded, the following modes of film failure exist depending on the

interface to film toughness ratio (for aD = ~D= 0):

! < rc(1V)/r~I) ~ Cracking with no delamination

.253 < rc(1V)/r~I)<! ~ Cracking with partial delamination

rc(1V)/r~I) < .253 ~ delamination

part-through
crack

through -crack

+ partial delamination

\

through-crack
+ substrate crack

through - crack

+ substrate yielding

Fig. 4.5. Modes of film cracking.
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These and other modes of film failure are shown in Fig. 4.5. Partial delamination, substrate

cracking and substrate yielding each increase the energy release rate available for propagat-

ing the channeling film crack. Note that each results in a larger opening of the crack than

would occur otherwise. A plane strain analysis is appropriate in each case, as illustrated in

this Section. If the substrate is very stiff compared to the film, the crack may not extend all

the way down to the interface (Beuth, 1992). The effect is usually small resulting in little

change from the prediction for the through -crack. Results for the effect of substrate crack-

ing accompanying film crack are given in the article by Hutchinson and Suo (1992). Recent

work on the effect of substrate yielding has been given by Beuth and Klingbeil (1996).

4.2 Tunnel Cracks in Layers

The concept discussed in connection with film cracks apply as well to tunneling cracks in

layers. In steady state tunneling

(1 - v2)
Gss = 2 a2hF

E2
(4.11)

where a is the stress in the layer, h is its thickness, v2 and E2 its Poisson's ratio and

Young's modulus, and F is a dimensionless function of the moduli ratios and thickness

ratios of the other layers. As in the film problem F can be obtained from a plane strain anal-

ysis with (4.4) and (4.5) still applicable.

-- h

propagation

,,/--"" /
/ /\" I

" I, ," ,, "
"

"
"

"
"

"','

#3

#2

#1

Fig. 4.6. Tunnel cracking in a layer under tensile stress.
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Consider first the case of a layer sandwiched between two semi -finite layers (Fig. 4.6)

where all three layers have the same elastic properties (E, v) . Application of (4.5) using

the classical result from (3.3) for a plane strain crack of length b, Gps =
(1- v2)Jt02b/(2E) , gives

Gss = ~ (1 - v2)4 E 02h (4.12)

Note, again, that Gss = !Gps(h) . Tunnel cracking cannot occur in a homogeneous mate-
rial since plane strain spreading would take precedence over tunneling. Tunneling requires

that the interface and toughness of the adjoining layers be sufficient to arrest crack advance

at the layer interface.

Fig. 4.7 from Hutchinson and Suo (1992) extends (4.12) to the case of two equal finite thick-

ness layers (#1) sandwiching the central layer (#2). The Dundurs parameters are again

defined in (3.8). The limit W - 00 and aD = ~D= 0 corresponds to (4.12).

The elastic mismatch has a very large effect on Gss when the central layer is relatively stiff.

- 5
E2 (iss

cr2h

4 W

I

c=3 #2

~
3

2

p=a/4

0
.1 0 ex

Fig. 4.7. Steady state energy release rate for a tunnel crack.

Combined effects accompanying tunnel cracking, such as debonding and sliding, contribute

to the energy release rate, just as in the case of films. Some of these effects are discussed

in detail in Evans and Hutchinson (1995).
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5. DELAMINATION OF FILMS AND MULTILAYERS

Steady-state cracking is also central to the analysis offilms and bilayers. Depending on the

materials, geometry and stress states, delamination cracks can run on an interface or paral-

lel to an interface in a brittle layer or substrate. The method outlined below is review in

detail in Section III of Hutchinson and Suo (1992), which is the source of most of material

presented in these notes. Original references are cited in that article.

5.1 Delamination of the Interface a Bilayer under Residual Stress

Consider the free-standing bilayer in Fig. 5.1 with residual stresses as determined in Sec-

tion 2. (Note: the numbering here has the top layer as #1, not the bottom). In the uncracked,

presented state, the residual stress distribution is equivalent to equal and opposite forces

(per unit thickness in the out-of-plane direction) P and moments (per unit thickness)

M1 and M2' The forces act through the mid points of the respective layers with the sign

connection shown. By equilibrium,

M1 + P(h + H)/2 = M2 (5.1)

For delamination along the interface, on the right in Fig. 5.1, the interface crack is shown

advancing from the left edge of the bilayer. The bilayer is free-standing (unconstrained)

and thus the resultant force and moment on each layer behind the crack tip is zero. As

depicted in Fig. 5.1, the delamination problem isthe sum ofprestressedstate plus the reduced

M1

P-+

p+

M1

+-p++
+p-+

M2 M2
interior prestress state reduced problem

Ml

--l- P
f

+p
M2

delamination problem

Fig. 5.1. Definition of reduced problem for interface delamination of free-standing, residually stressed
bilayer. The reduced problem has the same G and 'IjJas the delamination problem. The forces and moments
(per unit thickness out of the plane of the paper) are defined with the sense shown with the forces acting
through the centers of the respective layers.

#1 h

#2 H
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problem. The interface stress intensity factors ofthe delamination problem and the reduced

problem are obviously the same. It is most convenient to use the reduced problem to deter-

mine the stress intensity factors and the energy release rate.

When the interface crack has penetrated well into the interior of the bilayer (i.e. at least

several times h or H, whichever is smaller, from the edge), it attains steady-state such

that G and 1!J(or, equivalently, KI and Kn) are independent of crack length. It is the

steady-state solution which will be presented. As in the case of thin film cracking, the

steady-state result can be used to determine a criterion which excludes interface delamina-
tion.

The steady-state energy release rate G for the reduced problem in Fig. 5.2 can be obtained

by elementary means, as will be illustrated. The measure 1!Jof the relative proportion of

Kn and KI requires a complete elasticity analysis of the problem. The elastic mismatch

is determined by the two Dundurs parameters (3.8). We begin by indicating the energy

accounting which provides G.

M

P-t-._-- #1 h

---------------------------

-+
---, -----

p (
M* )

#2 H

Jy---a .. *
M = M + P(h + H)/2

Fig. 5.2. Reduced problem for the bilayer.

Regard P and M as prescribed loads such that the potential energy per unit thickness of

the system in Fig. 5.2, PE, is the elastic strain energy, SE, plus the potential energy of the

loads. In the solution state, the potential energy of the loads is exactly - 2 SE , and thus at

a given crack length a,

PE(a) = - SE(a) (5.2)

An energy accounting analogous to that made for steady-state film cracking is now made.

Since,

G = - dPE = dSE(a)
da da (5.3)
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the steady-state energy release rate, Gss, can be obtained by taking the difference

between the strain energy SED (per unit length per unit thickness) far ahead of the tip from

that far behind the tip, i.e.

Gss = (SED)DOWN - (SED)up (SA)

Since (SED )up = 0, Gss is just the sum of strain energy in the two beam arms far down

behind the tip (per unit thickness per unit length). This can be computed rigorouslyusing

beam theory. The result is straightforward but algebraically a bit messy. It is given in Section

IILBA of the article of Hutchinson and Suo (1992) and on page 2519 of the article by Evans

and Hutchinson (1995).

The determination of 'ljJ= tan-1(Kn/KI)requiressolutionoftheelasticityproblemposed
by Fig. 5.2. The general solution to this problem has been obtained (using numerical solu-

tion of an integral equation formulation), and the results (with basic references) are pres-

ented in Section III.BA of the article cited above. The elastic mismatch is captured for this

problem by dependencies on the Dundurs parameters. For ~D = 0 , the solution has the
form

K - C Ph-1/2 + C Mh-3/2I - 11 12

(5.5)

Kn = c21Ph-1/2 + c22Mh-3/2

where the ci/s depend on aD and hlH. A limiting case of some interest for thin film
applications is h/H ~ 0 , i.e. the thin film on a deep substrate. For example, the reduced

problem with M = 0 in Fig. 5.3,is relevant to delamination of a filmunder uniform ten-
sion,with P = ah.

For general combinations of P and M the solution to the problem in Fig. 5.3 is

K = ~ [Ph-1/2 cos w + 2!3 Mh-3/2 sin W]
I fi

(5.6a)

Kn = ~ [Ph-1/2sinw - 2!3 Mh-3/2cosw]fi

where w(aD) is plotted in Fig. 3.4. When aD = 0, w = 52.07° . The energyrelease rate
IS

G = (1 - vi)
[
lh2P2 + 6M2

]E h3 21
(5.6b)
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M

P -t-- f---------
#1

Ih-------------------------
I

#2

, I

Fig. 5.3. Reduced problem for a thin film on an infinite substrate. P and M are related to the through -thick-
ness stress distribution o(z) in the film by

h h

P = f o(z)dz and M = f o(z)(z - h/2)dz .
0 0

Note, for example, if M = 0, then KI > 0 when P > 0, and conversely. The solution

(5.6) is only valid in the range of P and M where KI > 0, i.e. a open crack.

The criterion which excludes steady-state interface delamination is

Gss < rc(1jJ) (5.7)

As in the case of film cracking, this can be cast in the form of (1.1). For the thin film on the

deep substrate the requirement is

(1 - v2)O2h
1 < 2

ElrC(1jJ)
(5.8)

If a > 0, 'ljJ= w(aD) , as plotted in Fig. 3.4.If a < 0 (a filmunder compression), (5.8)
still applies, but (5.6) predicts that KI < 0, which indicates that the crack is closed with

KI = O. In this case the crack is in pure mode II with 1jJ= - 90° .The proviso for (5.8) in

this case is that the friction force between the film and the substrate can be neglected.

Otherwise, (5.8) is overly conservative.

5.2 Delamination of a Bilayer by Layer Cracking Parallel to the Interface

It is not uncommon for a metal film under residual tens on when bonded to a ceramic sub-

strate to drive a delamination crack in the substrate well below the interface. The crack par-

allels the interface, and a steady-state situation again prevails. Since the substrate is homo-

geneous, a necessary requirement is that the crack be positioned such that Kn = 0 . The

general reduced problem for sub-interface delamination is indicated in Fig. 5.4. The argu-

ments made in the previous sub-section for determining Gss apply here as well, and gen-

eral results are given in the same references cited. Full characterization of this solution,

which now depends on hId as well as aD' ~D and hIH, is available in the original refer-
ence cited.
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M

P-t-
P-t-

h

H

M*

Fig. 5.4. The reduced problem for sub-interface cracking of abilayer. The force P is taken to act in the direc-
tion shown through the respective neutral bending plane of each arm.

Substratedelamination canbe illustratedby consideringa film carryingauniform residual

tension a bondedto aninfinitely thick substrate,wherethere isnoelasticmismatch.In this

case,the solution (5.6) with w = 52.07° is applicable. The solution for a crack at an arbi-

trary depth d below the interface is obtainedwith the help of Fig. 5.5.For a uniformly

stresses thin film in the tension 0, the reduced problem is given in Fig. 5.5a. In the absence

of elastic mismatch (i.e. aD = ~D = 0) , the reduced problem is equivalent to that shown
in Fig. 5.5b. Therefore, by (5.6), with h -- (h + d) ,

(oh)
[

. r:; d
]Kn = / smw - v3h d

cosw
2(h + d) +

(5.9)

Imposing Kn = 0 gives as the depth of the delamination crack below the interface

d 1

h + d = /3tanw = 0.741 or ~ = 2.86
(5.10)

The associated values of KI and Gss from the first equation in (5.6) are

KI = (ah) [
1

]/2(h + d) cosw = 0.5860jh
(5.11a)

1 2 (1 - v2)G = - V K2 = 0 343 02 h
ss E I . E (5.11b)

Note that Gss for sub-interface cracking is only31 % below the corresponding value (3.12)

for interface cracking.

The condition for excluding substrate delamination in this case is

(1 - v2)02h
Er(2) < 2.93c

(5.12)

#1
----------

d

---------- #2
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P = ah ... ----------
!h

dT---

a)

(h + d)/2 (h + d)
M

P = ah + ~-------
~-----

M = P d/2

b)

Fig. 5.5. (a) Reduced problem for sub-interface delamination for a film under residual tension a. (b) Equiv-
alent reduced problem when there is no elastic mismatch. Now (5.6) applies but with h replaced by h + d.

where r~2) is the mode I substitute toughness. If the residual stress in the film is uniform

compression, the only potential mode I crack location in the substrate is still given by (5.10),

but it is associated with negative KI' implying that the crack is closed and (5.6) is not valid.

The conclusion to be drawn is that substrate delamination is not possible when the film is
under uniform compression.

5.3 Interface and LayerDelamination for Multilayers

The equations for the steady-state energy release rate for either an interface crack or a

inter-layer crack parallel to the interfaces are readily obtained using the energy accounting

scheme laid out in Section 5.1. The equations though elementary require numerical evalua-

tion, which is best done by a computer program. General results for the mode measure '4!

are not available for other than bilayers and certain trilayers. Approximations for '4! can

be had by replacing the layers above and below the crack equivalent homogeneous layers

and then using the general bilayer results. This procedure is also best implemented in a

small computer program. Software for making calculations of G 55 and '4!for cracks in arbi-

trary locations (both tunneling and delamination) is available from A.G. Evans and
l.W. Hutchinson.
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6. BUCKLING DRIVEN DELAMINATION FOR THIN FILMS UNDER RESIDUAL

COMPRESSION

Thin films under uniform equi-biaxial compression, all = a22 = - a, are considered.

The two main failure modes are edge delamination governed by (5.8) and buckling driven

delamination. The approach to buckling driven delamination of thin films is taken from

Section VI of the review article by Hutchinson and Suo (1992) and a more recent publica-

tion by Hutchinson, Thouless and Liniger (1992). The most recent comprehensive articles

on the subject are by Ortiz and Gioia (1994) and Gioia and Ortiz (1996).

If an initially debonded interface region exists in the interior of the film/substrate interface,

that region will buckle away from the substrate if the residual film stress is large enough.

Prior to buckling there is no stress intensity at the edge of the interface crack. Once the film

buckles, however, elastic energy stored in the film is released and the interface crack is sub-

ject to mixed mode conditions governed by G and 1jJ.If the stress is sufficiently large, or,

equivalently, if the initially debonded region is large enough, interface crack growth will

occur and the blister will spread. It will be seen that the dependence of interface toughness

on the mixed mode measure 1jJis essentially to understanding buckle driven delamination.

Without the strong mode dependence discussed in connection with Fig. 3.5, a blister would

completely delaminate the film once it started to spread. The highly unusual morphologies

displayed by buckling delaminations (e.g. "telephone cord" blisters, wigglycircular blisters,

straight-sided blisters) would not exist without mode-dependent interface toughness

r c(1jJ) .

The contents of Section 6 are:

(6.1)

(6.2)

(6.3)

Straight-sided blisters.

Circular blisters.

Propagation of straight vs. curved blister boundaries and hints on the curious

shapes of buckled blisters.

6.1 Straight-sided Blisters

With reference to Fig. 6.1, consider a thin film on an infinitely deep substrate which has a

debonded region on the interface specified by I y I =::; b and IxI < 00 .We focus on condi-

tions on the straight sides of the debonded region along y = :I:: b . When the film is

unbuckled, the stress in the film is everywhere equi - biaxial compression a. There are no

tractions on the interface and G = a . If film buckles up from the substrate, the compres-

sion in the film near the edge at y = b is partially relieved and a moment M (per unit
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length in the x-direction) develops. Denote the stress release averaged through the film

thickness by ~N (force per unit length in the x-direction) with the positive sense shown

in Fig. 6.1. The energy release rate G and the mode mixity 1\1along the edgeof the buckled

blister can be determined from (5.6) if ~N and M are known. A straightforward derivation

of M and ~N at the blister edge are now obtained using plate theory to represent the
buckled film.

h tz -cr

~ I I /2;; I // %-Y M
'UNBUCKLE~ dN-4 #1

i:~~ 20
BUCKLED

#2

LOCAL LOADING OF

INTERFACE CRACK

Fig. 6.1. Geometry of the straight-sided blister, and conventions for the elasticity solutions characterizing
conditions along the straight edge of the interface crack.

The auxilary buckling problem is shown in Fig. 6.2. A wide plate (infinite in extent in the

x-direction) is clamped along its edges and subject to edge compression T (force/length).

If this piece of the film were cut away from the substrate and unloaded along its edges it
would have a width 2b(1 + €) where

1 - v2
€ = 1

E a1
(6.1)

(Plane strain is applicable such that the strain change in the x-direction is zero. Thus, the

plane strain tensile modulus appears above). The plate in the upper figure in Fig. 6.2 must

be squeezed back to length 2b for it to "fit" back in place on the substrate.

The solution to the auxilary plate buckling problem in Fig. 6.2 is elementary. The deflection

w(y) must satisfy

Dw'" I + Tw" = 0 ; w = wi = 0 at y = :J: b (6.2)

where D = El h3/[ 12(1 - vi)] . (This equation, although linear in w, is exactlywhat is
obtained without approximation from the fully nonlinear von Karman plate equa-
tions).The solution is as follows.For T < Tc, where

Tc = Jt2 Elh
(
h

)

2

12 (1 - vi) b
(6.3)
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r 1
I I
I. 2b(1 + €) ..I

REMOVED FROM SUBSTRATE

Fig. 6.2. Auxilary problem for determining ilN and M.

the plate is unbuckled. For T = Tc , buckled solutions exist given by

w(y) = !6[1 + cos(nyjb)] (6.4a)

where 6 is the buckling deflection at y = O.A wide plate can experience any amplitude
of buckling when T = Tc according to nonlinear plate theory. The shortening of the plate

relative to its unstressed length 2b(1 + €) is

b

2b( 1 - vi)Tc + 1 fw/2dy
~L = El h 2

-b

2b( 1 - vi)Tc + n262
= El h 8b

(6.4b)

The auxilary solution is now employed to determine ~N and M defined in Fig. 6.1. For

the auxilaryplate to fit back in place, we must impose ~L = 2b€ where € is given by (6.1).

By (6.4b) this requires
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62 = 16b2 (1 - Vi)
Jt2 E1 (0 - oe) (6.5)

where

Te Jt2 El
(
h

)

2

Oe = 11 = 12 (1 - vi) b
(6.6)

If 0 < °e, the film isunbuckled and (6.5) does not apply. If 0 > °e, then, from M = Dw"

at y = b ,

M = Jt26 = 1oeh2
(
§.)2b2 2 h (6.7)

The released edge force defined as the change due to buckling - it is only the change which

contributes to the interface stress intensities - is given by ~N = (0 - oe)h .

Finally,identify ~N with - P in the solution (5.6)for the problem in Fig.5.3.Straightfor-
ward algebraic reduction gives for 0 2:: Oe

(1 - vi)h
G = 2E (0 - oe)(o + 30e)1

(6.8)

and

4 + j3 stan (j)

tan 1jJ = - 4 tan (j) + j3s (6.9)

where

s == §. =
[
1

(
.2..

)]

1/2

h 3 Oe - 1 (6.10)

Note that for 0 > > Oe,

G - Go = (1 - vi)h02
2E1

(6.11)

which is the result for edge - delamination.

Plots of GIGo and 1jJas functions of o/oe are given in Fig. 6.3. The energy release rate

attains a maximum 4G 0/3 at 01Oe = 3 , and then slowlydecays to Go. More significantly,
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alae -900

Fig. 6.3. G and "IjJalong the edges of a straight-sided blister. Gc and Go are given by (6.6) and (6.11).

the mode mixity 1jJbecome dominatelymode II as alae increases. At the onset of buckling

when alae is only slightly above unity, the interface experiences a higher proportion of

mode I to mode II. Given the strong mixed mode dependence of the toughness of many

interfaces, fe(1jJ), the 1jJ-dependence in Fig. 6.3 implies that a spreading blister will

encounter increased resistance to propagation due to increasing interface toughness.

Before pursuing this further, the corresponding results for circular blisters will be pres-
ented.

6.2 Circular Blisters

The scheme for determining G and 1jJfor a circular blister of radius R is similar to that

discussed above. An important difference is that the auxilary buckling problem for the cir-

cular plate is nonlinear in the deflection. It must be solved numerically. Details are pres-

ented in Hutchinson, Thouless and Liniger (1992). Plots of G and 1jJare given in Fig. 6.4
where now

Go = (1 - Yl)ha2
El (6.12)

and

ae = 1.2235 El
(
1l

)
2

1 - y2 R1
(6.13)

Note that Go is the elastic energy per unit area stored in the biaxially stressed film in the

unbuckled state. Qualitatively, the trends for the circular blister are similar to those for the

straight-sided blister. However, G increases monotonically with increasing ala~, and

1jJapproaches mode II more gradually than for the straight - sided blister. This later distinc-

tion will emerge as important in understanding blister morphologies.

001
3 5

I I I
7

I I I I

\jf -300'

=o

a / ac
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Fig. 6.4. G and 1\Jfor a circular blister. Gc and Go are defined in (6.13) and (6.12).

6.3 Propagation of Straight vs. Curved Blister Boundaries and Hints on the Curious

Shapes of Buckled Blisters

For a given initial blister size, G increases with increasing ° until

G = fe('I') (6.14)

at which point the blister will begin to spread. As the size, b or R ,increases oc decreases.

The combined effect of increasing ° and increasing size is felt through the variable 0/ oc .
Because 1'1'I increases as 0/ °e increases, the energy release rate at the crack edge (6.14)

must increase for interfaces which are tougher in mode II than mode 1. It is useful for the

purpose of discussion to introduce a specific interface toughness function and a mode-

adjusted crack driving force.

Following Hutchinson, et at. (1992), let

f e('I') = fIe f('I') (6.15a)

where fIe is the mode I interface toughness and

f('I') = 1 + tan2[(1 - A)'I'] (6.15b)

Plots of f('1') for various Aare giveninFig.6.5,alongwiththe ratio of the mode II to mode
I toughnesses as dependent on A. If A = 1 , the interface toughness has no mode-depen-

dence. The limit A = 0 corresponds to the criterion KI = KIc for all combinations of KI

and Kn .Values of A between 0.1 and 0.3 appear to capture trends for some of the inter-

face toughness data sets available.
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~

Fig. 6.5. Mode dependence function f(1jJ)and ratio of mode II to mode I toughnesses as dependent on A.

Define a mode -adjusted crack drivingforce ~ by

~ = G/f(1!J) (6.16)

So that by (6.15a) the crack advance criterion (6.14) becomes

~ = r Ic (6.17)

1.0

0.8

0.2

).=1

0.6
~

.........

~ 0.4

0.5

0.3-
0.2
OT/0

0.001 10 20

CTICTC=0.817(1-Jl~)(CT/EIXR/h)2

30

Fig. 6.6. Mode-adjusted crack driving force for circular blister VI = 1/3 and aD = o.

Plots of ~ vs. aIac for the circular blister are given in Fig. 6.6 for various A. For all cases

with A < .5, ~ decreases after alae has exceed about 2. This implies that a must be

increased if the blister is to spread once aIae has exceeded about 2. This is seen most

clearlyin Fig.6.7wherethe condition(6.17)hasbeen imposedon the solution.For A ~ .5 ,
the blister will spread spontaneously without arrest once it becomes critical. For A < .5

spreading requires increasing a once the blister has reached a condition where aIac > 2 .

Note that the condition for spreading can be written as

8r- 1 1 1-1 8

fl1/1>-' + tan2 [(I->1/1]

.IIIJ
.

1
6

r..
::::..
0en 4.

l

2
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Fig.6.7.Normalizedstressfromimpositionof G = fe(1\') (or g: = fre) for spread of a circular blister with
VI = 1/3 and aD ='0.

(1- vi)a2h > Qc(A)
ElfIe

(6.18)

where Qc lies between about 4 and 9 for A between 0 and 0.3.

As shown on the left in Fig. 6.8, a straight-sided blister propagates by interface crack

growth at its curved end rather than along its straight sides. To gain some insight into the

tendency for blisters to advance at regions of high curvature along the interface crack

boundary, we compare the mode-adjusted crack driving force g: for circular blisters with

those for straight-side blisters. Using the definition in (6.16) with (6.15b), g: is determined

2.0

@
LaR

CIRCULAR BLISTER

~
L=b

)."1.0 STRAIGHT-SIDED
BLISTER

propagation
at curved end

)\

)

II:
III

II: ...
III ~
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::i c
III III
II: 9
c en
5 ~ 1.0u :z:
II: C)
U <- II:

~ ...- _en0.5
~

0.0
0 234

0-.,2) S!. (1..)2
I EI h

5 6 7

Fig. 6.8.Ratio of mode-adjusted crack drivingforce for a circularblister to that for a straight edge of the
straight- sided blister. The comparisons are made with R = b and at the same levelof equi - biaxial compres-
sion o.
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from (6.8) and (6.9) for the straight edge and, as above, using the result from Fig. 6.4 for

the circular blister. As indicated in Fig. 6.8, the g:-values for the two blisters are compared
at sizes such that L = 2b = 2R .

If A = 1 (mode independent interface toughness), the straight edge has the greatest crack

driving force and would be most likely to be observed. Recall that when A = 1 , the blister

wouldspread without arrest in anycase.For A :5 0.3, the curvedboundary has the largest
crack driving force once

(1 - vi)~1 (~)' (6.19)

has exceed a value between 2 and 3, depending on A. This suggest that crack advance

is most likely on c~rved crack fronts once the parameter (6.19) attains a critical level. The

qualitative conclusion emerging from the examples discussed in this section is that the

unusual shapes of blisters arise from their tendency to grow towards mode II conditions,

coupled with a strong mode dependence of interface toughness. Efforts to predict the

evolution of the telephone cord blister have been only partically successful. Some aspects

are detailed in the review article by Gioia and Ortiz (1996). Results for the propagation of

the straight-sided blister are given in the Hutchinson and Suo article (1992), and compari-
sons between theory and experiment on wavy-edged circular blisters are included in the

paper by Hutchinson, Thouless and Liniger (1992).
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