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  Abstract 

 Mechanical energy can be converted to electrical energy by using a dielectric elastomer 

generator.  The elastomer is susceptible to various modes of failure, including electrical 

breakdown, electromechanical instability, loss of tension, and rupture by stretch.  The modes of 

failure define a cycle of maximal energy that can be converted.  This cycle is represented on 

planes of work-conjugate coordinates, and may be used to guide the design of practical cycles.  
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 Diverse technologies are being developed to harvest energy from renewable sources. 1-3  

This Letter focuses on one particular technology:  dielectric elastomer (DE) generators.4-8  When 

a membrane of a dielectric elastomer is pre-stretched and pre-charged, a reduction in the tensile 

force under the open-circuit condition increases the voltage (Fig. 1).  Thus, a cycle can be 

designed to convert mechanical energy into electrical energy.  Experiments have shown that 

dielectric elastomers can convert energy up to 0.4 J/g, which is at least an order of magnitude 

higher than the specific energies of piezoelectric ceramics and electromagnetic generators. 5  DE 

generators have been designed to harvest energy from walking5,6, ocean waves7, wind and 

combustion8.  These generators are lightweight, compliant, and rust-free, allowing them to be 

deployed widely. 

 This Letter describes a model to calculate the maximal energy that can be converted by a 

DE generator.  The elastomer is susceptible to various modes of failure. 9,10  We use these modes 

of failure to define a cycle on the force-displacement plane and the voltage-charge plane.  The 

area enclosed by the cycle gives the maximal energy of conversion.  Such a diagram may be used 

to guide the design of practical cycles. 

 Our model is based on a nonlinear theory of elastic dielectrics.11-18  With reference to Fig. 

1, consider a membrane of a dielectric elastomer, of sides L1, L2 and L3 in its undeformed state.  

The two faces of the membrane are coated with compliant electrodes.  When the electrodes are 

subject to voltage Φ  and the membrane is subject to forces P1 and P2, the electrodes gain 

charges +Q and –Q, and the membrane deforms to a state of sides 11Lλ , 22Lλ  and 33Lλ , where 

1λ , 2λ  and 3λ  are the stretches of the membrane in the three directions.  The membrane is taken 

to be incompressible, so that 1321 =λλλ .  Define the nominal stresses by 3211 LLPs =  and 

3122 LLPs = , the nominal electric field by 3

~
LE Φ= , and the nominal electric displacement by 

21

~
LLQD = .  By contrast, the true stresses 1σ  and 2σ , the true electric field E, and the true 

electric displacement D are the same quantities divided by the dimensions of the membrane in 
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the deformed state.  The true quantities relate to the nominal ones as 111 λσ s= , 222 λσ s= , 

21

~
λλEE = , and 1

2
1

1

~ −−= λλDD .  

 To illustrate essential ideas, consider the case where the membrane is subject to equal 

biaxial forces, so that sss == 21  and λλλ == 21 .  The membrane is taken to deform under an 

isothermal condition, and the temperature will not be considered explicitly.  Consequently, the 

membrane is a thermodynamic system of two independent variations.  The variations can be 

described by two independent variables of many choices.  Once chosen, the two independent 

variables can be used as the coordinates of a plane, and each point in the plane represents a 

thermodynamic state of the system.  To calculate the energy of conversion, we choose planes of 

work-conjugate coordinates: either the force-displacement plane or the voltage-charge plane 

(Fig. 2).   

 We prescribe the equations of state by using the model of ideal dielectric elastomer.19  

The elastomer is a network of polymers with a low density of crosslinks, so that polarization is 

negligibly affected by deformation.  This model has been used almost exclusively in the 

literature on dielectric elastomers; see Ref. 20 for a review.  For an ideal dielectric elastomer 

subject to a biaxial stress s and electric field E
~
, the equations of states are21   

  5
2

5

~
−− −−= λ

εµ
λλ

µ

Ds
,  (1)     

  4

~~
−= λ

εµεµ

DE
, (2) 

where µ  is the modulus, and ε  the permittivity.  In numerical calculations, we assume that 

26N/m10=µ  and F/m1054.3 11−×=ε .  Using these equations of state, we can map any point in 

the force-displacement plane to a point in the voltage-charge plane, and vice versa.   

 When the membrane is uncharged, 0
~

=D  and 0
~

=E , eq. (1) becomes that 
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5−−= λλ
µ

s
. (3) 

On the force-displacement plane in Fig. 2, this curve sets the upper bound:  any charge on the 

electrodes would reduce the tensile stress at a fixed stretch.  On the voltage-charge plane, the 

condition 0
~

=D  and 0
~

=E  corresponds to the origin.   

 Subject to an electric field, the elastomer may fail by electrical breakdown.  The 

microscopic process of electrical breakdown can be complex, and will not be studied in this 

paper.  Here we assume that electrical breakdown occurs when the true electric field E reaches a 

critical value EBE .  Thus, breakdown occurs at the nominal electric field 2~
λEBEE = , so that (1) 

and (2) become 

  1
2

5 −− −−= λ
εµ

λλ
µ

EBEs
,  (4) 

   

1
2 ~~ −














=

εµεµεµ

DEE EB . (5) 

Fig. 2 plots in the two planes these conditions for electrical breakdown, assuming a value 

reported in Ref. 22, V/m103 8×=EBE . 

 Prior to electrical breakdown, as the voltage is increased, the elastomer reduces 

thickness, so that the positive feedback between a thinner elastomer and a higher electric field 

may result in electromechanical instability. 21-26  The critical condition for the instability can be 

obtained as follows.  Eliminate D
~
 from (1) and (2), and express E

~
 as a function of λ  and s.  At a 

constant, s, the function ( )sE ,
~

λ  reaches a maximum when 

  ( )54
3

2 −−= λλ
µ

s
. (6) 

This maximum nominal electric field corresponds to the critical voltage for the onset of the 

electromechanical instability.  A combination of (1), (2) and (6) gives that 
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32
2

5

~

3

~~ −
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







−=

εµεµεµ

DDE
. (7)  

Fig. 2 plots in the two planes the critical conditions, (6) and (7). 

 To avoid excessively high voltage in use, the membrane must be thin.  The thin 

membrane, however, buckles under slight compressive stresses in its plane.  Even for a pre-

tensioned membrane, the voltage induces deformation, which may remove the tensile prestress, 

a condition known as loss of tension.  This condition of failure, 0=s , together with (1) and (2), 

gives that 

  

32
2~

1

~~ −














+=

εµεµεµ

DDE
.  (8) 

Fig. 2 plots in the two planes the conditions for loss of tension. 

 When the polymer chains in the membrane are pulled severely, the membrane may 

rupture by stretch.  The microscopic process of rupture can be complex.  Here we assume that 

the membrane ruptures when the stretch reaches a critical value Rλ .  Inserting this condition to 

(2), we obtain that 

  4

~~
−= R

DE
λ

εµεµ
.  (9) 

Experiments have suggested 6≤Rλ  for equal biaxial stretch.9  We select a value of 5=Rλ  in our 

calculations.  Fig. 2 plots in the two planes the conditions for rupture by stretch. 

 On either plane in Fig. 2, various modes of failure enclose a shaded area of allowable 

states:  a state inside the area will not fail by any modes, but a state outside the area will fail by 

one or more of the modes.  One may refine the critical condition for each mode of failure, or add 

other modes.  These refinements and additions will alter the shaded areas in Fig. 2 somewhat, 

but will not change the qualitative considerations. 
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 A design of a generator may be represented by a cycle within the area of allowable states.  

For each cycle, the amount of mechanical energy converted to electrical energy is the area 

enclosed by the cycle on the voltage-charge plane.  The same energy is twice the area enclosed by 

the cycle on the force-displacement plane, because equal biaxial forces have been assumed.   

 The shaded area enclosed by various modes of failure defines the maximal energy of 

conversion.  Using the representative material parameters indicated above, and the mass 

density of 3kg/m1000=ρ , we find that the maximal specific energy is 6.3 J/g.  This maximal-

energy cycle, however, may be difficult to realize in practice.  For example, when the state of the 

generator travels along the lines of EB and EMI, the voltage must be precisely tuned.  

Nonetheless, the maximal-energy cycle sets an upper bound of the energy that can be converted 

by DE generators.   

 To illustrate a procedure to design practical cycles, consider a cycle that requires two 

batteries:  one supplies charge at a low voltage Φin, and the other stores charge at a high voltage 

Φout (Fig. 3).  A switch can connect the elastomer to the input battery, or connect the elastomer 

to the output battery, or keep the elastomer in an open circuit.  After each cycle, the mechanical 

force pumps certain amount of electric charge from the low-voltage battery to the high-voltage 

battery.   

 In Fig. 2 the cycle is represented on the voltage-charge plane by a rectangle, with top and 

bottom sides set by Φout and Φin, and the left and right sides set by Qlow and Qhigh.  The same cycle 

of operation is also represented by the dashed curves on the force-displacement plane.  From 

state 1 to state 2, the elastomer is switched to the input battery, and is pulled from a small 

stretch up to the stretch of rupture.  During this process, the elastomer reduces the thickness 

and increases the capacitance, drawing charge from the input battery, such that the charge on 

the electrodes increases from Qlow to Qhigh. 
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 From state 2 to state 3, the elastomer is switched to an open circuit, so that the charge on 

the electrodes is kept at Qhigh.  The tensile force is reduced, and the elastomer thickens until it is 

close to electromechanical instability.  The process increases the voltage from Φin to Φout. 

 From state 3 to state 4, the elastomer is switched to the output battery, and the tensile 

force is further reduced until the condition of loss of tension.  During the process, the elastomer 

increases the thickness and reduces the capacitance, transferring charge to the output battery, 

such that the charge on the electrodes decreases from Qhigh to Qlow.   

 From state 4 back to state 1, the elastomer is once again switched to an open circuit, so 

that the charge on the electrodes is kept at Qlow.  The tensile force is increased, and the elastomer 

reduces the thickness.  The process reduces the voltage from outΨ  to inΨ .  The cycle then repeats 

itself.  This cycle amplifies voltage by 10 folds, and gives a specific energy of about 2.3 J/g.   

 On the voltage-charge plane in Fig. 2, rectangles of different aspect ratios can be selected 

by varying state 2 along the line Rλλ = .  Once state 2 is selected, we fit the largest rectangle 

within the shaded area.  Fig. 4 plots the specific energy generated per cycle of operation, and 

amplification of voltage for various rectangles.  The specific energy is a maximum when state 3 

falls on the intersection of the lines of EB and EMI.  Fig. 4 also shows the trade off between the 

specific energy and the amplification of voltage.  

 In summary, we have described a method to analyze various electromechanical cycles.  

We represent the states of a dielectric elastomer by points in planes of work-conjugating 

coordinates.  Various modes of failure define a cycle of maximal energy of conversion.  Diagrams 

of this kind can also be used to guide the design of practical cycles. 

 This work is funded by the Agency for Science, Technology and Research (A*STAR), 

Singapore, through the sponsoring of a two-year postdoctoral visit of SJA Koh to Harvard 

University, and by the National Science Foundation through a grant on Soft Active Materials. 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
FIG. 1.  (a) A membrane of a dielectric elastomer is pre-stretched and pre-charged.  (b) After the 
elastomer is switched to an open circuit, as the tensile force reduces, the elastomer increases 
thickness and decreases the capacitance, so that the voltage increases.  
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FIG. 2.  A thermodynamic state of the membrane is represented by (a) a point in the force-
displacement plane or, (b) a point in the voltage-charge plane.  The coordinates are given in 
dimensionless forms.  The stress-stretch curve for an uncharged membrane is marked by 0=E .  
Also plotted are various modes of failure:  electrical breakdown (EB), electromechanical 

instability (EMI), loss of tension ( 0=s ), and rupture by stretch ( Rλλ = ).  A cycle involving two 

levels of voltage and two values of charge is represented by dotted lines. 
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FIG. 3.  A circuit that enables a mechanical force to pump electric charge from a low-voltage 
battery to a high-voltage battery. 
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FIG. 4.  For cycles represented by various rectangles fitted in the shaded area on the voltage-
charge plane, the solid line denotes the specific energy per cycle as a function of the input 
voltage, and the dashed line denotes the amplification of voltage as a function of the input 
voltage. 
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