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Abstract  

In continuum fracture mechanics, it is well established that the presence of crack near an 

inclusion leads to a significant change in the crack-tip stress field. However, it is unclear how 

atomistic crack-inclusion interaction manifests itself at the nanoscale where the continuum 

description of matter breaks down. In this work, we conducted molecular dynamics simulations 

to investigate the interactions of an atomic-scale boron nitride inclusion with an edge crack in a 

graphene sheet. Numerical simulations of nanoscale tensile tests were obtained for graphene 

samples containing an edge crack and a circular inclusion. Stress analysis of the samples show 

the complex nature of the stress state at the crack-tip due to the crack-inclusion interaction. 

Results reveal that the inclusion results in an increase (amplification) or a decrease (shielding) of 

the crack-tip stress field depending on the location of the inclusion relative to the crack-tip. Our 

numerical experiments unveil that inclusions of specific locations could lead to a reduction in the 

fracture resistance of graphene. Results of the crack-inclusion interaction study were compared 

with the corresponding results of crack-hole interaction problem. The study also provides an 

insight into the applicability of well-established continuum crack-microdefect interaction models 

for the corresponding atomic scale problems. 

Keywords: Graphene; fracture; inclusion; nanomechanics; crack-tip stress field; molecular 

dynamics.  
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1. Introduction 

Nanoscale defects such as cracks, vacancies and impurities are difficult to avoid in fabrication of 

graphene based nano-devices [1–5]. Inclusions and vacancies may be created in graphene for 

functional reasons and property enhancement [6–11]. It is critically important to examine the 

effects of these inhomogeneities on the failure and mechanical behavior of graphene.	 The 

classical continuum mechanics establishes that inclusions in close proximity to a crack-tip can 

lead to a considerable change in the crack-tip stress field [12–16]. However, it is unclear how the 

crack-inclusion interaction manifests itself at the nanoscale. Considering the fact that the 

concepts of continuum mechanics have limited applicability at the nanoscale [17–23], a 

comprehensive atomistic study on this subject is particularly important. Earlier, Dewapriya and 

Meguid conducted atomic simulations on the interaction between a crack and an atomic hole 

located near its tip under mode I loading [24,25]. In the current work, we explore the 

crack-inclusion interactions focusing on the influence of interactions between an edge crack in a 

graphene sheet and an arbitrarily located inhomogeneity of boron nitride (known hereafter as BN 

inclusions) on the crack-tip stress field and the fracture resistance of graphene. In the view of its 

ability to cover a larger range of crack-inhomogeneity interaction problems, the current work 

invokes greater interest among engineers and scientists. For example, the current problem 

reduces to the limiting case of a crack-hole interaction when the properties of the inclusion 

reduce to zero. In addition, the study provides an important insight into the applicability of the 

corresponding continuum mechanics based computational tools for the atomic scale 

crack-inclusion interaction problems.  

 Besides having a similar lattice structure of graphene, BN possesses electromechanical 

properties which are quite comparable to those of graphene [26,27]. In contrast to the 
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zero-bandgap semimetal nature of graphene, BN is a finite-bandgap semiconductor [28,29]. The  

similarity of the lattice structures of graphene and BN allows the construction of graphene-BN 

heterostructures with unique electronic and magnetic properties [30,31]. More importantly, the 

physical properties of the graphene-BN heterostructures can be effectively tailored by the 

relative domain size of each material [32,33], which is quite beneficial for numerous advanced 

potential applications in various fields of engineering [6–8]. For these advanced applications, a 

solid understanding of the mechanical behavior of graphene-BN heterostructures is vital. 

Especially, the fracture characteristics of such a hybrid structure is critically important, because 

both graphene and BN have relatively low fracture toughness compared to other commonly used 

engineering materials [34].  

Most of the recent atomistic simulation efforts have focused on characterizing the 

electromechanical behaviors of graphene-BN heterostructures [33,35–37] and their interfaces 

[34,38,39] without investigating the highly complex stress state of a crack interacting with an 

inclusion. A comprehensive molecular dynamics (MD) investigation of the nanoscale 

crack-inclusion interaction could provide a significant insight into the rich atomistic mechanisms 

of 2D materials. Notably, many existing MD studies that are concerned with the fracture 

characteristics of graphene have focused on the central crack problem mostly due to the 

convenience of implementing periodic boundary conditions in MD. Our MD simulations of 

graphene samples containing an edge crack and an atomic inclusion reveal the complex stress 

states of the hybrid material system due to the nanoscale crack-inclusion interaction. 

Furthermore, our numerical experiments unveil that inclusions of specific locations would lead 

to a reduction in the fracture resistance of graphene.  

 



4 
	

 

2. Molecular Dynamics Simulations 

The planar dimensions of the simulated hybrid graphene-BN samples considered in our studies 

were 60 nm × 60 nm, and the length of the edge crack was taken to be 10 nm. The domain 

boundaries of selected simulation samples do not fall within the process zone [25,40], and the 

crack length of 10 nm was selected in order to avoid the crack length dependency of the 

simulation results [41,42]. Figure 1(a) shows a typical simulation sample of graphene containing 

a circular BN inclusion and an edge crack. In view of the fact that both (a) graphene and BN 

have a similar bond structure and (b) C-C and B-N bond lengths are 1.44 Å [43], the BN 

inclusion was modeled by appropriately replacing the corresponding carbon atoms in graphene 

by boron and nitrogen atoms. The edge crack was created by removing carbon atoms in graphene 

accordingly. The origin of the Cartesian coordinate system is taken at the tip of the crack. The 

diameter of the inclusion was assumed to be 2c. To avoid weak crack-inclusion interaction, the 

inclusion must be located very close to the crack-tip and it should have a significantly large 

diameter to have a notable influence on the crack-tip stress field. Therefore, the diameter 2c was 

taken to be 3.6 nm. The interference distance between the tip of the crack and the center of the 

inclusion is r. The inclination angle between the x-axis and the line joining the tip of the crack 

and the center of the inclusion is θ. It should be noted that the sample containing a zigzag crack 

is loaded along the armchair direction and the sample containing an armchair crack is loaded 

along the zigzag direction. For a set of simulations, the inclusion was replaced by an atomic hole 

with similar dimensions to the inclusion in order to investigate the crack-hole interaction, which 

is the lower bound of the crack-inclusion interaction problem. 
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Figure 1 Molecular dynamics models: (a) a typical sample of graphene containing an edge crack 

and a circular BN inclusion. (b) and (c) show the atomic configurations of zigzag and armchair 

crack-tips, respectively. Blue arrows indicate the loading direction.  

 Numerical uniaxial tensile tests of graphene samples were conducted using LAMMPS MD 

simulator [44]. It should be noted that the BN inclusion is covalently bonded to the surrounding 

graphene sheet and all the bonded interactions are modelled using the Tersoff potential [43]. 

According to the Tersoff potential, the energy stored in a bond between atom i and atom j can be 

expressed as 

𝐸!" = 𝑓! 𝑟!" 𝑓! 𝑟!" + 𝑏!"𝑓! 𝑟!"                (1) 

where ( )ijR
ij rf  and ( )ijA

ij rf  are the repulsive and attractive potentials, respectively; bij is the bond 

order term, which modifies the attractive potential according to the local bonding environment; 

rij is the distance between the atoms i and j; the cut-off function	 ( )ijC
ij rf  limits the interatomic 

interactions to the nearest neighbors, and it is expressed as 

𝑓! 𝑟!" =

1, 𝑟!" < 𝑅!"
!
!
+ !

!
cos ! !!"!!!"

!!"!!!"
, 𝑅!" < 𝑟!" < 𝑆!"

0, 𝑆!" < 𝑟!"

 ,            (2) 
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where Rij and Sij are the cut-off radii. The values of cut-off radii are defined considering the first 

and the second nearest neighboring distances of relevant atomic structures. This cut-off radii, 

however, causes a non-physical strain hardening in the stress-strain curves [45]. Similar strain 

hardening phenomenon exists in other Tersoff type potentials such as the REBO potential [46–

48]. In order to eliminate this spurious strain hardening, modified cut-off radii (ranging from 1.9 

Å to 2.2 Å) have been used in the literature [41,49,50]. A truncated cut-off function ft(rij), given 

in Eq. (3) [45,51], was used in the current study. 

𝑓! 𝑟!" =
1, 𝑟!" < 𝑅
0, 𝑟!" > 𝑅 ,    (3) 

where the value of R is selected to be 2 Å. Similar truncated cut-off functions have been widely 

used for fracture simulations of graphene [52–54]. 

At the beginning of all MD simulations, energy minimization of the simulation samples 

was conducted by using the conjugate gradient algorithm. Then, the samples were allowed to 

reach the equilibrium configuration over 25 ps under a time step of 0.5 fs. All the simulations 

were conducted with the canonical (NVT) ensemble, where temperature was kept constant at 300 

K using Nośe-Hoover thermostat. Initial displacement perturbations (~0.01 Å) along the x-, y-, 

and z-directions were imposed on the atoms to facilitate reaching their equilibrium configuration 

[55]. After the graphene sample reached equilibrium, those were subjected to strain along the y-

direction (εyy) at a rate of 0.001 ps-1. In order to accurately simulate the uniaxial tensile test, the 

sample was allowed to relax along the direction perpendicular to the loading direction (i.e. 

x-direction) during the simulation. 
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Virial theorem was used for the calculation of atomic stress [56,57]. The averaged virial 

stress tensor, σij, is defined as follows: 

𝜎!" =
!
!

!
!

𝑅!
! − 𝑅!! 𝐹!

!" −𝑚!𝑣!!𝑣!!!
!!!! 								 	 	 	 	 	 (4)	

where i and j are the directional indices (i.e. x, y, and z); α is a number assigned to an atom and β 

is a number assigned to neighboring atoms of α; Ri
β is the position of atom β along the direction 

i; Fj
αβ is the force on atom α due to atom β along the direction j; mα and vα are the mass and the 

velocity of atom α, respectively; V is the total volume. In volume calculation, the thickness of 

graphene and BN was assumed to be 3.4 Å [58,59].  

Time averaging of the virial stress over a sufficiently long period is necessary in order to 

obtain converged stresses [56]. When obtaining atomic stresses of individual atoms, the graphene 

samples were initially subjected to a strain of 1% at a strain rate of 0.001 ps-1 (over 20,000 time 

steps). At this particular strain, the graphene samples were equilibrated for 50,000 time steps and 

computed the stresses of individual atoms at each time step. Following that, the computed atomic 

stresses were averaged over the last 30,000 time steps of the equilibration period in order to 

obtain the average stresses. Visual Molecular Dynamics package [60] was used to visualize 

deformations of the hybrid graphene-BN samples. 
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3. Results and discussion  

3.1 Validation of molecular dynamics results 

In this section, MD simulations of the current study were validated by evaluating Young’s 

modulus and the fracture stress of pristine graphene and BN samples and comparing the results 

with those existing in the literature. Figure 2 shows the stress-strain curves of graphene and BN 

when loaded along the armchair and the zigzag directions. Sudden drops in the stress-strain 

curves indicate the ultimate fracture of the samples. It can be noticed that the fracture strains of 

BN along both armchair and zigzag directions are almost identical, whereas the fracture strain of 

graphene along the zigzag direction is significantly higher than that of the armchair direction. 

The stress-strain curves for BN along armchair and zigzag directions slightly deviate from each 

other at higher strains, which can be characterized by defining an effective nonlinear 

(third-order) elastic modulus [61]. It can also be observed that the fracture stress of graphene and 

BN when it is loaded along the zigzag direction is approximately 8% higher than that of the 

armchair direction. This is due to the different bond arrangements along the two loading 

directions. When the samples are loaded along the armchair direction (see Fig 1(b)), numerous 

bonds are aligned along the loading direction and these bonds carry comparatively higher strain 

leading to a higher bond stress. In contrast, all the bonds are inclined to the loading direction 

when the samples are loaded along the zigzag direction (see Fig 1(c)) and a part of the applied 

strain is accommodated by altering the bond angles resulting a reduced bond strain.  The MD 

simulation results of the current study are in good agreement with the existing literature as 

compared in Table 1. 
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Figure 2 Stress-strain curves of pristine graphene and BN samples when loaded along the 

armchair (ac) and zigzag (zz) directions. 

 
 

Table 1 Comparison of the current MD simulation results with the literature. 

Material Property Reference/method Value Present 
study 

Graphene 

Young's modulus 
(TPa) Lee et al. [62]/ Experiments 1 ± 0.15 1.00 

	
Liu et al. [63]/ DFT  1.05 

	Fracture stress (GPa) Lee et al. [62]/ Experiments 123.5 ± 11.8 131 (zigzag) 

	
Liu et al. [63]/ DFT 121 (zigzag) 119(armchair) 

		 		 110 (armchair) 

BN 

Young's modulus 
(TPa) Sahin et al. [64]/ DFT 0.78 0.70 

  Le and Umeno [34]/ MD ~0.73   

Fracture stress (GPa) Le and Umeno [34]/ MD 113 (zigzag) 122 (zigzag) 

		     102 (armchair) 115(armchair) 
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3.2 Stress field near inclusions 

The stress states of individual atoms are useful in characterizing the crack-inclusion interaction 

of graphene. For example, the variations of the crack-tip atomic stress field in the presence of an 

inclusion at various locations relative to the crack-tip provide valuable information on the nature 

of the crack-inclusion interaction. In this section, the atomic stress distribution at a BN inclusion 

is investigated. 

 Figure 3(a) shows the simulated graphene sample containing a circular BN inclusion with 

a diameter of 10 nm. The BN inclusion does not generate a significant eigenstrain in the sample 

due to the fact that the lengths of both C-C and B-N bonds are 1.44 Å according to the Tersoff 

potential [34].  Moreover, the stress distribution within the inclusion is constant (see Fig. 3(c)). 

This observation agrees with the Eshelby theory [14,65], which states that a uniformly applied 

far-field stress induces a constant stress state within the inclusion. A complex stress state is 

observed at the graphene-BN interface, where the atomic stress ranges from 0 to 35 GPa due to a 

uniform far-field stress of 20 GPa. This complex stress distribution is attributed to (a) 

heterogeneous atomic bonds at the interface and (b) the change of chirality along the 

graphene-BN interface. The inter-atomic bonds within the BN inclusion and the surrounding 

graphene sheet are B-N and C-C, respectively. However, atoms at the BN-graphene interface 

form four types of atomic bonds; namely, B-C, N-C, B-N, and C-C bonds. This highly 

heterogeneous bond arrangement at the interface contributes to the observed complex stress 

state. In addition, chirality of the interface gradually changes from armchair to zigzag when the 

angle β (see Fig. 3(c)) increases from 0 to π/6 [21]. The chirality further changes gradually back 

to zigzag when β further increases from π/6 to π/3. This change in the underlying crystal 

structure along the interface also results in a complex stress state at the interface. Figure 3(d) 
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shows that the uniform stress field within the inclusion is approximately 17 GPa. In addition, a 

stress concentration of approximately 1.2 can be observed in graphene at the interface due to the 

relatively low elastic modulus of BN (see Table 1).  

 

 



12 
	

Figure 3 Stress field around a circular BN inclusion. (a) The simulated sample, where the inset 

demonstrates the selected origin of the Cartesian coordinate system. (b) and (c) show the stress 

σyy fields of the graphene sheet and the BN inclusion due to an applied tensile strain εyy of 2%. 

(d) Variation of the atomic stress σyy along the x-axis. 

 

3.3 Crack-inclusion interaction 

In continuum fracture mechanics, it is well established that inclusions in close proximity to a 

crack can lead to a considerable change in the crack-tip stress field [12–14,16]. However, it is 

unclear how nanoscale crack-inclusion interaction manifests itself at the atomistic level. In this 

section, we investigate the interaction between an atomistic edge crack and a circular BN 

inclusion in graphene. 

 We conducted numerical nanoscale uniaxial tensile tests of graphene samples containing an 

edge crack and a circular inclusion or a hole (see Fig. 1a) in order to investigate the influence of 

these inhomogeneities on the resulting stress field ahead of the crack-tip. The stress σyy 

distribution at the armchair crack-tip due to an applied tensile strain εyy of 1% is shown in Fig. 4. 

The figure clearly depicts that holes have a greater influence on the crack-tip stress field 

compared to the inclusion. Depending on the relative positions of the inclusion with respect to 

the crack-tip, the inclusions can result in a decrease of the crack-tip stress field (shielding effect) 

or an increase of the crack-tip stress field (amplification effect). However, in the case of 

interacting holes, the corresponding shielding and amplification effects are significantly higher 

than the effects induced by the inclusions. The shielding and amplification of the crack-tip stress 

field is due to the fact that the presence of inclusions results in reorienting the path of the stress 

trajectories and that could lead an increase (amplification) or decrease (shielding) of the density 

of the force lines that govern the stress trajectories at the crack-tip. Comparing Figs. 4(a) and 
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4(b), it can be seen that the interaction between the stress fields created by the crack and the 

inclusion in Fig. 4(b) is negligible, when the interference distance r is 6.8 nm, and the stress at 

the crack-tip reaches the stress value of an isolated crack (61.5 GPa). However, even at this 

interference distance, the hole demonstrates a significant interaction with the crack-tip stress 

field. A similar observation was made in the case of the zigzag crack. However, the atomic 

configurations of the zigzag crack-tip results in a slightly higher amplification effect compared to 

the armchair crack. 
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Figure 4 The stress σyy distribution at the armchair crack-tip due to an applied tensile strain εyy 

of 1% in the presence of an inclusion or a hole at various special locations identified by r and θ: 

(a) and (b) are for collinear inclusions/holes, i.e. θ = 0. (c) and (d) are for oblique 

inclusions/holes. Considering symmetry, one half of the examined geometry is depicted. Noting 

that σtip is the stress at the crack-tip. 

   According to linear elastic fracture mechanics, the critical stress intensity factor (SIF) of a 

single edge-cracked sample under mode-I loading KIC can be defined as follows [66]: 

𝐾!" = 1.12𝜎! 𝜋𝑎  ,                     (5) 

where a is the initial crack length, and σf is the fracture stress, i.e. the far field stress at the crack 

propagation. The computed KIC for armchair and zigzag cracks are 4.66 and 4.44 MPa√m, 

respectively, which are in good agreement with the experimentally measured value of 4 MPa√m 

[67]. It should also be noted that the samples, used for the experiment, contained a central crack, 

where 𝐾!" = 𝜎! 𝜋𝑎	and a is the half initial crack length of the central crack. 

 In the absence of the inclusion, the singular stress field near the crack-tip can be 

characterized by the corresponding SIF 𝐾! = 1.12𝜎! 𝜋𝑎 where σ0 is the far field stress. 

However, the presence of the BN inclusion at the crack-tip influences the crack-tip stress field 

leading to a different SIF defined to be BN-C
IK  in this study. The new SIF can be given as 

𝐾!!!!" = 𝐾! + ∆𝐾! ,                       (6)  

where ΔKI considers the stress disturbance due to the presence of the inclusion. Using the 

concepts of transformation toughening [68,69], Li et al. developed a general solution for the 

stress disturbance due to the interaction between a crack and an inclusion under plane stress 

mode I loading [16]. According to their solution, the change in crack-tip SIF can be expressed as 
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∆𝐾! =
!!
!!

𝑟!! 𝐶! cos
!
!
cos !!

!
+𝐶! sin2 𝜃 cos 𝜃 𝑑Ω!  ,                 (7) 

where r, θ, and Ω are define in Fig. 5(a). The constant C1 and C2 are given as 

𝐶! =
!!! !!!
!!!!!!!"

    and     𝐶! =
!!! !!!
!!!!!!!!"

                      (8) 

Where ν is the Poisson’s ratio which was assumed to be the same for the inclusion and matrix 

material; α = Ei/Em, where Ei and Em are Young’s moduli of inclusion and matrix, respectively. 

 

Figure 5 Relative locations of: (a) inclusion and (b) hole located near the tip of an edge crack. 

Considering the case of an interacting inclusion located near the tip of a crack, the 

solution for the normalized SIF under mode I loading 𝐾!!!!" 𝐾! can be explicitly expressed as 

follows: 

!!
!!!"

!!
= 1+ !

!!
𝑟!! 𝐶! cos

!
!
cos !!

!
+𝐶! sin2 𝜃 cos 𝜃 𝑑Ω!  ,           (9) 

 Earlier, Gong and Meguid studied the interaction between a semi-infinite crack and a circular 

hole located near its tip (see Fig. 5(b)) under mode I loading [70]. They analyzed the problem 

using the complex potentials of Muskhelishvili [71] and an appropriate superposition procedure 
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and obtained a closed-form solution for 𝐾I
(C-H), which is the corresponding stress intensity factor 

in the presence of an interacting vacancy. According to their work, when a collinear circular hole 

is located ahead of the main crack, i.e. θ = 0, the solution for the normalized stress intensity 

factor under mode I loading KI
(C-H)/ KI can be explicitly expressed up to the order (c/r)4 as 

follows: 

 !I
(C-H)

!I
 =   1+ !

!
!
!

!
+ !

!
!
!

!
+⋯        (10) 

Considering the leading order solution up to the order (c/r)2, an analytical expression for the 

normalized stress intensity factor KI
(C-H)/ KI for a general case, i.e. for any combination of r and 

θ, can be given as 

 !I
(C-H)

!I
 =   1+ !

!!

!
cos !!

!
cos !

!
.                                              (11) 

  In order to characterize the crack-inclusion interaction, we used the normalized crack-tip 

stress 𝜎!"#!!!" 𝜎!"#, where 𝜎!"#!!!" and 𝜎!"# are the crack-tip stresses along the y-direction in the 

presence of and in the absence of an interacting inclusion, respectively. The normalized crack-tip 

stress 𝜎!"#!!!" 𝜎!"# was computed at an applied tensile strain εyy level of 1% for various 

arrangements of the interacting inclusions. The values of tipσ  for the armchair and zigzag cracks 

are 61.5 and 64.9 GPa, respectively. Figures 6(a) and 6(b) reveal that the BN inclusions have 

significantly different influence on the crack-tip stress fields of zigzag and armchair cracks. This 

difference in the crack-tip stress field is due to the difference in the underlying crystal structures 

at the crack-tips of both cases (see Fig. 1(a) and 1(b)). It can be seen in Fig. 6(a) that the 

collinear (i.e. θ = 0°) inclusions result in amplification of the crack-tip stress field 
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(i.e. 𝜎!"#!!!" 𝜎!"# > 1). Inclusions with the oblique angle θ > 90° (see Fig. 6(b)), result in a 

shielding of the crack-tip stress field (i.e. 𝜎!"#!!!" 𝜎!"# < 1). 

 

Figure 6 The effect of the BN inclusions on the crack-tip stress field: (a) and (b) show the 

variation of the normalized crack-tip stress 𝜎!"#!!!" 𝜎!"#with r and θ, where Fig. 6(a) is for the 

collinear inclusions (θ = 0°) and Fig. 6(b) for the oblique inclusions (r is 2.8 and 3.3 nm for the 

zigzag and armchair cracks, respectively). Insets depict the location of the BN inclusion with 

respect to the crack-tip. (c) and (d) compare the crack-inclusion interactions with the 
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corresponding crack-hole interactions. Insets depict the location of the corresponding 

inclusion/hole with respect to the crack-tip. 

Figures 6(a) and 6(b) also show that the continuum-based analytical solutions derived by 

Li et al., given in Eq. (9), captures the trends of the crack-tip stress fields obtained from our 

numerical experiments. Here, 𝐾!!!!" 𝐾! computed from Eq. (9) is compared with 𝜎!"#!!!" 𝜎!"# 

obtained from the MD simulations, where the analytical expression in Eq. (9) was solved 

numerically by taking into consideration the discrete nature of the atoms. The discretized form of 

Eq. (9) can be expressed as:  

!!
!!!"

!!
= 1+ !!"

!!
𝑟!!! 𝐶! cos

!!
!

cos !!!
!

+𝐶! sin2 𝜃! cos 𝜃!!
!!!                    (12) 

where, Abn is the representative area of boron and nitrogen atoms in unstrained BN and the 

atomic inclusion contains N atoms, rn is the distance between the tip of the crack and the atom n 

in the inclusion, and θn is the inclination angle between the x-axis and the line joining the tip of 

the crack and the atom n. The quantities rn and θn resemble the r and θ depicted in Fig. 5(b). 

The normalized crack-tip stress 𝜎!"#!!!" 𝜎!"# is comparable to the corresponding 

normalized stress intensity factor [24,66]. Figures 6(c) and 6(d) compare the crack-inclusion 

interaction with the corresponding crack-hole interaction. The figures clearly show that the 

influence of inclusions on the crack-tip stress field is practically negligible when it is compared 

with the influence of holes. As shown Figs. 6(a) and 6(b), the inclusions result in stress shielding 

or amplification effects of approximately 7% and 10%, respectively. The corresponding 

shielding and amplification effects due to the holes are well above 50%. Moreover, in Figs. 6(c) 

and 6(d), the crack-hole interaction results obtained from MD simulations were compared with 

the continuum-based analytical solutions of Li et al. (Eq. (12)) and Gong and Meguid (Eq. (10) 
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and (11)). It can be noted that the continuum models significantly under predict the influence of 

holes. However, the accuracy of the analytical expressions improve when the ratio (c/r) 

decreases [16]. Figure 7 compares the two continuum models with the results of MD simulations 

for the case of colinear holes with a diameter of ~1.2 nm located ahead of an armchair crack and 

a zigzag crack. In Fig. 7, a better agreement can be observed between the MD simulations and 

the continuum models especially for the case of zigzag crack. Moreover, the analytical solution 

from Gong and Meguid is much closer to the MD simulations owing to the fact that their model 

was specifically developed for the crack-hole interactions. The discrepancy of the results 

obtained from MD simulations and continuum models can be attributed to the discrete nature of 

the matter and the surface effects at the nanoscale [17–20]. 

 

 

Figure 7 Comparison of the stress amplification results obtained from continuum models with 

the corresponding MD simulation result for (a) a zigzag crack and (b) an armchair crack. Insets 

depict the location of the hole with respect to the crack-tip.  
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It should be noted that the stress filed at the crack-tip is complex [23–25]. In fact, at finite 

temperatures, instantaneous atomic stress σyy at the crack-tip exhibits significantly high temporal 

fluctuations. In order to smooth these fluctuations out, we have averaged the instantaneous stress 

over sufficiently long time segments, as explained in section 2. As an alternative metric for the 

crack-tip stress σyy, the atomistic J integral can be employed to characterize the crack-inclusion 

interaction. Time averaged atomic field data obtained from MD simulations at finite 

temperatures can be used to compute the J integral [57,72,73]. 

Furthermore, our study reveals that the continuum-based models are incapable of 

predicting the influence of the underlying crystal structures (e.g., armchair versus zigzag) on the 

crack-tip stress field. Clearly, this sets a limit on developing a unified continuum fracture 

mechanics framework for atomic structures. However, due to the remarkable accuracy and the 

high computational efficiency, the analytical solutions can be used to develop design envelopes 

to ascertain the crack-tip shielding and amplification zones associated with the presence of 

inclusions ahead of the crack-tip in graphene. Earlier, Dewapriya and Meguid developed such 

design envelopes for crack-hole  interactions using atomic simulations [24]. The analytical 

model due to Li et al. [16] can be employed to develop a comprehensive set of design envelops 

for the atomic-scale crack-inclusion interactions. Figure 8 shows two design envelops depicting 

the influence of atomic inclusions on the crack-tip stress field of an armchair crack for two 

modulus ratios (i.e. Ei/Em). The envelopes clearly demonstrate that the regions associated with 

the stress shielding and amplification depend on the relative elastic modulus of the inclusion. 

When the elastic modulus of inclusion is smaller than the modulus of matrix material 

(Ei/Em < 1), the inclusion predominantly introduces stress amplification (see Fig. 8a). In contrast, 
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when Ei/Em > 1, the inclusion predominantly introduces stress shielding (Fig. 8b). In addition to 

the modulus ratio, the relative position of the inclusion with respect to the crack-tip also has a 

significant influence on the magnitude of stress shielding and amplification. 

 

Figure 8 Design envelops depicting the influence of atomic inclusions on the crack-tip stress 

field of an armchair crack: (a) Ei/Em = 0.7, which corresponds to a BN inclusion in graphene and 

(b) Ei/Em = 1.5. Diameter of the inclusion is 1.2 nm. The quantities r and θ are as defined in 

figure 1(a). 
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3.4 Fracture characterization  

In this section, we further characterize the atomistic crack-inclusion interaction by computing the 

critical SIF for the crack-inclusion arrangements considered in Fig. 6. The normalized critical 

SIF is defined to be 𝐾!"!!!" 𝐾!", where 𝐾!"!!!" is the critical mode I SIF of a sample defined as  

𝐾!"!!!" = 1.12𝜎!!!!" 𝜋𝑎 ,                 (13) 

where BN-C
fσ is the fracture stress of the sample. It should be noted that 𝜎!!!!" obtained from 

MD simulations contains the influence of the interacting inclusion.	

 Figure 9 shows that the inclusions have led to a significant reduction in the fracture 

resistance of graphene, i.e. 𝐾!"!!!" 𝐾!" < 1. This reduction is due to the fact that the inclusions 

influences the crack process zone and thus facilitating crack propagation. Particularly, the 

complex stress states at graphene-BN interface (see Fig. 3(c)) promotes crack growth. Moreover, 

the relatively low fracture toughness of BN, which is approximately 3.25 MPa√m [34], further 

enable the crack growth at a relatively low far field stress. Analogous to the observation made in 

Fig. 6, the inclusions have a greater influence on the fracture resistance of zigzag cracks when 

compared armchair cracks. However, the influence of BN inclusions on the fracture stress is 

negligible compared to the influence of holes. In the case of holes, special crack propagation 

mechanisms such as crack-hole  coalescence lead to a significant increase in the critical SIF 

[24,25]. 
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Figure 9 Variation of the normalized critical SIF 𝐾!"!!!" 𝐾!" of the considered crack-inclusion 

and crack-hole systems: (a) collinear inclusions/holes (θ = 0°), and (b) oblique inclusions/holes 

(r is 2.8 and 3.3 nm for the zigzag and armchair cracks, respectively). Insets depict the location 

of the corresponding inclusion/hole with respect to the crack-tip. 

 

4. Conclusions  

Our molecular dynamics simulations, complemented by a continuum-based analytical models, 

reveal that the crack-BN-inclusion interaction transforms the crack-tip stress field and the 

fracture strength of graphene providing another dimension in the design space of graphene-based 

hybrid materials. In addition to tailoring the physical properties of graphene-BN heterostructures 

by controlling the relative domain size of the inclusion, the presence of atomistic BN inclusions 

significantly influences the crack-tip stress field and the fracture resistance of graphene. For 

example, the atomic inclusions can lead to an increase in the crack-tip stress field by 11%; 

ultimately reducing the fracture strength by 8%. However, in the case of interacting atomic 

holes, the corresponding stress shielding and amplification are well above 50%. Our simulation 
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results elucidate the pronounced influence of the underlying crystal structure of two-dimensional 

materials on the crack-tip stress fields and their fracture resistance. In addition, we demonstrated 

that the continuum-based analytical solutions can be effectively used to develop comprehensive 

set of design envelopes to ascertain the crack-tip shielding and amplification zones associated 

with the presence of atomic inclusions ahead of the crack-tip. These findings significantly 

contribute to the existing knowledge concerning atomistic crack-inclusion interaction and the 

design of graphene-BN heterostructures with tunable electromechanical properties. 
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