
On Spatial and Material Covariant Balance Laws
in Elasticity∗

Arash Yavari
School of Civil and Environmental Engineering,

Georgia Institute of Technology, Atlanta, GA 30332

Jerrold E. Marsden and Michael Ortiz
Division of Engineering and Applied Science,

California Institute of Technology, Pasadena, CA 91125

January 11, 2007

Abstract
This paper presents some developments related to the idea of covariance in elasticity. The

geometric point of view in continuum mechanics is briefly reviewed. Building on this, regard-
ing the reference configuration and the ambient space as Riemannian manifolds with their own
metrics, a Lagrangian field theory of elastic bodies with evolving reference configurations is de-
veloped. It is shown that even in this general setting, the Euler-Lagrange equations resulting
from horizontal (referential) variations are equivalent to those resulting from vertical (spatial)
variations. The classical Green-Naghdi-Rivilin theorem is revisited and a material version of it
is discussed. It is shown that energy balance, in general, cannot be invariant under isometries of
the reference configuration, which in this case is identified with R3. Transformation properties of
balance of energy under rigid translations and rotations of the reference configuration is obtained.
The spatial covariant theory of elasticity is also revisited. The transformation of balance of en-
ergy under an arbitrary diffeomorphism of the reference configuration is obtained and it is shown
that some nonstandard terms appear in the transformed balance of energy. Then conditions under
which energy balance is materially covariant are obtained. It is seen that material covariance of
energy balance is equivalent to conservation of mass, isotropy, material Doyle-Ericksen formula
and an extra condition that we call ‘configurational inviscidity’. In the last part of the paper, the
connection between Noether’s theorem and covariance is investigated. It is shown that the Doyle-
Ericksen formula can be obtained as a consequence of spatial covariance of Lagrangian density.
Similarly, it is shown that the material Doyle-Ericksen formula can be obtained from material
covariance of Lagrangian density.
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1 Introduction
Invariance plays an important role in mechanics and in physics. In any continuum theory one has
some conservation laws; i.e. quantities that are constant in time, such as mass and energy or balance
laws, such as balance of linear and angular momentum. One way of building a continuum theory is to
postulate these conservation or balance laws. On the other hand, as we shall recall later, conservation
laws and even balance laws can be obtained as a result of postulating invariance of a quantity such
as energy or Lagrangian density, under some group of transformations.

Traditionally, continuum mechanics is developed using Euclidean space as the ambient space.
This has been motivated by the engineering applications of continuum mechanics and the general
tendency of the engineering community to work with the simplest possible spaces. This is of course
useful and the implicit simplifying assumptions of continuum mechanics have made it applicable
to many problems of practical importance. However, being restricted to the misleading and rigid
structure of Euclidean space, one should expect to lose important geometric information. For exam-
ple, for many years there were debates on different stress rates and whether one stress rate is “more
objective” than the other one. Putting continuum mechanics in the right geometric setting, one can
clearly see that different stress rates in the literature are simply different representations of the same
Lie derivative [28].

Another basic example of the lack of geometry in the traditional formulation of continuum me-
chanics is the dependence of the well-known balance of linear and angular momenta on the linear
structure of Euclidean space. These laws are written in terms of integrals of some vector fields. Of
course, integrating a vector field has no intrinsic meaning and is dependent on a linear structure or
a specific coordinate choice. One can argue that a geometric point of view has proven useful in, for
example, building systematic numerical schemes as well as in bridging length and time scales. For
example, geometry has proven useful in the works [25], [6] and [3], although much remains to be
done in the future.

Following Einstein’s idea that physical laws should not depend on any particular choice of coor-
dinate representation of ambient spaces, Marsden and Hughes [28] developed a covariant theory of
elasticity building on ideas originated from the work of Naghdi, Green and Rivilin [19]. This work
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starts from balance of energy, which makes sense intrinsically as it is written in terms of integrals
of scalar fields (or more precisely 3-forms). Then they postulate that balance of energy is invariant
under arbitrary diffeomorphisms of the ambient space. They observe that this invariance assumption
gives all the usual balance laws plus the Doyle-Ericksen formula that relates the stress and the metric
tensor.

Our motivation for studying spatial and material covariant balance laws was to gain a better
understanding of the geometry of configurational forces, which are forces that act in the reference
configuration. One may ask the following question. What are the consequences of postulating that
balance of energy is materially covariant? In the process of answering this question we discov-
ered that such invariance cannot hold in general and this led us to obtain formulas for the way in
which balance of energy transforms under material diffeomorphisms. In this paper we also study the
connection between spatial and material covariance with Noether’s theorem. It will be shown that
spatial and material covariance of a Lagrangian density lead to the spatial and material forms of the
Doyle-Ericksen formula, respectively.

As was mentioned, one of our motivations for this study was to initiate a geometric study of
configurational forces. These forces and their balance laws are important in formulating the evolu-
tion of defects in solids in the setting of continuum mechanics. Driving (configurational, material
and so forth) forces in continuum mechanics were introduced by Eshelby [13, 14, 15], and many
researchers have studied them from different points of view. We mention the work of Knowles [22],
Abeyaratneh and Knowles [1, 2] on driving force on a phase interface, Gurtin’s work [20, 21] on
configurational forces by postulating new balance laws, the work of Maugin [31, 32] and Maugin
and Trimarco [33] on pull-back of balance of standard linear momentum to the reference config-
uration, etc. However, even after more than five decades after Eshelby’s original work there does
not seem to be a consensus on the nature of configurational forces and their exact role in continuum
mechanics and there are still some controversies in the literature. We believe that the geometric
ideas in this paper may be helpful in this direction.

This paper is organized as follows. The geometry of continuum mechanics is reviewed in §2.
The Lagrangian field theory of elastic bodies with evolving reference configurations is presented in
§3, where deformed bodies and their reference configurations are treated as Riemannian manifolds.
Using this setting, the classical Green-Naghdi-Rivilin theorem and a new material version of it are
discussed in §4. Spatial covariant energy balance is revisited in §5. In §6 we obtain the transfor-
mation (push-forward) of energy balance under an arbitrary material diffeomorphism. Then, we
investigate the consequences of material covariance of energy balance. §7 studies the connection
between covariance and Noether’s theorem. It is shown that spatial and material covariance of a La-
grangian density result in spatial and material versions of the Doyle-Ericksen formula, respectively.
Conclusions and future directions are given in §8.

2 Geometry of Continuum Mechanics
This section recalls some notation from the geometric approach to continuum mechanics that will be
needed. It is assumed that the reader is familiar with the basic ideas; refer to, for example, Marsden
and Hughes [28] for details. See also [30] and [29].

If M is a smooth n-manifold, the tangent space to M at a point p ∈ M is denoted TpM , while
the whole tangent bundle is denoted TM .

We denote by B a reference manifold for our body and by S the space in which the body moves.
We assume that B and S are Riemannian manifolds with metrics denoted by G and g respectively.
Local coordinates on B are denoted by XI and those on S by xi. The material body B is a subset
of the material manifold, i.e., B ⊂ B.

A deformation of the body is, for purposes of this paper, a C1 embedding ϕ : B → S . The
tangent map of ϕ is denoted F = Tϕ : TB → TS; in the literature it is often called the deformation
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gradient. In local charts on B and S , the tangent map of ϕ is given by the Jacobian matrix of partial
derivatives of the components of ϕ, which we write as

F = Tϕ : TB → TS, Tϕ(X,V) = (ϕ(X),Dϕ(X) ·V). (2.1)

If F : B → R is a C1 scalar function, X ∈ B and VX ∈ TXB, then VX [F ] denotes the
derivative of F at X in the direction of VX , i.e., VX [F ] = DF (X) ·V. In local coordinates {XI}
on B,

VX [F ] =
∂F

∂XI
V I . (2.2)

For f : S → R, the pull-back of f by ϕ is defined by

ϕ∗f = f ◦ ϕ. (2.3)

If F : B → R, the push-forward of F by ϕ is defined by

ϕ∗F = F ◦ ϕ−1. (2.4)

If Y is a vector field on B, then ϕ∗Y = Tϕ ◦ Y ◦ ϕ−1, or using the F notation, ϕ∗Y =
F ◦Y ◦ϕ−1 is a vector field on ϕ(B) called the push-forward of Y by ϕ. Similarly, if y is a vector
field on ϕ(B) ⊂ S , then ϕ∗y = T (ϕ−1) ◦ y ◦ ϕ is a vector field on B and is called the pull-back of
y by ϕ.

The cotangent bundle of a manifold M is denoted T ∗M and the fiber at a point p ∈ M (the
vector space of one-forms at p) is denoted by T ∗p M . If β is a one form on S (that is, a section of the
cotangent bundle T ∗S), then the one-form on B defined as

(ϕ∗β)X ·VX = βϕ(X) · (Tϕ ·VX) = βϕ(X) · (F ·VX) (2.5)

for X ∈ B and VX ∈ TXB, is called the pull-back of β by ϕ. Likewise, the push-forward of a
one-form α on B is the one form on ϕ(B) defined by ϕ∗α = (ϕ−1)∗α.

We can associate a vector field β] to a one-form β on a Riemannian manifold M through the
equation

〈βx,vx〉 =
〈〈
β]

x,vx

〉〉
x

, (2.6)

where 〈 , 〉 denotes the natural pairing between the one form βx ∈ T ∗x M and the vector vx ∈ TxM
and where

〈〈
β]

x,vx

〉〉
x

denotes the inner product between β]
x ∈ TxM and vx ∈ TxM . In coordinates,

the components of β] are given by βi = gijβi.
Traditionally force is thought of as a vector field in the deformed configuration. For example,

body force B per unit undeformed mass is a vector field on S and its associated one-form can be
defined as

〈βx, δw〉 = 〈〈B, δw〉〉x (2.7)

for all δw ∈ TxS.The pull-back of β is defined as

〈(ϕ∗β)X , δW〉
X

= 〈βx,FδW〉X = 〈〈B,FδWX〉〉X =
〈〈

FTB, δWX

〉〉
X

. (2.8)

Therefore FTB is the vector field associated with the pull-back of the one-form associated with B.

A type
(

p
q

)
-tensor at X ∈ B is a multilinear map,

T : T ∗XB × ...× T ∗XB︸ ︷︷ ︸
p copies

×TXB × ...× TXB︸ ︷︷ ︸
q copies

→ R. (2.9)
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T is said to be contravariant of order p and covariant of order q. In a local coordinate chart,

T(α1, ..., αp,V1, ...,Vq) = T i1...ip
j1...jq

α1
i1 ...α

p
ip

V j1
1 ...V jq

q , (2.10)

where αk ∈ T ∗XB and Vk ∈ TXB.

Suppose ϕ : B → S is a regular map and T is a tensor of type
(

p
q

)
. Push-forward of T by ϕ is

denoted ϕ∗T and is a
(

p
q

)
-tensor on ϕ(B) defined by

(ϕ∗T)(x)(α1, ..., αp,v1, ...,vq) = T(X)(ϕ∗α1, ..., ϕ∗αp, ϕ∗v1, ..., ϕ∗vq), (2.11)

where αk ∈ T ∗xS,vk ∈ TxS, X = ϕ−1(x), ϕ∗(αk) · vl = αk · (Tϕ · vl) and ϕ∗(vl) = T (ϕ−1)vl.
Similarly, pull-back of a tensor t defined on ϕ(B) is given by ϕ∗t = (ϕ−1)∗t. In the setting of
continuum mechanics push-forward and pull-back of tensors will have the following forms

(ϕ∗T)i1...ip
j1...jq (x) = F i1

I1(X)...F ip
Ip(X) T I1...Ip

J1...Jq (F−1)J1
j1(x)...(F−1)Jq

jq (x),

(ϕ∗t)I1...Ip
J1...Jq

(X) = (F−1)I1
i1(x)...(F−1)Ip

ip
(x) ti1...ip

j1...jq F j1
J1(X)...F jq

Jq (X).

A two-point tensor T of type
(

q q′

p p′

)
at X ∈ B over a map ϕ : B → S is a multilinear map,

T : T ∗XB × ...× T ∗XB︸ ︷︷ ︸
p copies

×TXB × ...× TXB︸ ︷︷ ︸
q copies

× T ∗xS × ...× T ∗xS︸ ︷︷ ︸
p copies

×TxS × ...× TxS︸ ︷︷ ︸
q copies

→ R, (2.12)

where x = ϕ(X).
Let w : U → TS be a vector field, where U ⊂ S is open. A curve c : I → S , where I is an

open interval, is an integral curve of w if

dc
dt

(r) = w(c(r)) ∀ r ∈ I. (2.13)

If w depends on time variable explicitly, i.e., w : U × (−ε, ε) → TS, an integral curve is defined
by

dc
dt

= w(c(t), t). (2.14)

Let w : S × I → TS be a vector field. The collection of maps Ft,s such that for each s and x,
t 7→ Ft,s(x) is an integral curve of w and Fs,s(x) = x is called the flow of w. Let w be a C1 vector
field on S , Ft,s its flow, and t a C1 tensor field on S . The Lie derivative of t with respect to w is
defined by

Lwt =
d

dt

(
F ∗t,st

)∣∣∣
t=s

. (2.15)

If we hold t fixed in t then we denote

£wt =
d

dt

(
F ∗t,st

)∣∣∣
t=s

, (2.16)

which is called the autonomous Lie derivative. Hence

Lwt =
∂

∂t
t + Lwt. (2.17)

5



Let v be a vector field on S and ϕ : B → S a regular and orientation preserving C1 map. The
Piola transform of v is

V = Jϕ∗v, (2.18)

where J is the Jacobian of ϕ. If Y is the Piola transform of y, then the Piola identity holds:

Div Y = J(div y) ◦ ϕ. (2.19)

A k-form on a manifold M is a skew-symmetric
(

0
k

)
-tensor. The space of k-forms on M is

denoted Ωk(M). If ϕ : M → N is a regular and orientation preserving C1 map and α ∈ Ωk(ϕ(M)),
then ∫

ϕ(M)

α =
∫

M

ϕ∗α. (2.20)

Geometric Continuum Mechanics. We next review a few of the basic notions of continuum
mechanics from the geometric point of view.

A body B is a submanifold of a Riemannian manifold B and a configuration of B is a mapping
ϕ : B → S , where S is another Riemannian manifold. The set of all configurations of B is denoted
C. A motion is a curve c : R→ C; t 7→ ϕt in C.

For a fixed t, ϕt(X) = ϕ(X, t) and for a fixed X , ϕX(t) = ϕ(X, t), where X is position of
material points in the undeformed configuration B. The material velocity is the map Vt : B → R3

given by

Vt(X) = V(X, t) =
∂ϕ(X, t)

∂t
=

d

dt
ϕX(t). (2.21)

Similarly, the material acceleration is defined by

At(X) = A(X, t) =
∂V(X, t)

∂t
=

d

dt
VX(t). (2.22)

In components

Aa =
∂V a

∂t
+ γa

bcV
bV c, (2.23)

where γa
bc is the Christoffel symbol of the local coordinate chart {xa}.

Here it is assumed that ϕt is invertible and regular. The spatial velocity of a regular motion ϕt

is defined as
vt : ϕt(B) → R3, vt = Vt ◦ ϕ−1

t , (2.24)

and the spatial acceleration at is defined as

a = v̇ =
∂v
∂t

+∇vv. (2.25)

In components

aa =
∂va

∂t
+

∂va

∂xb
vb + γa

bcv
bvc. (2.26)

Let ϕ : B → S be a C1 configuration of B in S , where B and S are manifolds. Recall that the
deformation gradient is denoted F = Tϕ. Thus, at each point X ∈ B, it is a linear map

F(X) : TXB → Tϕ(X)S. (2.27)

If {xi} and {XI} are local coordinate charts on S and B, respectively, the components of F are

F i
J(X) =

∂ϕi

∂XJ
(X). (2.28)
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The deformation gradient may be viewed as a two-point tensor,

F(X) : T ∗xS × TXB → R; (α,V) 7→ 〈α, TXϕ ·V〉 (2.29)

Suppose B and S are Riemannian manifolds with inner products 〈〈, 〉〉X and 〈〈, 〉〉x based at X ∈ B
and x ∈ S , respectively.

Recall that the transpose of F is defined by

FT : TxS → TXB, 〈〈FV,v〉〉x =
〈〈

V,FTv
〉〉

X
(2.30)

for all V ∈ TXB, v ∈ TxS . In components,

(F T(X))J
i = gij(x)F j

K(X)GJK(X), (2.31)

where g and G are metric tensors on S and B, respectively. On the other hand, the dual of F, a
metric independent notion, is defined by

F∗(x) : T ∗xS → T ∗XB; 〈F∗(x) · α,W〉 = 〈α,F(X)W〉 (2.32)

for all α ∈ T ∗xS,W ∈ TXB.
Considering bases ea and EA for S and B, respectively, one can define the corresponding dual

bases ea and EA. The matrix representation of F∗ with respect to the dual bases is the transpose of
F a

A. F and F∗ have the following local representations,

F = F j
K

∂

∂xj
⊗ dXK , F∗ = F j

KdXK ⊗ ∂

∂xj
. (2.33)

The right Cauchy-Green deformation tensor is defined by

C(X) : TXB → TXB, C(X) = F(X)T F(X). (2.34)

In components,
CI

J = (FT )I
kF k

J . (2.35)

It is straightforward to show that

C[ = ϕ∗(g), i.e. CIJ = (gij ◦ ϕ)F i
IF

j
J . (2.36)

From now on, by C we mean the tensor with components CIJ . The Finger tensor is defined as
b = ϕt∗G, where G is the metric of the reference configuration.

To make ideas more concrete, a comment is in order. In the geometric treatment of continuum
mechanics one assumes that the material body is a Riemannian manifold (B,G). Here B is an
embedding of the material body, i.e., material points are identified with their positions in the refer-
ence configuration. A deformation of the material body is represented by a mapping ϕ : B → S ,
where (S,g) is the ambient space, which is another Riemannian manifold. If ϕ = Id, the reference
configuration is a trivial embedding of the material body in the ambient space. Physically, in the
deformation process the relative distance of material points change in general. In other words, in
terms of material points X,X + dX and their positions in the deformed configuration x,x + dx we
have

dx · dx = CdX · dX 6= dX · dX. (2.37)

This means that in general
g 6= ϕt∗G. (2.38)
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The following identities will be used frequently in this paper.

∂gab

∂xc
= gadγ

d
bc + gbdγ

d
ac, (2.39)

∂GAB

∂XC
= GADΓD

BC + GBDΓD
AC , (2.40)

where γd
bc and ΓD

BC are the Christoffel symbols associated to the metric tensors g and G respec-
tively. The covariant derivative of two-point tensors will also be used frequently in this paper. The
following two examples would be useful to clarify the idea. For definition for an arbitrary two-point
tensor the reader may refer to Marsden and Hughes [28].

P aA|B =
∂P aA

∂XB
+ P aCΓA

CB + P bAF c
Aγa

bc, (2.41)

Qa
A|B =

∂Qa
A

∂XB
+ Qa

CΓA
CB −Qb

AF c
Aγb

ca. (2.42)

Let ϕt : B → S be a regular motion of B in S and P ⊂ B a k-dimensional submanifold. The
Transport Theorem says that for any k-form α on S ,

d

dt

∫

ϕt(P)

α =
∫

ϕt(P)

Lvα, (2.43)

where v is the spatial velocity of the motion. In a special case when α = fdv and P = U is an open
set,

d

dt

∫

ϕt(P)

fdv =
∫

ϕt(P)

[
∂f

∂t
+ div(fv)

]
dv. (2.44)

We say that a body B satisfies balance of linear momentum if for every nice open set U ⊂ B,

d

dt

∫

ϕt(U)

ρvdv =
∫

ϕt(U)

ρbdv +
∫

∂ϕt(U)

tda, (2.45)

where ρ = ρ(x, t) is mass density, b = b(x, t) is body force vector field and t = t(x, n̂, t) is
the traction vector. Note that Cauchy’s stress theorem tells us that there is a contra-variant second-
order tensor σ = σ(x, t) (Cauchy stress tensor) with components σij such that t = 〈〈σ, n̂〉〉. Note
that 〈〈, 〉〉 is the inner product induced by the Riemmanian metric g. Equivalently, balance of linear
momentum can be written in the undeformed configuration as

d

dt

∫

U
ρ0VdV =

∫

U
ρ0BdV +

∫

∂U

〈〈
P, N̂

〉〉
dA, (2.46)

where, P = Jϕ∗σ (the first Piola-Kirchhoff stress tensor) is the Piola transform of Cauchy stress
tensor. Note that P is a two-point tensor with components P iJ . Note also that this is the balance
of linear momentum in the deformed (physical) space written in terms of some quantities that are
defined with respect to the reference configuration.

As was mentioned before, balance of linear momentum has no intrinsic meaning because inte-
grating a vector field is geometrically meaningless. As is standard in continuum mechanics, this
balance law makes use of the linear (or affine) structure of Euclidean space.

A body B is said to satisfy balance of angular momentum if for every nice open set U ⊂ B,

d

dt

∫

ϕt(U)

ρx× vdv =
∫

ϕt(U)

ρx× bdv +
∫

∂ϕt(U)

x× 〈〈σ, n̂〉〉 da. (2.47)
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As with balance of linear momentum, balance of angular momentum makes use of the linear
structure of Euclidean space and this does not transform in a covariant way under a general change
of coordinates.

One says that balance of energy holds if, for every nice open set U ⊂ B,

d

dt

∫

ϕt(U)

ρ

(
e +

1
2
〈〈v,v〉〉

)
dv =

∫

ϕt(U)

ρ (〈〈b,v〉〉+ r) dv +
∫

∂ϕt(U)

(〈〈t,v〉〉+ h) da, (2.48)

where e = e(x, t), r = r(x, t) and h = h(x, n̂, t) are internal energy per unit mass, heat supply per
unit mass and heat flux, respectively.

The Geometry of Inverse Motions. The study of inverse motions in continuum mechanics was
started by Shield [38] and further extended by Ericksen [10] and Steinmann [43, 42]. Here the
idea is to fix spatial points and look at the evolution of material points under the inverse of the
deformation mapping. It is known that in inverse motion, Eshelby’s tensor has a role similar to that
of stress tensor in direct motion. One should note that formulating continuum mechanics in terms
of the inverse motion is simply a change in describing the same physical system and so, in general,
cannot have any profound consequences. However, in the general relativistic setting, in which it is
desireable to have the fields to be defined on spacetime and take values in a bundle over spacetime,
inverse configurations are preferred; see [5] and references therein.

3 Lagrangian Field Theory of Elastic Bodies with Evolving Ref-
erence Configurations

Suppose the reference configuration evolves in time and assume that this evolution can be repre-
sented by a one-parameter family of mappings that map B ⊂ B (reference configuration at t = 0)
to Bt ⊂ B (the reference configuration at time t),

Ξt : B → Bt. (3.1)

We call these maps the configurational deformation maps. Note that this is not the most general
form of reference configuration evolution. In general, one should look at the reference configuration
evolution locally (see [9] and [8] for some discussions on this). For the sake of simplicity, we
assume a global reference configuration evolution. The configuration space for the evolution of the
reference configuration is

Cconf. = {Ξ | Ξ : B → Bt} . (3.2)

An evolution of the reference configuration is a curve c : I → Cconf. in Cconf.. It is important to
put the right restrictions on Ξt. It does not seem necessary for Ξt to be invertible, in general. Here,
we assume that Ξt is a diffeomorphism. A standard deformation is represented by a one-parameter
family of mappings,

ϕt : Bt → S. (3.3)

The standard configuration space is defined by

C = {ϕ | ϕ : Bt → S} . (3.4)

Again, a standard deformation is a curve in the standard configuration space. The total deformation
map is the composition of standard and configurational deformation maps,

φt = ϕt ◦ Ξt : B → S; (3.5)

9



that is, the following diagram commutes

Bt
ϕt // S

B
Ξt

OO

φt=ϕt◦Ξt

??~~~~~~~~

Figure 1 below shows the same idea schematically.

B

Bt

St

Ξt

ϕtφt

Figure 1: Configurational and standard deformation maps.

In terms of mapping the material points, xt = ϕt(Xt) = ϕt◦Ξt(X), as is shown in the following
commutative diagram.

Xt
ϕt // xt

X

Ξt

OO

φt=ϕt◦Ξt

>>}}}}}}}}

The configuration space for the total deformation is defined as

C tot =
{
φ

∣∣ φ = ϕ ◦ Ξ, ϕ ∈ C, Ξ ∈ Cconf.} = C ◦ Cconf.. (3.6)

A deformation is a curve c : I → C tot in the total configuration space. Note that Ξt = Id (identity
map) in most of classical continuum mechanics.

Notice that there are two independent deformation mappings ϕt and Ξt when reference config-
uration evolves in time (see Fig. 1). These separate mappings represent independent kinematical
processes and hence may correspond to two separate systems of forces, in general.
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Definition 3.1 (Configurational Velocity.) The configurational velocity is defined by

V0(X, t) =
∂Ξt(X)

∂t
. (3.7)

Definition 3.2 The total material velocity is defined by

Ṽ(X, t) =
∂φt(Xt)

∂t

∣∣∣
X fixed

=
∂ϕt

∂t
+ FV0 = V + FV0, (3.8)

where, as before, F = ∂ϕt/∂Xt is the deformation gradient (holding t fixed).

Note that
Tφt = Tϕt ◦ TΞt or F̃ = FF0. (3.9)

Thus
F0 = F−1 ◦ F̃. (3.10)

Now we may think about postulating the conservation of configurational mass and balance of linear
and angular configurational momenta.

Conservation of mass is defined in terms of conservation of mass for deformation mappings Ξt

and ϕt separately or equivalently for Ξt and φt separately. This makes sense as Ξt and ϕt correspond
to configurational and standard deformations and should preserve the mass of an arbitrary subbody.

Definition 3.3 (Conservation of Mass.) Suppose B is a body and φt = ϕt ◦ Ξt is a deformation
map. We say that the deformation mapping is mass conserving if for every U ⊂ B,

d

dt

∫

Ξt(U)

ρ0(Xt, t)dV = 0 and
d

dt

∫

φt(U)

ρ(x, t)dv = 0, (3.11)

where ρ0(Xt, t) is the mass density at point Xt ∈ Bt and ρ(x, t) is the mass density at the point
x ∈ S .

Localization of the above equations gives the local form of conservation of mass, namely

R0(X) = ρ0(Xt, t)J0 = ρ(x, t)J̃ , (3.12)

where J0 = det(F0)
√

detG√
detG0

, F0 = TΞt is the configurational deformation gradient, G0

is the fixed metric of B, G is the metric of Bt and R0 is the mass density at X ∈ B and
J̃ = det(F̃)

√
detg√
detG

= JJ0. Note that this is equivalent to

R0 = ρ0J0 and ρ0 = ρJ. (3.13)

One may be tempted to postulate a balance of configurational linear momentum as follows. A
body B satisfies the balance of configurational linear momentum if for any U ′ ⊂ Bt,

d

dt

∫

U ′
ρ0V0dV =

∫

U ′
ρ0B0dV +

∫

∂U ′
P0NdA. (3.14)

Localization of this balance law and using Cauchy’s theorem gives the following local form of the
balance of configurational linear momentum

Div P0 + ρ0B0 = ρ0A0. (3.15)

Thinking of configurational deformation mapping Ξt as a deformation of a fixed reference con-
figuration, this balance law is similar to the standard balance of linear momentum written in the
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deformed configuration. Note that postulating such a balance law requires the introduction of two
new quantities, namely P0 and B0 and does not seem to be of any use at this point.

It should be noted that a configurational change need not be volume preserving. An example is a
phase transformation from cubic to tetragonal which has the following configurational deformation
gradient (this is called Bain strain or matrix in martensitic phase transformations),

F0 =




1 0 0
0 1 0
0 0 c

a


 (3.16)

where a = b and c > a are the tetragonal lattice parameters.
The Lagrangian may be regarded as a map L : TC → R, where C is the space of some sections

(for technical details see [28]), associated to the Lagrangian density L and a volume element dV (X)
on B and is defined as

L(ϕ, ϕ̇) =
∫

B
L (X, ϕ(X), ϕ̇(X),F(X),G(X),g(ϕ(X))) dV (X). (3.17)

Note that here we have assumed an explicit dependence of L on the material and spatial metrics
G and g. Let us first revisit the classical Lagrangian field theory of elasticity using the above
Lagrangian density with explicit dependence on material and spatial metrics. The action function
is defined as

S(ϕ) =
∫ t1

t0

L(ϕ, ϕ̇)dt. (3.18)

Hamilton’s principle states that the physical configuration ϕ is the critical point of the action, i.e.,

dS(ϕ) · δϕ = 0. (3.19)

Note that variation in ϕ leaves the material metric unchanged. The statement of Hamilton’s principle
can be simplified to read

∫ t1

t0

∫

B

(
∂L
∂ϕ

· δϕ +
∂L
∂ϕ̇

· δϕ̇ +
∂L
∂F

: δF +
∂L
∂g

: δg
)

dV (X)dt = 0. (3.20)

After some manipulations the above integral statement results in

∂L
∂ϕa

− ∂

∂t

(
∂L
∂ϕ̇

)

a

−
(

∂L
∂F

)

a

A

|A
−

(
∂L
∂F

)

b

A

F c
Aγb

ac + 2
∂L
∂gcd

gbdγ
b
ac = 0. (3.21)

Noting that

d

dt

(
∂L
∂ϕ̇

)

a

= ρ0

(
gabA

b + gbcγ
c
adϕ̇

bϕ̇d
)
, (3.22)

(
∂L
∂F

)

a

A

= −Pa
A, (3.23)

2
∂L
∂gcd

= ρ0ϕ̇
cϕ̇d − Jσcd, (3.24)

Eq. (3.21) can be written as

Pa
A|A +

∂L
∂ϕa

+
(
F c

APb
A − Jσcdgbd

)
γb

ac = ρ0gabA
b. (3.25)
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Note that if L depends on F and g through C, then the term in the parenthesis would be zero and
hence

Pa
A|A +

∂L
∂ϕa

= ρ0gabA
b, (3.26)

which is nothing but the familiar equations of motion.∗

Now suppose that during the process of deformation the continuum undergoes a continuous material
evolution. This means that the deformation mapping ϕ is the composition of a total deformation
mapping and a referential mapping, i.e.,

ϕ = φ ◦ Ξ−1 or φ = ϕ ◦ Ξ. (3.27)

Note that defining such a composition is ambiguous because there are infinitely many possibilities
for decomposing a given deformation mapping φ into two mappings ϕ and Ξ. The new mappings
can represent part of the standard deformation and material evolution. To make sure that ϕ is the
standard part of total deformation mapping, the Lagrangian is written as an integral on the current
reference configuration Bt

L(ϕ, ϕ̇) =
∫

Bt

L (X, ϕ(X), ϕ̇(X),F(X),G(X),g(ϕ(X))) dV (X). (3.28)

It would be more convenient to write the Lagrangian as a functional on B (the fixed initial reference
configuration). Let us denote points on B by U . Note that

φ̇(U) = (ϕ̇ ◦ Ξ)(U) + Tϕ(Ξ(U)) · Ξ̇(U) or (ϕ̇ ◦ Ξ)(U) = φ̇(U)− F(Ξ(U)) · Ξ̇(U). (3.29)

Also
F(Ξ(U)) = Fφ(U)F−1

Ξ (Ξ(U)). (3.30)

Thus,

L = L
(
Ξ(U), φ(U), φ̇(U)− Fφ(U)F−1

Ξ (Ξ(U)) · Ξ̇(U),

Fφ(U)F−1
Ξ (Ξ(U)),G(Ξ(U)),g(φ(U))

)
JΞ(U), (3.31)

where

JΞ = det(TΞ)

√
detG√
detG0

, (3.32)

and where G0 is the fixed metric of the fixed reference configuration and G is the metric of Bt. As
before, the action is defined as

S(Ξ, φ) =
∫ t1

t0

L(Ξ, Ξ̇, φ, φ̇)dt. (3.33)

Hamilton’s principle states that the physical configurations Ξ and φ are the critical points of the
action, i.e.,

dS(Ξ, φ) · (δΞ, δφ) = 0. (3.34)

For the sake of clarity, we look at the two independent variations separately.
∗Also note that in (3.25) use was made of Doyle-Ericksen formula (3.24). However, for arriving at (3.26) there is no need

for using Doyle-Ericksen formula.
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3.1 Vertical Variations
Let us first look at vertical variations; that is, we assume that δΞ = 0 and see if we can recover the
classical Euler-Lagrange equations.

Proposition 3.4 Allowing only vertical variations in Hamilton’s principle, one obtains the follow-
ing equations of motion

∂L
∂ϕa

− d

dt

(
∂L

∂ϕ̇ ◦ Ξ

)

a

−
(

∂L
∂F

)

a

B

|B
− F c

Bγb
ac

(
∂L
∂F

)

b

B

+
∂L
∂gbc

∂gbc

∂xa
= 0. (3.35)

Proof. The derivative of the action with respect to vertical variations is computed as follows

dS(Ξ, φ) · (0, δφ) =
∫ t1

t0

∫

B

{
∂L

∂ϕ ◦ Ξ
· δφ +

∂L
∂ϕ̇ ◦ Ξ

·
(
δφ̇− δ

[
Fφ(U)F−1

Ξ (Ξ(U)) · Ξ̇(U)
])

+
∂L
∂F

: δ
[
Fφ(U)F−1

Ξ (Ξ(U))
]
+

∂L
∂g

: δg ◦ φ

}
JΞ(U)dV (U)dt = 0. (3.36)

Note that

δ
(
FφF−1

Ξ ◦ Ξ
)

= δ
(
FφF−1

Ξ

) ◦ Ξ = T
(
δ(φ ◦ Ξ−1)

) ◦ Ξ

= T
(
δφ ◦ Ξ−1

) ◦ Ξ =
(
Tδφ TΞ−1

) ◦ Ξ = Dδφ F−1
Ξ ◦ Ξ. (3.37)

Let us assume coordinates {Uα}, {XA} and {xa} and basis vectors Eα, eA and fa on B, Bt and S ,
respectively. Thus, in coordinates

Dδφ =
∂δφa

∂Uα
fa ⊗Eα. (3.38)

The first part of the second term is simplified as
∫ t1

t0

∫

B

∂L
∂ϕ̇ ◦ Ξ

δφ̇JΞ(U)dV (U) = −
∫ t1

t0

∫

B

[
d

dt

(
∂L

∂ϕ̇ ◦ Ξ

)

a

+
∂L

∂ϕ̇ ◦ Ξa

WB |B

]
δφaJΞdV (U)dt,

(3.39)
where

W(U) =
d

dt
Ξ(U). (3.40)

The second part of the second term in (3.36) can be simplified to

−
∫ t1

t0

∫

B
JΞ

∂L
∂ϕ̇ ◦ Ξ

Dδφ F−1
Ξ ◦ Ξ ·WdV (U)dt

=
∫ t1

t0

∫

B

[(
∂L

∂ϕ̇ ◦ Ξ

)

a

JΞ

(
F−1

Ξ ◦ Ξ
)β

BWB

]

|β
δφadV (U)dt

+
∫ t1

t0

∫

B

[
JΞ

(
∂L

∂ϕ̇ ◦ Ξ

)

b

(F ◦ Ξ)c
Aγb

acW
A

]
δφadV (U)dt. (3.41)

Using the Piola identity we have
[(

∂L
∂ϕ̇ ◦ Ξ

)

a

JΞ

(
F−1

Ξ ◦ Ξ
)β

B WB

]

|β
= JΞ

[(
∂L

∂ϕ̇ ◦ Ξ

)

a

WA

]

|A
. (3.42)

14



Also
[(

∂L
∂ϕ̇ ◦ Ξ

)

a

WA

]

|A
=

∂

∂XA

(
∂L

∂ϕ̇ ◦ Ξ

)

a

WA +
(

∂L
∂ϕ̇ ◦ Ξ

)

a

WA|A−
(

∂L
∂ϕ̇ ◦ Ξ

)

b

WAγb
acF

c
A.

(3.43)
Therefore (3.41) is simplified to

∫ t1

t0

∫

B

[
∂

∂XA

(
∂L

∂ϕ̇ ◦ Ξ

)

a

WA +
(

∂L
∂ϕ̇ ◦ Ξ

)

a

WA|A

]
δφaJΞdV (U)dt. (3.44)

Note that

∂

∂t

(
∂L
∂ϕ̇

)

a

=
∂

∂t

(
∂L

∂ϕ̇ ◦ Ξ

)

a

◦ Ξ−1 − ∂

∂XA

(
∂L

∂ϕ̇ ◦ Ξ

)

a

◦ Ξ−1WA. (3.45)

Hence adding (3.39) and (3.44) the term corresponding to δφ̇ is simplified to
∫ t1

t0

∫

Bt

− ∂

∂t

(
∂L
∂ϕ̇

)

a

δφa ◦ Ξ−1dV (X)dt. (3.46)

After some lengthy manipulations, the third term in (3.36) can be written as

−
∫ t1

t0

∫

B

[(
∂L

∂F ◦ Ξ

)

a

B

|B
+ F c

B ◦ Ξ
(

∂L
∂F ◦ Ξ

)

a

B

γb
ac

]
δφaJΞ(U)dV (U)dt. (3.47)

The last term is simplified as
∫ t1

t0

∫

B

∂L
∂g ◦ φ

: δg ◦ φ JΞdV (U)dt =
∫ t1

t0

∫

B

∂L
∂gbc ◦ φ

∂gbc

∂xa
δφa JΞdV (U)dt

=
∫ t1

t0

∫

Bt

∂L
∂gbc

∂gbc

∂xa
δφa ◦ Ξ−1dV (X)dt

= −
∫ t1

t0

∫

Bt

∂L
∂gbc

(
gcdγb

ad + gbdγc
ad

)
δφa ◦ Ξ−1dV (X)dt. (3.48)

Theretofore, adding the above four simplified terms, we obtain

dS(Ξ, φ) · (0, δφ) =
∫ t1

t0

∫

Bt

[
∂L
∂ϕa

− d

dt

(
∂L
∂ϕ̇

)

a

−
(

∂L
∂F

)

a

B

|B

−F c
Bγb

ac

(
∂L
∂F

)

b

B

+
∂L
∂gbc

∂gbc

∂xa

]
δφa ◦ Ξ−1 dV (X)dt. (3.49)

As δφa is arbitrary we conclude that

∂L
∂ϕa

− d

dt

(
∂L

∂ϕ̇ ◦ Ξ

)

a

−
(

∂L
∂F

)

a

B

|B
− F c

Bγb
ac

(
∂L
∂F

)

b

B

+
∂L
∂gbc

∂gbc

∂xa
= 0, (3.50)

which gives the stated result. ¤

3.2 Horizontal Variations
Now let us try to find the Euler-Lagrange equations resulting from horizontal variations; that is,
variations of the configurational deformation mapping Ξ.
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Proposition 3.5 Allowing only horizontal variations in Hamilton’s principle, one obtains the fol-
lowing configurational equations of motion

∂L
∂XA

+
∂

∂t

[(
∂L
∂ϕ̇

)

a

F a
A

]
−

[
L δB

A −
(

∂L
∂F

)

a

B

F a
A

]

|B

+
(

∂L
∂F

)

a

B

F a
CΓC

AB + 2GCDΓD
AB

∂L
∂GBC

= 0, (3.51)

where ΓC
AB is the Christoffel symbol of a local chart in Bt.

Proof. The derivative of the action with respect to horizontal variations is computed as follows:

dS(Ξ, φ) · (δΞ, 0) =
∫ t1

t0

∫

B

( [
∂L
∂Ξ

· δΞ− ∂L
∂ϕ̇ ◦ Ξ

· δ
(
FφF−1

Ξ ◦ Ξ · Ξ̇
)

+
∂L

∂F ◦ Ξ
: δ

(
FφF−1

Ξ ◦ Ξ
)]

JΞ

+
∂L

∂G ◦ Ξ
: δG ◦ Ξ + L δJΞ

)
dV (U)dt = 0. (3.52)

Note that
δ
(
FφF−1

Ξ ◦ Ξ
)

= Fφδ
(
F−1

Ξ ◦ Ξ
)
. (3.53)

But
δ
(
F−1

Ξ ◦ Ξ
)

= −F−1
Ξ D(δΞ)F−1

Ξ ◦ Ξ. (3.54)

Thus
δ
(
FφF−1

Ξ ◦ Ξ
)

= −FφF−1
Ξ D(δΞ)F−1

Ξ ◦ Ξ = −FD(δΞ)F−1
Ξ ◦ Ξ. (3.55)

Similarly

δ
(
FφF−1

Ξ ◦ Ξ · Ξ̇
)

= −FD(δΞ)F−1
Ξ ◦ Ξ ·W + F ◦ Ξ · d

dt
(δΞ). (3.56)

In coordinates,

D(δΞ) =
∂δΞA

∂Uβ
eA ⊗Eβ . (3.57)

The second term in (3.52) has two parts which are simplified as follows. The first part is
∫ t1

t0

∫

B

(
∂L

∂ϕ̇ ◦ Ξ

)

a

F a
A ◦ Ξ

∂δΞA

∂Uβ

(
F−1

Ξ ◦ Ξ
)β

BWBJΞ dV (U)dt

= −
∫ t1

t0

∫

B′
∂

∂XB

[(
∂L
∂ϕ̇

)

a

F a
A

]
WBδΞA ◦ Ξ−1 dV (X)dt

−
∫ t1

t0

∫

B′

(
∂L
∂ϕ̇

)

a

F a
AWB |B δΞA ◦ Ξ−1 dV (X)dt. (3.58)

Similarly, the second part is simplified as

−
∫ t1

t0

∫

B

∂L
∂ϕ̇ ◦ Ξ

· F ◦ Ξ · d

dt
(δΞ) JΞ dV (U)dt

=
∫ t1

t0

∫

Bt

d

dt

[(
∂L
∂ϕ̇

)

a

F a
A

]
δΞA ◦ Ξ−1 dV (X)dt

+
∫ t1

t0

∫

Bt

(
∂L
∂ϕ̇

)

a

F a
AWB |B δΞA dV (X)dt. (3.59)
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Adding (3.58) and (3.59), the second term of (3.52) can be written as

−
∫ t1

t0

∫

B

∂L
∂ϕ̇ ◦ Ξ

δ
(
FφF−1

Ξ ◦ Ξ · Ξ̇
)

JΞ dV (U)dt

=
∫ t1

t0

∫

Bt

d

dt

[(
∂L
∂ϕ̇

)

a

F a
A

]
δΞA ◦ Ξ−1 dV (X)dt. (3.60)

After some lengthy manipulations, the third term of (3.52) is simplified to
∫ t1

t0

∫

B

∂L
∂F ◦ Ξ

: δ
(
FφF−1

Ξ ◦ Ξ
)

JΞ dV (U)dt

=
∫ t1

t0

∫

Bt

[(
∂L
∂F

)

a

B

F a
A

]

|B
δΞA ◦ Ξ−1 dV (X)dt

+
∫ t1

t0

∫

Bt

(
∂L
∂F

)

a

B

F a
CΓC

AB δΞA ◦ Ξ−1 dV (X)dt. (3.61)

The fourth term of (3.52) is simplified to
∫ t1

t0

∫

B

∂L
∂G ◦ Ξ

: δG ◦ Ξ JΞdV (U)dt =
∫ t1

t0

∫

Bt

2GCDΓD
AB

∂L
∂GBC

dV (X)dt. (3.62)

Note that

JΞ = (detFΞ)
√

detG
detG0

, (3.63)

where G0 is the fixed Riemannian metric of the fixed reference configuration. Thus,

δJΞ = δ (detFΞ)
√

detG
detG0

+ (detFΞ)
δdetG
detG0

= JΞ

(
F−1

Ξ

)β
B

∂δΞB

∂Uβ
+ (detFΞ)

1√
detG0

∂
√

detG
∂X

δΞ. (3.64)

Note that
∂
√

detG
∂X

=
1
2

√
detG G−1 ∂G

∂X
=
√

detG ΓB
AB δΞA. (3.65)

Hence

δJΞ = JΞ

(
F−1

Ξ

)β
B

∂δΞB

∂Uβ
+ JΞ ΓB

AB . (3.66)

Thus the last term of (3.52) is simplified to
∫ t1

t0

∫

B
L δJΞ dV (U)dt = −

∫ t1

t0

∫

Bt

(L δA
B

)
|B δΞA ◦ Ξ−1dV (X)dt. (3.67)

Now substituting the the above five simplified terms into (3.52), we have

dS(Ξ, φ) · (δΞ, 0) =
∫ t1

t0

∫

Bt

{
∂L

∂XA
+

∂

∂t

[(
∂L
∂ϕ̇

)

a

F a
A

]
−

[
L δA

B −
(

∂L
∂F

)

a

B

F a
A

]

|B

}
δΞA ◦ Ξ−1 dV (X)dt

+
∫ t1

t0

∫

Bt

{(
∂L
∂F

)

a

B

F a
CΓC

AB + 2GCDΓD
AB

∂L
∂GBC

}
δΞA ◦ Ξ−1 dV (X)dt = 0. (3.68)
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Because δΞA is arbitrary, we conclude that

∂L
∂XA

+
∂

∂t

[(
∂L
∂ϕ̇

)

a

F a
A

]
−

[
L δA

B −
(

∂L
∂F

)

a

B

F a
A

]

|B

+
(

∂L
∂F

)

a

B

F a
CΓC

AB + 2GCDΓD
AB

∂L
∂GBC

= 0. ¤ (3.69)

We now show that this is equivalent to the classical Euler-Lagrange equations and does not give
us any new information. After some lengthy manipulations, it can be shown that†

∂L
∂XA

+
∂

∂t

[(
∂L
∂ϕ̇

)

a

F a
A

]
−

[
L δA

B −
(

∂L
∂F

)

a

B

F a
A

]

|B

=

[
∂L
∂ϕa

− ∂

∂t

(
∂L
∂ϕ̇

)

a

−
(

∂L
∂F

)

a

A

|A
−

(
∂L
∂F

)

b

A

F c
Aγb

ac + 2
∂L
∂gcd

gbdγ
b
ac

]
F a

A

−
(

∂L
∂F

)

a

B

F a
CΓC

AB − 2GCDΓD
AB

∂L
∂GBC

. ¤ (3.70)

This result is known for the case where the underlying metrics are trivial [25]. In conclusion, in the
absence of discontinuities, the configurational and the standard equations of motion are equivalent,
even if one is allowed to vary the referential and spatial metrics.

4 The Green–Naghdi-Rivilin Theorem
Green, Rivilin and Naghdi [19] realized that conservation of mass and balance of linear and angular
momenta can be obtained as a result of postulating invariance of energy balance under isometries of
R3, i.e., rigid translations and rotations in the deformed configuration. Later Marsden and Hughes
[28] extended this idea to Riemannian manifolds and diffeomorphisms of the deformed configuration
showing that this covariant approach gives the Doyle-Ericksen formula for Cauchy stress as well
as conservation of mass and balance of linear and angular momenta. In another relevant work,
Šilhavý [39] considered all the densities in the energy balance to be volume densities and assuming
(i) invariance of energy balance under Galilean transformations and (ii) boundedness of energy
from below, proved the existence of mass, its conservation, balance of linear and angular momenta,
transformation of body forces and the splitting of total energy into internal and kinetic energies.

Before discussing the covariant approach to elasticity, let us first discuss the classical Green–
Naghdi–Rivilin (GNR) theorem and a non-conventional material form of it. We consider two cases:
(i) material energy balance invariance under spatial isometries ofR3 and (ii) material energy balance
invariance under material isometries of R3. We call (i) and (ii) the spatial-material and material-
material GNR theorems, respectively.

4.1 The Spatial-Material GNR Theorem
Consider the material energy balance for a nice subset U ⊂ B,

d

dt

∫

U
ρ0

(
Ψ +

1
2
V ·V

)
dV =

∫

U
ρ0 (B ·V + R) dV +

∫

∂U
(T ·V + H) dA, (4.1)

†It will be seen in §6 that material covariance of internal energy density implies that the sum of the last two terms is zero.
In §7, it will be shown that material covariance of Lagrangian density results in the same identity. However, at this point
there is no such relation and the variational principle does not give us any new information.
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where Ψ = Ψ(t,X,F) is the free energy density per unit mass of the undeformed configuration.
Now consider an isometry ξt : R3 → R3 of R3. We postulate that the material energy balance is
invariant under ξt. For the sake of simplicity we consider translations and rotations separately.

i) (Rigid translations) A spatial rigid translation is defined by

ξt(x) = x + (t− t0)c, (4.2)

where c is some constant vector field. We now postulate that the material balance of energy
holds for the deformation mapping ϕ′t = ξt ◦ ϕt as well. This balance law is still written on
U but with different fields (primed fields) in general,

d

dt

∫

U
ρ′0

(
Ψ′ +

1
2
V′ ·V′

)
dV =

∫

U
ρ′0

(
B′ ·V′+ R′

)
dV +

∫

∂U

(
T′ ·V′+ H ′)dA. (4.3)

Using Cartan’s space-time theory, the primed fields are related to the unprimed quantities
through the following relations

ρ′0(X) = ρ0(X), R′(X) = R(X), H ′(X) = H(X),

V′
∣∣∣
t=t0

=
∂

∂t
ϕ′t

∣∣∣
t=t0

= (TξtV + c)t=t0
= V + c, (4.4)

T′(X,N) = T(X,N).

Also because
b′ − a′ = ξt∗(b− a) and B−A = (b− a) ◦ ϕt. (4.5)

We have
B′ −A′ = ξ∗t (b− a) ◦ ϕ′t. (4.6)

Hence
(B′ −A′)t=t0

= (b− a) ◦ ϕt = (B−A). (4.7)

It can be easily shown that
F′(X) = F(X). (4.8)

The free energy density would have the following transformation

Ψ′(t,X,F′(X)) = Ψ(t,X,F(X)). (4.9)

Thus,
d

dt
Ψ′(t,X,F′(X)) =

∂Ψ
∂t

. (4.10)

Balance of energy for U ⊂ B for the new deformation mapping at t = t0 can be written as
∫

U

∂ρ0

∂t

(
Ψ +

1
2
(V + c) · (V + c)

)
dV +

∫

U
ρ0

(
∂Ψ
∂t

+ (V + c) ·A′∣∣
t=t0

)
dV

=
∫

U
ρ0

(
B′∣∣

t=t0
· (V + c) + R

)
dV +

∫

∂U
(T · (V + c) + H) dA, (4.11)

where Div c = 0 was used. Subtracting the material energy balance of the deformation ϕt for
U ⊂ B from the above equation and using (4.7) we obtain

∫

U

∂ρ0

∂t

(
c ·V +

1
2
c · c

)
dV +

∫

U
ρ0A · cdV =

∫

U
ρ0B · cdV +

∫

∂U
T · cdA. (4.12)
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Because U and c are arbitrary one concludes that

∂ρ0

∂t
= 0, (4.13)

Div P + ρ0B = ρ0A. (4.14)

ii) (Rigid rotations) Now let us consider a rigid rotation in the ambient space, i.e., ξt : S → S,
where,

ξt(x) = e(t−t0)Ωx, (4.15)

for some constant skew-symmetric matrix Ω. Note that

Tξt

∣∣
t=t0

= e(t−t0)Ω
∣∣
t=t0

= Id and
∂

∂t

∣∣
t=t0

ξt(x) = Ωx. (4.16)

Also
V′(X)

∣∣
t=t0

= V + Ωx(X). (4.17)

Subtracting the balance of energy for U for deformation mapping ϕt from that of ϕ′t = ξt ◦ϕt

at time t = t0 results in
∫

U
ρ0Ωx(X) · (A−B)dV =

∫

∂U
TΩx(X)dA. (4.18)

But ∫

∂U
TΩx(X)dA =

∫

U

(
Div P ·Ωx + PFT : Ω

)
dV. (4.19)

Thus
PFT = FPT, (4.20)

where use was made of balance of linear momentum.

4.2 The Material-Material GNR Theorem
To our best knowledge, there is no study of invariance of energy balance under isometries of the
reference configuration in the literature. It turns out that such an invariance does not hold in general,
even in Euclidean space. In this subsection we study the transformation of balance of energy under
rigid translations and rotations of the reference configuration in the Euclidean space context. It will
be shown that balance of energy is invariant under translations and rotations of the reference config-
uration for isotropic materials that satisfy an internal constraint that we call ‘material inviscidity’.

Again we consider rigid translations and rigid rotations of the reference configuration separately.

i) (Rigid translations) Consider a time-dependent rigid translation of the reference configuration
Ξt : B → B′. Let

X′ = Xt = Ξt(X) = X + (t− t0)W, (4.21)

for some constant vector field W. Note that

TΞt = Id, X = Ξ−1
t (Xt) = Xt − (t− t0)W. (4.22)

Deformation gradient with respect to the new reference configuration is denoted F′ and,

dx = FdX = F′dX′. (4.23)

But, dX′ = dX and hence
FdX = F′dX ∀ dX. (4.24)
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This means that
F′(Xt) = F(X) or F′ = F ◦ Ξ−1

t . (4.25)

In the differential geometry language this means that

F′ = Ξt∗F = F ◦ Ξ−1
t . (4.26)

The material velocity with respect to the new reference configuration is

V′(Xt) =
∂

∂t
ϕt ◦ Ξ−1

t (X′) = V ◦ Ξ−1
t (X′)− FW. (4.27)

Thus at t = t0,
V′ = V − FW. (4.28)

Free energy density is assumed to have the following transformation

Ψ′(X′,F ◦ Ξ−1
t ) = Ψ(X,F). (4.29)

Or‡

Ψ′(X′,F) = Ψ(X,F ◦ Ξt). (4.30)

More precisely
Ξ∗t Ψ

′(X′,F) = Ψ(X,F ◦ Ξt). (4.31)

Thus
d

dt
Ψ′(X′,F) =

∂Ψ
∂t

+
∂Ψ

∂(F ◦ Ξt)
:

∂F
∂Ξt(X)

.W. (4.32)

Hence at t = t0
d

dt
Ψ′(X′,F) =

∂Ψ
∂t

+
∂Ψ
∂F

:
∂F
∂X

.W. (4.33)

Material balance of energy for U ⊂ B reads
∫

U

∂ρ0

∂t

(
Ψ +

1
2
〈〈V,V〉〉

)
dV +

∫

U
ρ0

(
d

dt
Ψ + 〈〈V,A〉〉

)
dV

=
∫

U
ρ0 (B ·V + R) dV +

∫

∂U
(T ·V + H) dA. (4.34)

Let us assume that material balance of energy for U ′ ⊂ B′ reads

d

dt

∫

U ′
ρ′0

(
Ψ′ +

1
2
V′ ·V′

)
dV ′ =

∫

U ′
ρ0 (B′ ·V′ + R′) dV ′ +

∫

U ′
B′

0 ·WtdV ′

+
∫

∂U ′
(T′ ·V′ + H ′) dA′, (4.35)

for some vector field B′
0 which will be determined shortly. Note that thinking of the integrand

of the left hand side of balance of energy as a 3-form α, we have

d

dt

∫

U ′
α′ =

∫

U

d

dt
(Ξ∗t α

′) . (4.36)

‡Note that this does not put any restrictions on the material properties as here all we assume is that under a change of
frame the 3-form ρ0ΨdV is transformed to a 3-form ρ′0Ψ′dV ′ = Ξt∗(ρ0ΨdV ).
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But Ξ∗t α
′ = ρ0(X)Ψ(X,F ◦ Ξt)dV , thus material balance of energy for U ′ ⊂ B′ at t = t0

reads
∫

U

∂ρ0

∂t

(
Ψ +

1
2
〈〈V − FW,V − FW〉〉

)
dV (4.37)

+
∫

U
ρ0

(
d

dt

∣∣∣
t=t0

Ψ′ +
〈〈

V − FW,A′
∣∣∣
t=t0

〉〉)
dV

=
∫

U
ρ0

(
B′

∣∣∣
t=t0

· (V − FW) + R

)
dV +

∫

∂U
(T · (V − FW) + H) dA

+
∫

U
B0 ·WdV, (4.38)

where B0 is an unknown vector field at this point. Note that

(B′ −A′)t=t0
= B−A. (4.39)

Now subtracting the material balance of energy for U ⊂ B from that of U ′ ⊂ B′ at time t = t0
yields

∫

U

(
P :

∂F
∂X

+ ρ0FT(B−A)−B0

)
·WdV +

∫

∂U
FTT ·WdA = 0 ∀W. (4.40)

Localization leads to the following conclusion

B0 = Div(FTP) + ρ0FT(B−A) + P :
∂F
∂X

. (4.41)

Note that
P :

∂F
∂X

= Div(ΨI)− ∂Ψ
∂X

, (4.42)

and
Div(FTP) = FT Div P + P :

∂F
∂X

. (4.43)

Thus (4.41) is equivalent to

B0 = FT [Div P + ρ0(B−A)] + 2P :
∂F
∂X

= 2P :
∂F
∂X

. (4.44)

Therefore, the transformed balance of energy is (4.35) with B′
0 = Ξt∗(B0).

Invariance of balance of energy under rigid translations of the reference configuration is equiv-
alent to B0 = 0, i.e.,

P :
∂F
∂X

= 0, (4.45)

which is equivalent to
Div(FTP) = FT Div(P). (4.46)

Obviously, if F is independent of X, i.e., if the deformation gradient is uniform then this
condition is satisfied but as we will see in the sequel this is not necessary. Note that (4.44) is
independent of balance of linear momentum. It is seen that an additional constraint has to be
satisfied for the material energy balance to be invariant under time-dependent rigid referential
translations. This shows the very different natures of material and spatial manifolds. We will
show at the end of §6 that (4.46) implies that configurational stress tensor is hydrostatic. For
this reason we call (4.46) the ‘configurational inviscidity’ constraint.
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Example. Consider a Neo-Hookean rod in uniaxial tension. The deformation gradient is

F =




λ−
1
2 0 0

0 λ−
1
2 0

0 0 λ


 . (4.47)

It can be easily shown that the first Piola-Kirchhoff stress tensor has the following represen-
tation

P =




0 0 0
0 0 0
0 0 µλ− µ

λ2


 (4.48)

where µ = µ(X). It is now an easy exercise to show that (4.46) is satisfied only if λ is
constant, i.e., only if the deformation gradient is uniform. Thus in this case the only possibility
would be a uniform deformation gradient for balance of energy to be invariant under rigid
translations of the reference configuration.

Example. We know that for an isotropic material

SAB = α0GAB + α1CAB + α2C
D

A CDB , (4.49)

where α0, α1 and α2 are scalar functions of X and SAB are components of the second Piola-
Kirchhoff stress tensor. For the sake of simplicity, suppose α1 = α2 = 0. In terms of P and
F we have

P aA = α0G
ABF a

B . (4.50)

When the reference configuration and ambient space are Euclidean the condition
Div(FTP) = FT Div(P) is equivalent to

α0F
a

B
∂F a

B

∂XA
= 0. (4.51)

Or
F a

B
∂F a

B

∂XA
= F a

B
∂F a

A

∂XB
= 0. (4.52)

Note that, in general, this does not imply that the deformation gradient is uniform and it is
simply an internal constraint.

Example. Consider an incompressible perfect fluid (ideal fluid) for which

σab = −pgab and J = 1. (4.53)

Thus
P aA = −J

(
F−1

)A
b p gab. (4.54)

Using Piola identity we have

(
Div(FTP)

)A

=
(−pJGAB

)
|B = −J

∂p

∂xb
F b

BGAB . (4.55)

Also (
FT Div(P)

)A

= −gabF
b
BGABJ(pgad)|d = −J

∂p

∂xb
F b

BGAB . (4.56)

Thus (4.46) is satisfied for an ideal fluid.
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ii) (Rigid rotations) Consider a time-dependent rigid rotation of the reference configuration Ξt :
B → B′ defined as

X′ = Xt = e(t−t0)ΩX, (4.57)

for some constant skew-symmetric matrix Ω. Note that

V′ = V − FΩX, F′ = F ◦ Ξ−1
t . (4.58)

Let us assume that material balance of energy for U ′ ⊂ B′ has the following form

d

dt

∫

U ′
ρ′0

(
Ψ′ +

1
2
V′ ·V′

)
dV ′ =

∫

U ′
ρ0 (B′ ·V′ + R′) dV ′

+
∫

∂U ′
(T′ ·V′ + H ′) dA′ +

∫

U ′
(B′

0 ·ΩX + C′
0 : Ω) dV ′, (4.59)

where C′
0 = Ξt∗C0 and C0 is an unknown vector field at this point. Material balance of

energy for U ′ ⊂ B′ at t = t0 reads
∫

U

∂ρ0

∂t

(
Ψ +

1
2
〈V − FΩX,V − FΩX〉

)
dV

+
∫

U
ρ0

(
d

dt

∣∣∣
t=t0

Ψ′ +
〈〈

V − FΩX,A′
∣∣∣
t=t0

〉〉)
dV

=
∫

U
ρ0

(
B′

∣∣∣
t=t0

· (V − FΩX) + R

)
dV +

∫

∂U
(T · (V − FΩX) + H) dA

+
∫

U
(B0 ·ΩX + C0 : Ω) dV. (4.60)

Subtracting the material balance of energy for U ⊂ B from that of U ′ ⊂ B′ at time t = t0 and
considering the relation for B0 coming from rigid translations of the reference configuration
yields ∫

U

(
FTP−C0

)
: ΩdV = 0. (4.61)

This means that

FTP−C0 =
(
FTP−C0

)T
. (4.62)

Thus C0 = −PTF+S for any symmetric tensor S. This symmetric tensor does not contribute
to balance of energy and we can choose it to be S = 0. Thus the transformed balance of
energy under rigid rotations of the reference configuration is (4.59) where C′

0 = Ξt∗(C0) and
C0 = −PTF.

In conclusion, if balance of energy is invariant under both rigid translations and rotations
of the reference configuration, then C0 = 0, which is equivalent to isotropy. Thus, balance
of energy is invariant under material isometries of the reference configuration only under
some constraints. As an example, it is seen that balance of energy is invariant under material
isometries in the case of ideal fluids.

5 Covariant Spatial Energy Balance
In this section we start by a reappraisal of the concept of covariance in elasticity and its conse-
quences. We revisit Marsden and Hughes’ theorem [28] and clarify some details in their proof. We
then show that the same conclusions can be reached if one assumes that mass density is a 3-form in-
stead of a scalar. A proof is then given for converse of Marsden and Hughes’ theorem, i.e., assuming
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conservation of mass, balance of linear and angular momenta and Doyle-Ericksen formula, balance
of energy is invariant under arbitrary spatial diffeomorphisms. At the end of this section, we show
that assuming spatial covariance for material energy balance yields results that are identical to those
obtained by assuming spatial covariance for spatial energy balance.

5.1 Covariance and the Doyle-Ericksen Formula
First recall that the general notion of covariance of a set of equations is as follows.

Definition 5.1 (Covariance.) Suppose a theory has some tensor fields U,V, ... defined on a space
A and the governing equations of the theory have the form F (U,V, ...) = 0. These govern-
ing equations are called covariant if for any diffeomorphism ξ : A → A, ξ∗

(
F (U,V, ...)

)
=

F (ξ∗U, ξ∗V, ...). A theory is covariant if all its governing equations are covariant.

The Doyle-Ericksen Formula. Doyle and Ericksen [7] showed the following interesting relation§

σ = 2ρ
∂e

∂g
; (5.4)

i.e., Cauchy’s stress tensor is proportional to the partial derivative of the free energy density with
respect to the Riemannian metric in the deformed configuration.

Doyle and Ericksen [7] looked at changes of spatial frame passively, i.e., as changes of coordi-
nates while Marsden and Hughes [28] chose the active point of view. The Doyle-Ericksen formula
is known to be the essential condition for covariance of energy balance. Later Simo and Marsden
[40] found a material version of Doyle-Ericksen formula, which we discuss next. Here by “material
version” they mean an analogue of the usual Doyle-Ericksen formula that ensures covariance of ma-
terial energy balance under spatial diffeomorphisms.¶ Simo and Marsden consider a general form
of polar decomposition theorem by first associating two Riemannian metrics G0 and G to B, where
G0 does not change under spatial diffeomorphisms while G does change. The polar decomposition
theorem states that

F = RU, (5.5)

where
U(X) : (TXB,G0) → (TXB,G) (5.6)

is the material stretch tensor (a positive definite symmetric linear map with respect to the given
metrics) and

R(X) : (TXB,G) → (
Tϕt(X)S,g

)
(5.7)

§Note that (see [28], p. 198)
∂e

∂g
=

∂ψ

∂g
. (5.1)

In other words, in Doyle-Ericksen formula internal energy density can be replaced by free energy density because

e = ψ + θs, (5.2)

where θ is absolute temperature and s is entropy density. Thus

∂e

∂g
=

∂ψ

∂g
+

∂ψ

∂θ

∂θ

∂g
+

∂θ

∂g
s =

∂ψ

∂g
, (5.3)

as ∂ψ
∂θ

= −s.
¶An interesting question to ask would be the condition(s) that ensures covariance of material energy balance under dif-

feomorphisms of the reference configuration. This will be discussed in §6.
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is, for each X ∈ B, a (G,g)-orthogonal linear transformation. The metric G is arbitrary and can
change under spatial diffeomorphisms,

G = R∗(g). (5.8)

The internal energy density per unit mass of the deformed configuration is

e = e(x, t,g(x)). (5.9)

Now define
E(X, t,G) = e(ϕt(X), t,R∗(G)). (5.10)

Simo and Marsden [40] show that

Σ = 2ρ
∂E

∂G
, (5.11)

where Σ is the rotated stress tensor defined as

Σ = R∗σ or ΣAB = (R−1)A
a σab(R−1)B

b. (5.12)

In this paper we prove a similar theorem by postulating a balance of energy for an arbitrary reframing
of the reference configuration for a special class of materials. It should be noted that there are four
possibilities for a covariant energy balance law.

(i) Spatial energy balance law for any reframing of the deformed configuration: This gives the
usual Doyle-Ericksen formula.

(ii) Material energy balance law for any reframing of the deformed configuration: This gives the
Doyle-Ericksen formula in terms of Kirchhoff stress tensor.

(iii) Material energy balance law for any reframing of the reference configuration: This should
give a material form of Doyle-Ericksen formula for Eshelby’s stress tensor.

(iv) Spatial energy balance for any reframing of the reference configuration: This should give a
spatial form of Doyle-Ericksen formula for Eshelby’s stress tensor.

Note that cases (i) and (ii) and also cases (iii) and (iv) are equivalent as the important thing here is
the type of the diffeomorphism.

5.2 Revisiting Marsden and Hughes’ Theorem
Let us first revisit Marsden and Hughes’ covariant energy balance theory [28]. These authors postu-
late a covariant spatial energy balance, i.e., they consider a motion ϕt : B → S and postulate that
balance of energy still holds for any spatial change of frame. Marsden and Hughes consider arbitrary
changes of frame for the deformed configuration and postulate that energy balance is invariant under
these framings. For a given nice subset U ⊂ B, the (spatial) balance of energy reads

d

dt

∫

ϕt(U)

ρ

(
e +

1
2
〈〈v,v〉〉

)
dv =

∫

ϕt(U)

ρ (〈〈b,v〉〉+ r) dv +
∫

∂ϕt(U)

(〈〈t,v〉〉+ h) da, (5.13)

where e, r and h are the internal energy function per unit mass, the heat supply per unit mass and the
heat flux, respectively. Marsden and Hughes then consider an arbitrary reframing of the deformed
configuration, which can be regarded as a motion of S in S, i.e., ξt : S → S . Postulating the balance
of energy (5.13) for such a reframing and considering it for t = t0 they obtain (i) conservation of
mass, (ii) balance of linear momentum, (iii) balance of angular momentum and (iv) the Doyle-
Ericksen formula. Conversely, if (i), (ii), (iii), (iv) and balance of energy hold, then balance of
energy would hold for any change of spatial frame. We will give a proof for the converse of the
theorem in the sequel.
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Proposition 5.2 (Transport Theorem in a Reframing of the Deformed Configuration.)
Suppose f ′ = ξt∗f is a scalar quantity defined on ϕ′t(U), i.e., f ′ : ϕ′t(U) → R and f : ϕt(U) → R.
Then,‖

d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

f ′dv′ =
∫

ϕt(U)

(
ḟ + f div v

)
dv. (5.15)

Proof. The usual Transport Theorem can be written as

d

dt

∫

ϕ′t(U)

f ′dv′ =
∫

ϕ′t(U)

(
ḟ ′ + f ′ div′ v′

)
dv′, (5.16)

where

ḟ ′ =
∂f ′

∂t
+

∂f ′

∂x′
· v′ =

∂f ′

∂t
+ df ′ · v′, (5.17)

and
v′ = ξt∗v + w. (5.18)

Therefore,

d

dt

∫

ϕ′t(U)

f ′dv′ =
∫

ϕ′t(U)

[
∂f ′

∂t
+ df ′ · (ξt∗v + w) + f ′ div′ v′

]
dv′. (5.19)

Note that
∂

∂x
=

∂

∂x′
◦ (

Tξt

)
or

∂

∂x′
=

(
Tξt

)−1 ◦ ∂

∂x
. (5.20)

This means that
∂

∂x′

∣∣∣
t=t0

=
∂

∂x
. (5.21)

Lemma 5.3 If ξt : S → S is a diffeomorphism with the properties,

ξt

∣∣
t=t0

= Id, T ξt

∣∣
t=t0

= Id. (5.22)

Then (
div′ v′dv′

) ∣∣
t=t0

= div vdv. (5.23)

Proof. We prove the lemma when S is equipped with an arbitrary volume form µ. This will imply
the particular case of a Riemannian manifold with the volume form induced by the Riemannian
metric. Recall that the divergence of a vector field X with respect to µ is defined as

LXµ = (divµ X)µ. (5.24)

Under the spatial change of frame v′ = ξt∗X + w, µ′ = ξt∗µ. Thus,

(divµ′ v′)µ′ = Lv′(ξt∗µ) = ξt∗ (Lvµ) , (5.25)

where use was made of Theorem 6.19 of Marsden and Hughes [28]. Therefore,
(
div′ v′ dv′

) ∣∣
t=t0

= div v dv. ¤ (5.26)

‖Marsden and Hughes have the following Transport Theorem on page 166 of [28] in the second equation after their Eq.
(2), which needs to be corrected:

d

dt

Z

ϕ′t(U)
fdv =

Z

ϕ′t(U)

�
ḟ + f div v

�
dv′. (5.14)

In fact, the first dv should read dv′.
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One should be careful with partial time derivatives as ∂f ′

∂t is not equal to ∂f
∂t at t = t0 because

the former is partial time derivative for fixed x′ while the latter is a partial time derivative for fixed
x. Note that

∂f ′

∂t

∣∣∣
x fixed

=
∂f ′

∂t

∣∣∣
x′ fixed

+ df ′ ·wt. (5.27)

Hence, (
∂f ′

∂t

∣∣∣
x′ fixed

)

t=t0

=
∂f

∂t
− df ·w. (5.28)

Therefore (5.19) is simplified to

d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

f ′dv′ =
∫

ϕt(U)

(
ḟ + f div v

)
dv. ¤ (5.29)

Now let us take a more natural approach and assume that we are transporting a 3-form.∗

Proposition 5.4 Suppose α′ = ξt∗α is a 3-form defined on ϕ′t(U). Then,

d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

α′ =
∫

ϕt(U)

Lvα. (5.30)

Proof. Using the usual Transport Theorem for forms we have,

d

dt

∫

ϕ′t(U)

α′ =
∫

ϕ′t(U)

Lv′α
′. (5.31)

Assuming that α transforms objectively, i.e., α′ = ξt∗α, using Theorem 6.19 of Marsden and
Hughes [28] we have,

Lv′α
′ = ξt∗Lvα. (5.32)

Thus,
d

dt

∫

ϕ′t(U)

α′ =
∫

ϕ′t(U)

ξt∗Lvα. (5.33)

Therefore,
d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

α′ =
∫

ϕt(U)

Lvα. ¤ (5.34)

Now substitute α = fdv, where f is a scalar. Note that

f ′dv′ = f ′ ∧ dv′ = (ξt∗f) ∧ (ξt∗dv) = ξt∗ (f ∧ dv) = ξt∗ (fdv) . (5.35)

The above proposition now reads

d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

f ′dv′ =
∫

ϕt0 (U)

Lv(fdv). (5.36)

Note that L is a derivation and hence

Lv(fdv) = (Lvf)dv + f(Lvdv) =
(
ḟ + div v

)
dv. (5.37)

Therefore
d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

f ′dv′ =
∫

ϕt0 (U)

(
ḟ + f div v

)
dv. (5.38)

Thus, this approach recovers the same transport equation (5.15).
∗Note that this is more general in the sense that we have not chosen a volume form dv a priori.
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5.3 Energy Balance in Terms of Differential Forms
In this subsection we regard ρ as a 3-form and write the energy balance equation as¶

d

dt

∫

ϕt(U)

ρ

(
e +

1
2
〈〈v,v〉〉

)
=

∫

ϕt(U)

ρ (〈〈b,v〉〉+ r) +
∫

∂ϕt(U)

(〈〈t,v〉〉+ h) da. (5.39)

Under a spatial diffeomorphism ξt : S → S we postulate that

d

dt

∫

ϕ′t(U)

ρ′
(

e′ +
1
2
〈〈v′,v′〉〉

)
=

∫

ϕ′t(U)

ρ′ (〈〈b′,v′〉〉+ r′)+
∫

∂ϕ′t(U)

(〈〈t′,v′〉〉+ h′) da′. (5.40)

Let f be the scalar multiplying the density 3-form in the first integrand, i.e., f := e + 1
2 〈〈v,v〉〉.

Thus
d

dt

∫

ϕt(U)

ρf =
∫

ϕt(U)

Lv(ρf) =
∫

ϕt(U)

(ρLvf + fLvρ) . (5.41)

But

Lvf = Lve + Lv

(
1
2
〈〈v,v〉〉

)

= ė +
∂

∂t

(
1
2
〈〈v,v〉〉

)
+ d

(
1
2
〈〈v,v〉〉

)
· v

= ė +
〈〈

∂v
∂t

,v
〉〉

+ 〈〈v,∇vv〉〉
= ė + 〈〈v,a〉〉 . (5.42)

Also,
d

dt

∫

ϕ′t(U)

ρ′f ′ =
∫

ϕt(U)

Lv′(ρ′f ′) =
∫

ϕ′t(U)

(ρ′Lv′f
′ + f ′Lv′ρ

′) . (5.43)

Note that v′ = ξt∗v + wt and thus

Lv′ρ
′ = ξt∗ (Lvρ) . (5.44)

Also,

Lv′f
′ = ė′ +

〈〈
v′,

∂v′

∂t
+∇v′v′

〉〉
= ė′ + 〈〈v′,a′〉〉 . (5.45)

Thus

(Lv′f
′)

∣∣
t=t0

= ė +
∂e

∂g
: Lwg + 〈〈v + w,a′|t=t0〉〉 , (5.46)

(Lv′ρ
′)

∣∣
t=t0

= Lvρ. (5.47)

Therefore

d

dt

∣∣∣
t=t0

∫

ϕ′t(U)

ρ′f ′ =
∫

ϕt(U)

ρ

(
ė +

∂e

∂g
: Lwg + 〈〈v + w,a′|t=t0〉〉

)

+
∫

ϕt(U)

(
f + 〈〈v,w〉〉+

1
2
〈〈w,w〉〉

)
Lvρ. (5.48)

¶Traction can be thought of as a covector-valued 2-form. There are some technical details involved and we choose to stick
to the usual definition of traction.
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Now subtracting the balance of energy equation for ϕt(U) from that of ϕ′t(U) at t = t0 we obtain
∫

ϕt(U)

ρ

(
∂e

∂g
: Lwg + 〈〈v,a′|t=t0 − a〉〉+ 〈〈w,a′|t=t0〉〉

)

+
∫

ϕt(U)

(
〈〈v,w〉〉+

1
2
〈〈w,w〉〉

)
Lvρ

=
∫

ϕt(U)

(〈〈v,b′|t=t0 − b〉〉+ 〈〈w,b′|t=t0〉〉) +
∫

∂ϕt(U)

〈〈w, t〉〉 da. (5.49)

Using the identity (b′ − a′)
∣∣
t=t0

= b− a we have
∫

ϕt(U)

ρ

(
∂e

∂g
: Lwg + 〈〈w,a− b〉〉

)
+

∫

ϕt(U)

(
〈〈v,w〉〉+

1
2
〈〈w,w〉〉

)
Lvρ

=
∫

∂ϕt(U)

〈〈w, t〉〉 da. (5.50)

We know that
∫

∂ϕt(U)

〈〈w, t〉〉 da =
∫

ϕt(U)

(
〈〈div σ,w〉〉+ σ :

1
2
Lwg + σ : ω

)
dv, (5.51)

where ω has the coordinate representation ωab = 1
2

(
wa|b − wb|a

)
. Let us replace ρ by ρdv in the

first integral of Eq. (5.50)
∫

ϕt(U)

ρ

(
∂e

∂g
: Lwg + 〈〈w,a− b〉〉

)
dv +

∫

ϕt(U)

(
〈〈v,w〉〉+

1
2
〈〈w,w〉〉

)
Lvρ

=
∫

ϕt(U)

(
〈〈div σ,w〉〉+ σ :

1
2
Lwg + σ : ω

)
dv. (5.52)

Since w is arbitrary we conclude that

Lvρ = 0, (5.53)

σ = 2ρ
∂e

∂g
, (5.54)

div σ + ρb = ρa, (5.55)
σT = σ. (5.56)

5.4 Proof of the Converse of Marsden and Hughes’ Theorem
Marsden and Hughes [28] do not give a proof for the converse of the covariant energy balance
theorem, i.e., when Eqs.(5.53)–(5.56) are satisfied then energy balance is invariant under ξt : S →
S . Such a proof is nontrivial and is given here.

Let us assume that Eqs.(5.53)–(5.56) are satisfied and define

4E(ξt) =
d

dt

∫

ϕ′t(U)

ρ′
(

e′ +
1
2
〈〈v′,v′〉〉g

)
−

∫

ϕ′t(U)

ρ′
(
〈〈b′,v′〉〉g + r′

)

−
∫

∂ϕ′t(U)

(
〈〈t′,v′〉〉g + h′

)
da′. (5.57)

Note that balance of energy for ϕt(U) can be written as 4E(Id) = 0. We need to prove that for
any diffeomorphism ξt, 4E(ξt) = 0. We know that

e′(x′, t,g) = e(x, t, ξ∗t (g)). (5.58)
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Let us denote
wt :=

d

dt
ξt, Wt = ξ∗t (wt), gt = ξ∗t (g). (5.59)

Note that by definition
∫

ϕ′t(U)

ρ′r′ =
∫

ϕt(U)

ρr,

∫

∂ϕ′t(U)

h′da′ =
∫

∂ϕt(U)

hda. (5.60)

Also note that
∫

∂ϕ′t(U)

〈〈t′,v′〉〉g da′ =
∫

∂ϕ′t(U)

〈〈ξt∗t, ξt∗v + wt〉〉g da′ =
∫

∂ϕt(U)

〈〈t,v + Wt〉〉gt
da. (5.61)

A straightforward computation shows that

d

dt

∫

ϕ′t(U)

(
1
2
ρ′ 〈〈v′,v′〉〉g − ρ′ 〈〈b′,v′〉〉g

)

=
∫

ϕ′t(U)

ρ′ 〈〈ξt∗(a− b), ξt∗v + wt〉〉g

=
∫

ϕt(U)

ρ 〈〈a− b,v〉〉gt
+

∫

ϕt(U)

ρ 〈〈a− b,Wt〉〉gt
, (5.62)

where use was made of Lvρ = 0. Note that

d

dt

∫

ϕ′t(U)

ρ′e′ =
∫

ϕ′t(U)

[ρ′Lv′e
′ + e′ξt∗ (Lvρ)] =

∫

ϕ′t(U)

ρ′Lv′e
′ =

∫

ϕ′t(U)

ρ ξ∗t (Lv′e
′) . (5.63)

But
ξ∗t (Lv′e

′) = ė +
∂e

∂gt
: LWtgt. (5.64)

Therefore

4E(ξt) = 4E(Id) +
∫

ϕt(U)

[(
2ρ

∂e

∂gt
− σ

)
:

1
2
LWtgt + σ : ωt

]
dv

−
∫

ϕt(U)

〈〈div σ + ρ(b− a),Wt〉〉gt
dv = 0. ¤ (5.65)

5.5 Spatial Covariant Material Energy Balance
Let us consider the material balance of energy

d

dt

∫

U
ρ0

(
E +

1
2
〈〈V,V〉〉

)
=

∫

U
ρ0 (〈〈B,V〉〉+ R) +

∫

∂U
(〈〈T,V〉〉+ H) dA, (5.66)

where we have assumed that ρ0 is a 3-form. Physically this is equivalent to the spatial energy
balance; material energy balance is simply the spatial energy balance expressed in terms of quantities
defined with respect to the reference configuration. Let us postulate that the material energy balance
is invariant with respect to diffeomorphisms ξt : S → S . This is physically equivalent to the
postulate of covariant spatial energy balance. The material energy balance for ϕ′t(U) ⊂ S is written
as

d

dt

∫

U
ρ′0

(
E′ +

1
2
〈〈V′,V′〉〉

)
=

∫

U
ρ′0 (〈〈B′,V′〉〉+ R′) +

∫

∂U
(〈〈T′,V′〉〉+ H ′) dA. (5.67)
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Note that for both deformations balance of energy is written for the same subset U ⊂ B. The
material velocity V′ is related to V by the following relation

V′(X) = Tξt ◦Vt + wt ◦ ϕt(X). (5.68)

Thus
V′∣∣

t=t0
= V + w ◦ ϕt0 . (5.69)

We know that
R = Jϕt

r ◦ ϕt, R′ = Jϕ′tr
′ ◦ ϕ′t, r = Jξtr

′ ◦ ξt. (5.70)

Hence
Jϕ′tr

′ ◦ ϕ′t = (Jξt
r′ ◦ ξt) ◦ ϕtJϕt

= Jϕt
r ◦ ϕt. (5.71)

Thus
R′ = R. (5.72)

Similarly
H ′ = H. (5.73)

Note that looking at densities as 3-forms

ρ0(X, t) = ϕ∗t ρ(x, t), ρ′0(X, t) = (ϕ′t)
∗ρ′(x′, t). (5.74)

But
(ϕ′t)

∗ρ′(x′, t) = (ξt ◦ ϕt)∗ρ′(x′, t) = (ϕ∗t ◦ ξ∗t ) ◦ ξt∗ρ(x, t) = ϕ∗t ρ(x, t). (5.75)

Thus
ρ′0(X, t) = ρ0(X, t). (5.76)

Because balance of energy is written for the same subset U ⊂ B the same equality holds for densities
as scalar fields, i.e., one can replace ρ′0 and ρ0 by ρ′0dV and ρ0dV , respectively. Define

E(X, t,g) = e(ϕt(X), t,g ◦ ϕt(X)). (5.77)

We know that
e′(x′, t,g) = e(x, t, ξ∗t g). (5.78)

Thus
E′(X, t,g) = e′(x′, t, g) = e(x, t, ξ∗t g) = E(X, t, ξ∗t g). (5.79)

Therefore
d

dt

∣∣∣
t=t0

E′ =
∂E

∂t
+

∂E

∂g
: Lw◦ϕt(g ◦ ϕt). (5.80)

Now the material energy balance for the motion ϕ′t at t = t0 can be written as
∫

U

∂ρ0

∂t

(
E +

1
2
〈〈V + w ◦ ϕt0 ,V + w ◦ ϕt0〉〉

)
dV

+
∫

U

[
ρ0

(
∂E

∂t
+

∂E

∂g
: Lw◦ϕt(g ◦ ϕt)

)
+ ρ0

〈〈
V + w ◦ ϕt0 ,A

′∣∣
t=t0

〉〉]
dV

=
∫

U
ρ0

(〈〈
B′∣∣

t=t0
,V + w ◦ ϕt0

〉〉
+ R

)
dV

+
∫

∂U
(〈〈T,V + w ◦ ϕt0〉〉+ H) dA. (5.81)
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Subtracting the balance of energy for the motion ϕt from (5.81) one arrives at the following identity:
∫

U

∂ρ0

∂t

(
〈〈V,w ◦ ϕt0〉〉+

1
2
〈〈w ◦ ϕt0 ,w ◦ ϕt0〉〉

)
dV

+
∫

U
ρ0

(
∂E

∂g
: Lw◦ϕt

(g ◦ ϕt) + 〈〈w ◦ ϕt0 ,A〉〉
)

dV

=
∫

U
〈〈ρ0B,w ◦ ϕt0〉〉 dV +

∫

∂U
〈〈T,w ◦ ϕt0〉〉 dA. (5.82)

Let us denote W = w ◦ ϕt and note that W is a spatial vector field with components W a.

Lemma 5.5 The surface integral term in (5.82) is transformed to a volume integral as
∫

∂U
〈〈T,W〉〉 dA =

∫

U
(〈〈Div P,W〉〉+ τ : ω + τ : k) dV, (5.83)

where, τab = P aBF b
B is the Kirchhoff stress and ω and k have the coordinate representations

kab = 1
2

(
Wa|b + Wb|a

)
and ωab = 1

2

(
Wa|b −Wb|a

)
.

Proof. The integrand has the following component form

T agabW
b = P aCGCDNDgabW

b = (P aCgabW
b)GCDND. (5.84)

Now using divergence theorem the surface integral is transformed to an integral on U with an inte-
grand with the following component form

(P aCgabW
b)|C = P aC |C gabW

b + P aCgabW
b|C , (5.85)

where use was made of the fact that gab|C = 0. Note that

W b|C =
∂W b

∂XC
+ γb

cdW
cF d

C = W b
,dF

d
C + γb

cdW
cF d

C =
(
W b

,d + γb
cdW

c
)
F d

C = W b|dF d
C .

(5.86)
Therefore,

(P aCgabW
b)|C = P aC |CgabW

b + P aCWa|dF d
C

= P aC |C gabW
b + P aCF d

C

[
1
2
(Wa|d + Wd|a) +

1
2
(Wa|d −Wd|a)

]
, (5.87)

which proves the lemma. ¤
Substituting (5.83) into (5.82) yields

∫

U

∂ρ0

∂t

(
〈〈V,W〉〉+

1
2
〈〈W,W〉〉

)
dV +

∫

U

(
2ρ0

∂E

∂g
− τ

)
: k dV −

∫

U
τ : ω dV

−
∫

U
〈〈Div P + ρ0B− ρ0A,W〉〉 dV = 0. (5.88)

As W and U ⊂ B are arbitrary we conclude that,

∂ρ0

∂t
= 0, (5.89)

τ = 2ρ0
∂E

∂g
, (5.90)

τ T = τ , (5.91)
Div P + ρ0B = ρ0A. (5.92)
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In conclusion, these computations show that energy balance written in material form, but still with
the assumption of spatial covariance yields results that are identical to those of energy balance
written in spatial form, also with covariance under spatial diffeomorphisms. The converse can be
proved similar to what was done in the previous subsection.

6 Transformation of Energy Balance under Material Diffeo-
morphisms

As was seen in the previous section, invariance of balance of energy under an arbitrary change in
spatial frame is equivalent to (1) balance of linear momentum, (2) balance of angular momentum, (3)
conservation of mass and (4) Doyle-Ericksen formula. To our best knowledge, there is no material
version of this theorem in the literature. Our motivation for studying the possibility of material
invariance of energy balance was to gain a better understanding of configurational forces as they are
believed to be related to rearrangements of the reference configuration. It turns out that, in general,
energy balance cannot be invariant under diffeomorphisms of the reference configuration and what
one should be looking for instead is the way in which energy balance transforms under material
diffeomorphisms. In this section we first obtain such a transformation formula under an arbitrary
time-dependent material diffeomorphism (see equation (6.50)) and then obtain the conditions under
which balance of energy is materially covariant.

6.1 The Energy Balance Material Transformation Formula
We begin with a discussion of how energy balance transforms under material diffeomorphisms.
Define

E(X, t,G) = Ψ (X,C(F(X),g(ϕt(X))),G) , (6.1)

where Ψ = Ψ(X, t,G,C) is the material free energy density. Material (Lagrangian) energy balance
can be written as

d

dt

∫

U
ρ0

(
E +

1
2
〈〈V,V〉〉

)
dV =

∫

U
ρ0 (〈〈B,V〉〉+ R) dV +

∫

∂U
(〈〈T,V〉〉+ H) dA, (6.2)

which can be simplified to read
∫

U

d

dt

[
ρ0

(
E +

1
2
〈〈V,V〉〉

)]
dV =

∫

U
ρ0 (〈〈B,V〉〉+ R) dV +

∫

∂U
(〈〈T,V〉〉+ H) dA, (6.3)

where U is an arbitrary nice subset of the reference configuration B, B is body force per unit unde-
formed mass, V(X, t) is the material velocity, ρ0(X, t) is the material density, R(X, t) is the heat
supply per unit undeformed mass, and H(X, t, N̂) is the heat flux across a surface with normal N̂
in the undeformed configuration (normal to ∂U at X ∈ ∂U). It is to be noted that this is balance of
energy for a deformed part of the body written in terms of quantities that are defined with respect to
the undeformed (reference) configuration. Here we assume that we have a material manifold which
is a Riemannian manifold (B,G) and a given reference configuration B ⊂ B.

Change of Reference Frame. In this paragraph we consider a change of frame for the reference
configuration and look at the transformed quantities for the new reference configuration. A refram-
ing of the reference configuration is a diffeomorphism

Ξt : (B,G) → (B,G′). (6.4)

A change of frame can be thought of as a change of coordinates in the reference configuration
(passive definition) or a rearrangement of microstructure (active definition). Under such a framing,
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a nice subset U is mapped to another nice subset U ′ = Ξt(U) and a material point X is mapped to
X′ = Ξt(X). Note that X is the position of a particle in the reference configuration, i.e., material
points are identified with their positions in the reference configuration (which is arbitrary). The
change of frame is mathematically a mapping between two manifolds and one would expect to define
an object on (B,G′) as push-forward of the corresponding object on (B,G). The deformation

(B G),
(B,Ξt∗G)

Ξt

ϕ
′

t
= ϕt ◦ Ξ−1

t

ϕt

(S, g)

Figure 2: A material reframing and the corresponding deformation maps.

mapping for the new reference configuration is ϕ′t = ϕt ◦ Ξ−1
t . This can be clearly seen in Fig. 2.

The material velocity in U ′ is

V′(X′, t) =
∂

∂t
ϕ′t(X

′) =
∂ϕt

∂t
◦ Ξ−1

t (X′) + Tϕt ◦ ∂Ξ−1
t

∂t
(X′). (6.5)

We assume that
Ξt

∣∣
t=t0

= Id,
∂Ξt

∂t
(X) = W(X, t). (6.6)

Note that W is the infinitesimal generator of the rearrangement Ξt. It can be shown that at t = t0

∂Ξ−1
t

∂t
(X′)

∣∣∣
t=t0

= −W(X, t). (6.7)

Thus, at t = t0
V′ = V − FW. (6.8)

To find the relation between G and G′ we note that the Finger tensor b = ϕt∗G is a spatial tensor
and hence independent of framing of the reference configuration. Thus,

b = ϕt∗G = (ϕ′t)∗G
′. (6.9)
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That is,

G′ = (ϕt ◦ Ξ−1
t )∗ ◦ ϕt∗G = (Ξ−1

t )∗ ◦ ϕ∗t ◦ ϕt∗G

= (Ξ−1
t )∗G = Ξt∗G = (TΞt)

−∗G (TΞt)
−1

. (6.10)

Note that for an arbitrary X0 ∈ B
F(X0) : TX0B → Tϕt(X0)S and F′(X′

0) : TX′0B → Tϕ′t(X
′
0)
S.

Given dX ∈ TX0B,
dx = F(X0) · dX and dX′ = TΞt · dX.

Hence,
dx = F′(X′

0) · dX′ = F′(X′
0) ◦ TΞt · dX = F(X0) · dX

for all dX ∈ TX0B. Thus,
F′ = Ξt∗F, (6.11)

where∗

Ξt∗F = F ◦ (TΞt)−1. (6.12)

The material internal energy density is assumed to have the following tensorial property

E′(X′, t,G′) = E(X, t,G). (6.13)

Note that this is different from assuming local covariance for internal energy density. This is simply
the material analogue of (5.78); all that (6.13) says is that internal energy density at X′ evaluated by
the transformed metric G′ is equal to the internal energy density at X evaluated by the metric G.
We know that G′ = Ξt∗G, thus

E′(X′, t,G) = E(X, t, Ξ∗t G). (6.14)

This means that
d

dt

∣∣∣
t=t0

E′(X′, t,G) =
∂E

∂t
+

∂E

∂G
: LWG. (6.15)

Marsden and Hughes [28] defined covariant constitutive equations by looking at isometries of
TX0B at a given point X0 ∈ B. This is why they did not need to consider an explicit dependence of
Ψ on G. Another more general way of defining material covariance for the strain energy function Ψ
is to assume that for any local diffeomorphism Λ : TX0B → TΛ(X0)Λ(B) that leaves X0 fixed,†

Ψ(X0,G,C) = Ψ(X0, Λ∗G, Λ∗C). (6.16)

Ju and Papadopoulos [26, 27] proved that a consequence of (6.16) is the following infinitesimal
covariance condition

G
∂Ψ
∂G

+ C
∂Ψ
∂C

= 0, (6.17)

which is equivalent to

∂Ψ
∂G

= −G−1C
∂Ψ
∂C

= −1
2
G−1CS = −1

2
FTP. (6.18)

We will obtain this condition in the sequel as a consequence of assuming material covariance of
energy balance.
∗The easier way of proving this is the following,

F′ = Tϕ′t = T (ϕt ◦ Ξ−1
t ) = Tϕt ◦ (Ξt)

−1 = F ◦ (Ξt)
−1.

†Note that this is different from the implication of Cartan’s space-time, e.g.,

Ψ′(X′,G′,C′) = Ψ(X, Ξ∗G′, Ξ∗C′),
for an arbitrary diffeomorphism Ξ : B → B. We emphasize that this relation and similarly (6.13) do not put any restrictions
on material properties.
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Example. Consider a (materially uniform) Neo-Hookean material with the following energy den-
sity

Ψ(X,G,C) = µ [tr(C)− 3] = µ
(
CIJGIJ − 3

)
. (6.19)

We now show that this is an example of a materially covariant material. Note that

(
C

∂Ψ
∂C

)

I

J

= µCIKGKJ . (6.20)

Also
(
G

∂Ψ
∂G

)

I

J

= µGIKCMN
∂GMN

∂GKJ

= −µ

2
CMNGIK

(
GMKGJN + GMJGKN

)
= −µCIKGKJ , (6.21)

i.e.,

C
∂Ψ
∂C

+ G
∂Ψ
∂G

= 0. ¤ (6.22)

Spatial covariance of strain energy function (material-frame-indifference) can be defined simi-
larly (see [41]). However, one should note that this is different from Marsden and Hughes point of
departure for developing a covariant theory of elasticity; in Marsden and Hughes’ theory [28] bal-
ance of energy is assumed to be covariant and not the energy function. In covariant energy balance, a
global diffeomorphism is considered and energy balance is assumed to be invariant under this global
diffeomorphism.

Balance of Energy for Reframings of the Reference Configuration. One way to obtain the
governing balance equations of a continuum is to use the homogeneity of the ambient space and
postulate that if a deformed body satisfies the balance of energy, any framing of it should satisfy
the balance of energy as well. This is a postulate and cannot be proved. But, one can justify it
(or motivate it) by the fact that the ambient space S is homogeneous. Invariance of energy balance
under framings of the reference configuration is less obvious and, in general, it turns out not to hold.
The following is the main conclusion of this section. Under referential diffeomorphisms, material
energy balance has some extra terms in it. The extra terms correspond to some forces that contribute
to the rate of change of energy when the reference configuration evolves.

Consider a deformation mapping ϕt : B → S and a referential diffeomorphisms Ξt : B → B.
The mapping ϕ′t = ϕt ◦ Ξ−1

t : B′ → S , where B′ = Ξt(B), represents the deformation of the new
(evolved) reference configuration. We are interested in understanding the form of material energy
balance for Ξt(U) ⊂ B′ for any nice U ⊂ B. In addition to contributions from the mapping ϕ′t,
in general, one should expect to see contributions from the referential mapping Ξt as well, i.e.,
evolution of reference configuration may, in general, contribute to the energy balance. Now the
balance of energy should include the following two groups of terms:

i) Looking at ϕ′t as the deformation of B′ in S , one has the usual material energy balance for
Ξt(U). Transformation of fields from (B,G) to (B,G′) follows Cartan’s space-time theory.

ii) Nonstandard terms may appear to represent the energy associated with the material evolution.

Here a comment is in order. The mapping that represents all the physical processes is ϕt. This
mapping is the composition of ϕ′t and Ξt and hence it is expected that, in general, both ϕ′t and Ξt

represent part of the physical processes. This means that standard deformation represented by ϕ′t
and evolution of microstructure (or any other material evolution) represented by Ξt should contribute
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to balance of energy.§ This rough picture should be enough to convince the reader that the lack of
invariance of energy balance under Ξt should not be surprising. Lack of invariance implies the
appearance of some new terms that are work-conjugate to Wt = ∂

∂tΞt. Let us denote the volume
and surface forces conjugate to W by B0 and T0, respectively.

Instead of looking at spatial framings, we fix the deformed configuration and look at framings
of the reference configuration. We postulate that energy balance for each nice subset U ′ has the
following form

d

dt

∫

U ′

(
E′ +

1
2
ρ′0 〈〈V′,V′〉〉

)
dV ′ =

∫

U ′
ρ′0 (〈〈B′,V′〉〉+ R′) dV ′ +

∫

∂U ′
(〈〈T′,V′〉〉+ H ′) dA′

+
∫

U ′
〈〈B′

0,Wt〉〉 dV ′ +
∫

∂U ′
〈〈T′0,Wt〉〉 dA′, (6.23)

where U ′ = Ξt(U) and B′
0 and T′0 are unknown vector fields at this point. Using Cartan’s space-

time theory, it is assumed that the primed quantities have the following relation with the unprimed
quantities

dV ′ = Ξt∗dV
(
J(Ξt)dV ′ = dV

)
, R′(X′, t) = R(X, t),

ρ′0(X
′, t) = ρ0(X), H ′(X′, N̂′, t) = H(X, N̂, t), (6.24)

T′(X′, N̂′, t) = TΞt(X) ·T(X, N̂, t).

We know that
B′ −A′ = Ξt∗(B−A). (6.25)

Thus
(B′ −A′)|t=t0 = B−A. (6.26)

Note that if α is a 3-form on U , then

d

dt

∣∣∣
t=t0

∫

U ′
α′ =

∫

U

d

dt

∣∣∣
t=t0

(Ξ∗t α
′) , (6.27)

where U ′ = Ξt(U). Thus

d

dt

∣∣∣
t=t0

∫

U ′
E′dV ′ =

∫

U

d

dt

∣∣∣
t=t0

(Ξ∗t E
′) dV =

∫

U

(
∂E

∂t
+

∂E

∂G
: LWG

)
dV. (6.28)

Material balance of energy for U ′ ⊂ B′ at t = t0 reads
∫

U

∂ρ0

∂t

(
E +

1
2
〈〈V − FW,V − FW〉〉

)
dV

+
∫

U
ρ0

(
∂E

∂t
+

∂E

∂G
: LWG +

〈〈
V − FW,A′∣∣

t=t0

〉〉)
dV

=
∫

U
ρ0

(〈〈
B′∣∣

t=t0
,V − FW

〉〉
+ R

)
dV +

∫

∂U
(〈〈T,V − FW〉〉+ H) dA

+
∫

U
〈〈B0,W〉〉 dV +

∫

∂U
〈〈T0,W〉〉 dA. (6.29)

Note that T0 and B0 are defined on B and T′0 and B′
0 are the corresponding quantities defined on

Ξt(B). Here we assume that T′0 = Ξt∗T0 and B′
0 = Ξt∗B0. Subtracting balance of energy for U

§This is similar to Gurtin’s idea [20, 21] of including both standard and nonstandard terms in the expression of ‘working’.
However, here we consider the full balance of energy.
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from this and noting that (A′ −B′)t=t0
= A−B we obtain

∫

U

∂ρ0

∂t

(
−〈〈V,FW〉〉+

1
2
〈〈FW,FW〉〉

)
dV +

∫

U
ρ0

(
∂E

∂G
: LWG− 〈〈FW,A〉〉

)
dV

= −
∫

U
〈〈ρ0B,FW〉〉 dV −

∫

∂U
〈〈T,FW〉〉 dA

+
∫

U
〈〈B0,W〉〉 dV +

∫

∂U
〈〈T0,W〉〉 dA. (6.30)

Cauchy’s theorem implies that

〈〈T,FW〉〉 = 〈〈FW, 〈〈P,N〉〉〉〉 , (6.31)

where P is the first Piola-Kirchhoff stress tensor. Similarly

T0 = 〈〈P0,N〉〉 . (6.32)

Lemma 6.1 The surface integral in material energy balance has the following transformation
∫

∂U

〈〈
FTT,W

〉〉
dA =

∫

U
Div

〈〈
FTP,W

〉〉
dV

=
∫

U

[〈〈
Div(FTP),W

〉〉
+ FTP : Ω + FTP : K

]
dV, (6.33)

where

ΩIJ =
1
2
(
GIKWK |J −GJKWK |I

)
=

1
2

(
WI|J −WJ|I

)
, (6.34)

KIJ =
1
2

(
GIKWK |J + GJKWK |I

)
=

1
2

(
WI|J + WJ|I

)
, K =

1
2
LWG. (6.35)

Proof. In components the integrand can be written as

(FT)A
aT aGABWB . (6.36)

But
T a = P aCGCDND. (6.37)

Hence in components the integrand reads
(
(FT)A

aP aCGABWB
)

GCDND. (6.38)

Using the divergence theorem the surface integral is transformed to an integral on U with the fol-
lowing integrand in components
(
(FT)A

aP aCGABWB
)
|C

=
(
(FTP)ACGABWB

)
|C

= (FTP)AC |CGABWB + (FTP)ACGABWB |C

= (FTP)AC |CGABWB + (FTP)AC
[1
2
(GABWB

|C + GCBWB |A)

+
1
2
(GABWB |C −GCBWB |A)

]
, (6.39)

where use was made of the fact that GAB|C = 0. ¤
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Similarly,
∫

∂U
〈〈T0,W〉〉 dA =

∫

U
Div 〈〈P0,W〉〉 dV

=
∫

U
[〈〈Div(P0),W〉〉+ P0 : Ω + P0 : K] dV. (6.40)

By definition, at time t = t0 the transformed balance of energy should be the same as the balance
of energy for U . Subtracting the material balance of energy for U from the above balance law and
considering conservation of mass, we obtain

∫

U
ρ0

∂E

∂G
: LWG dV +

∫

U

〈〈
ρ0FT (B−A) ,W

〉〉
dV −

∫

U
〈〈ρ0B0,W〉〉 dV

+
∫

∂U

〈〈
FTT−T0,W

〉〉
dA = 0. (6.41)

Thus
∫

U

(
2ρ0

∂E

∂G
+ FTP−P0

)
:

1
2
LWGdV +

∫

U

(
FTP−P0

)
: ΩdV

+
∫

U

〈〈
ρ0FT (B−A)−B0 + Div(FTP)−Div P0,W

〉〉
dV = 0. (6.42)

Now using the balance of linear momentum the identity (6.42) simplifies to
∫

U

(
2ρ0

∂E

∂G
+ FTP−P0

)
:

1
2
LWG dV +

∫

U

(
FTP−P0

)
: Ω dV

+
∫

U

〈〈
Div(FTP−P0)− FT Div P−B0,W

〉〉
dV = 0. (6.43)

Because U and W are arbitrary

P0 = 2ρ0
∂E

∂G
+ FTP, (6.44)

(
FTP−P0

)T
= FTP−P0, (6.45)

B0 = Div(FTP−P0)− FT Div P. (6.46)

Note that (6.45) is trivially satisfied after having (6.44). Thus we have

P0 = 2ρ0
∂E

∂G
+ FTP, (6.47)

B0 = Div(FTP−P0)− FT Div P. (6.48)

Note that P0 is a measure of anisotropy (deviation from material Doyle-Ericksen formula). This
is an interesting result that in a natural way shows the contribution of some nonstandard terms to
balance of energy when reference configuration evolves.

Thus we have proven the following theorem.

Theorem 6.2 Under a referential diffeomorphism Ξt : B → B, and assuming that material energy
density transforms tensorially, i.e.,

E′(X′, t,G) = E(X, t, Ξ∗t G), (6.49)
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material energy balance has the following transformation

d

dt

∫

Ξt(U)

(
E′ +

1
2
ρ′0 〈〈V′,V′〉〉

)
dV ′ =

∫

Ξt(U)

ρ′0 (〈〈B′,V′〉〉+ R′) dV ′

+
∫

∂Ξt(U)

(〈〈T′,V′〉〉+ H ′) dA′ +
∫

Ξt(U)

〈〈B′
0,Wt〉〉 dV ′

+
∫

∂Ξt(U)

〈〈T′0,Wt〉〉 dA′, (6.50)

where

T′0 = Ξt∗

[〈〈
2ρ0

∂E

∂G
+ FTP,N

〉〉]
, (6.51)

B′
0 = Ξt∗

[
Div(FTP−P0)− FT Div P

]
, (6.52)

and the other quantities are already defined.

6.2 Consequences of Assuming Invariance of Energy Balance
This subsection shows the consequences of assuming material covariance of energy balance. It turns
out that energy balance , in general, cannot be materially covariant.

Material energy balance is invariant under material diffeomorphisms if and only if the following
relations hold between the nonstandard terms

P0 = 0 or 2ρ0
∂E

∂G
= −FTP, (6.53)

B0 = 0 or Div
(
FTP

)
= FT Div P. (6.54)

(6.53) is the material Doyle-Ericksen formula and (6.54) is the ‘configurational inviscidity’ con-
straint, which will be defined in the sequel. Let us now start with the “naive” assumption that energy
balance is materially covariant and see what its consequences are.

Material Covariance of Energy Balance. Let us postulate that the balance of energy is invariant
under a diffeomorphism Ξt : B → B, i.e.,

d

dt

∫

U ′
ρ′0

(
E′ +

1
2
〈〈V′,V′〉〉

)
dV ′ =

∫

U ′
ρ′0 (〈〈B′,V′〉〉+ R′) dV ′ +

∫

∂U ′
(〈〈T′,V′〉〉+ H ′) dA′.

(6.55)

Proposition 6.3 If material energy balance is invariant under arbitrary material diffeomorphisms
Ξt : B → B, then

∂ρ0

∂t
= 0, (6.56)

2ρ0
∂E

∂G
= −FTP, (6.57)

FTP = PTF, (6.58)
Div(FTP) = FT Div P. (6.59)

Conversely, if the above four conditions hold, then material energy balance is invariant under any
material diffeomorphism.
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Proof. Material balance of energy for U ′ ⊂ B′ at t = t0 reads
∫

U

∂ρ0

∂t

(
E +

1
2
〈〈V − FW,V − FW〉〉

)
dV

+
∫

U
ρ0

(
∂E

∂t
+

∂E

∂G
: LWG +

〈〈
V − FW,A′∣∣

t=t0

〉〉)
dV

=
∫

U
ρ0

(〈〈
B′∣∣

t=t0
,V − FW

〉〉
+ R

)
dV

+
∫

∂U
(〈〈T,V − FW〉〉+ H) dA. (6.60)

Subtracting balance of energy for U ⊂ B from this and noting that (A′ −B′)t=t0
= A − B we

obtain
∫

U

∂ρ0

∂t

(
−〈〈V,FW〉〉+

1
2
〈〈FW,FW〉〉

)
dV +

∫

U
ρ0

(
∂E

∂G
: LWG− 〈〈FW,A〉〉

)
dV

= −
∫

U
〈〈ρ0B,FW〉〉 dV −

∫

∂U
〈〈T,FW〉〉 dA. (6.61)

We know that
∫

∂U

〈〈
FTT,W

〉〉
dA =

∫

U

[〈〈
Div(FTP),W

〉〉
+ FTP : Ω + FTP :

1
2
LWG

]
dV. (6.62)

Thus, (6.61) simplifies to
∫

U

∂ρ0

∂t

(
−〈〈V,FW〉〉+

1
2
〈〈FW,FW〉〉

)
dV +

∫

U

(
2ρ0

∂E

∂G
+ FTP

)
:

1
2
LWGdV

+
∫

U
FTP : ΩdV +

∫

∂U

〈〈
Div(FTP) + ρ0FT(B−A),W

〉〉
dV = 0. (6.63)

As U and W are arbitrary, we have

∂ρ0

∂t
= 0, (6.64)

2ρ0
∂E

∂G
= −FTP, (6.65)

FTP = PTF, (6.66)
Div(FTP) + ρ0FTB = ρ0FTA. (6.67)

Eq.(6.64) is nothing but material conservation of mass. Eq. (6.65) is the material Doyle-Ericksen
formula. This is what Lu and Papadopoulos [26] call ‘infinitesimal material covariance’. Eq. (6.66)
is balance of configurational angular momentum or isotropy of the material.‡ Finally, Eq.(6.67) is a
condition that has to be satisfied for the balance of energy to be invariant under material diffeomor-
phisms. This constraint is equivalent to

Div(FTP) = FT Div P. (6.68)

Assuming the above four conditions, it is easy to show that material energy balance is invariant
under arbitrary material diffeomorphisms.

Ideal fluids do satisfy all these conditions. In fact, their transformation properties under material
diffeomorphisms gives rise to Kelvin’s circulation theorem and it is a key ingredient in the geometric
approach to fluid mechanics; see the introduction to Marsden and Ratiu’s book [29] for a discussion
and references to the literature.
‡Note that if (6.65) holds then (6.66) holds trivially.
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6.3 Material Energy Balance and Defects
We now make a connection between (6.68) and Eshelby’s idea of force on a defect. The idea of a
driving force in continuum mechanics goes back to Eshelby [13, 14, 15] and this notion is important
in developing evolution laws for the movement of defects, including dislocations, vacancies, inter-
faces, cavities, cracks, etc. Driving forces on these defects cause climb and glide of dislocations,
diffusion of point defects, migration of interfaces, changing the shape of cavities and propagation of
cracks, to mention a few examples. Eshelby defined the force on a defect as the generalized force
corresponding to position of the defect (in the reference configuration), which is thought of as a gen-
eralized displacement. Eshelby studied inhomogeneities in elastostatic and elastodynamic systems
by considering the explicit dependence of the elastic energy density on position in the reference
configuration.

Defect Forces. Suppose the elastic energy density has an explicit dependence on X (the position
of material points in the undeformed configuration), i.e.,

W = W (ϕ,F,X), (6.69)

where ϕ and F are the deformation mapping and the deformation gradient, respectively. Consider
an open neighborhood Ω of an isolated defect. Force on the defect in the sense of Eshelby is defined
as

Fdefect =
∫

Ω

(
∂W

∂X

)

explicit
dV =

∫

Ω

Div E dV =
∫

∂Ω

EN̂ dA, (6.70)

where E = W I−FTP is Eshelby’s energy-momentum tensor. It turns out that for a crack (thought
of as a defect) Fdefect is related to the celebrated J-integral [37]; J is the component of Fdefect in the
direction of crack propagation.

The following proposition makes an explicit connection between (6.68) and Eshelby’s idea of
force on a defect.

Proposition 6.4 Suppose an elastic material in an isothermal and quasi-static deformation satisfies
the internal constraint Div(FTP) = FT Div P. In the absence of body forces, force on a defect in
the sense of Eshelby would be

Fdefect =
∫

Ω

(
∂W

∂X

)

explicit
dV =

∫

Ω

Div E dV =
∫

∂Ω

W N̂ dA. (6.71)

This means that the configurational traction on ∂Ω is normal to ∂Ω at all points, i.e., the configura-
tional stress is hydrostatic. For this reason we call the internal constraint Div(FTP) = FT Div P,
the ‘configurational inviscidity’ constraint.

If there is a stationary surface S across which deformation gradient and other quantities have
jump discontinuities, the balance of standard forces reads

[[P]]N̂ = 0. (6.72)

Now let us look at the normal jump in Eshelby’s energy-momentum tensor,

[[E]]N̂ = [[ΨI− FTP]]N̂ = [[Ψ]]N̂− [[FT]] 〈P〉 N̂−
〈
FT

〉
[[P]]N̂, (6.73)

where 〈.〉 denotes average of inner and outer traces. Using Hadamard’s compatibility equations,

[[F]]t̂ = 0 for all t̂ such that t̂ · N̂ = 0, (6.74)
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it can be easily shown that

N̂ · [[E]]N̂ = [[Ψ]]− [[F]]N̂ ·PN̂, t̂ · [[E]]N̂ = −Ft̂ · [[P]]N̂. (6.75)

Now if the balance of standard forces hold one concludes that

t̂ · [[E]]N̂ = 0. (6.76)

This means that jump in configurational traction on ∂Ω is always normal to ∂Ω. However, the
previous remark shows that in the absence of body forces the condition Div(FTP) = FT Div P
implies that the configurational traction itself is normal to ∂Ω.

Are Configurational Forces Newtonian? There have been doubts and discussions concerning
the nature of configurational forces in the literature already starting from Eshelby himself. Eshelby
strongly believed that force on a defect is fictitious and is different from the usual forces in me-
chanics. He defined force on a defect to be the thermodynamic force conjugate to the generalized
coordinates defining the defect, for example the crack tip position in the case of a crack. Eshelby
[16] observed that the configurational force on a disclination in a liquid crystal is a real force. A
similar observation was made by Nabarro [34] for dislocations. Kröner [23] and Ericksen [11, 12]
have similar discussions. Batra [4] argues that force on a defect is equal to the standard force ex-
erted on the boundary of a subbody embracing the defect. Steinmann [42] introduces the ‘spatial
signature’ of a material force. One should note that this view point is not in agreement with Gurtin’s
theory in which standard and configurational forces have their own balance laws.

Batra [4] proves a theorem that states that force on a defect is equal to the resultant of tractions
on the boundary of any region enclosing this single defect. This seems to be a very surprising result.
First of all, if body forces are considered resultant of tractions on different regions embodying the
defect cannot be independent of the region as in this case stress tensor is not divergence free. Barta
suggests that problems involving the J-integral could be reinterpreted using his theorem. As a
matter of fact, the J-integral can serve as a counter example for Batra’s theorem. The reason is that
in the case of a linear elastic material in mode I fracture, for example, the J-integral is quadratic
in KI while the stress is linear in KI and hence the resultant of tractions acting on the boundary
of a small region enclosing the crack would be linear in KI . This means that the J-integral, which
is the component of configurational force in the direction of crack growth, cannot be a ‘real force’.
The incorrectness of Batra’s theorem is because of the way he defines force on a defect. Force on
a defect in the sense of Eshelby is the rate of change of potential energy of the elastic body with
respect to changes in the position of the defect in the reference configuration. Batra defines force
on a defect to be the rate of change of energy with respect to changes of position of the defect in
the current configuration. This is the source of his surprising result. One should note that direct
and inverse motions describe the same physical process and cannot lead to different conclusions
regarding forces. Having the duality picture is useful but one should note that positions of defects in
the reference and current configurations are not related by the standard deformation mapping as the
evolution of defects is an independent kinematical process.

Standard forces in continuum mechanics are one forms in the deformed configuration, i.e., at
each point x ∈ S , force is an element of T ∗xS . Configurational forces on the other hand are one
forms in the reference configuration, i.e., at each point X ∈ B, configurational force is an element
of T ∗XB. Therefore, geometrically it is meaningless to ask if a configurational force is a real force
very much like asking whether the deformation gradient (a two-point tensor) is symmetric. This is
why arguments like the one proposed by Steinmann [43] where he defines a ‘spatial signature’ for a
material force do not make sense from the geometric standpoint.

Plasticity and Embeddings. A traditional means of introducing configurational forces is based
on remapping the reference configuration of the body. However, this approach tacitly assumes
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that the reference configuration can be embedded in Euclidean space. This approach fails when
there is no natural embedding of the reference configuration. A case in point is provided by mul-
tiplicative plasticity [24], where the total deformation gradient at a point x has the representation:
F(x) = Fe(x)Fp(x), where Fe(x) and Fp(x) are the elastic and plastic deformation gradients,
both of which fail to be a gradient in general. The plastic deformation mapping Fp(x) defines an
intermediate configuration that defines the reference configuration for the elasticity of the material.
In particular, the elastic energy density is assumed to be of the form W (Fe, x). Since Fp(x) is not
the derivative of a mapping, the intermediate configuration cannot be embedded in Euclidean space.
Therefore, remapping cannot be applied to deriving configurational forces directly from W (Fe, x).
By contrast, the present approach can be applied for that purpose, for example, by equipping the
intermediate configuration with a constant metric.

The derivation of certain conserved integrals, such as the L-integral that gives the configurational
torque on isotropic subbodies, relies on the metric structure of the embedding Euclidean space.
In addition, the conventional formulation of material symmetry also presumes the existence of an
Euclidian embedding. Such an embedding may not be natural or available in certain models of
materials, such as liquid crystals or smectic polymers, where the reference configuration may include
a unit director field.

7 Noether’s Theorem and Balance of Configurational Forces
As is well known, there is a strong connection between conservation laws and symmetries. If the
Euler-Lagrange equations are satisfied and the Lagrangian density of a system is invariant under a
group of transformations, Noether’s theorem gives the corresponding conserved quantity. In this
sense, conservation laws are related to symmetries of a given system. Marsden and Hughes [28]
consider material invariance in elasticity (in the absence of body forces) and show that invariance
of Lagrangian density under rigid translations in the reference configuration results in the following
conservation law

∂

∂t

(
∂φ̇L ·Dφ ·W

)
+ DIV (∂FL ·Dφ ·W − LW) = 0. (7.1)

This has been obtained assuming that the flow of W is volume-preserving and that L does not
explicitly depend on X . For a constant W, this equation in our notation reads

Div
[(

Ψ− 1
2
ρ0|V|2

)
I− FTP

]
= − ∂

∂t
(ρ0FTV). (7.2)

It is seen that this is identical to balance of configurational linear momentum if ρ0 and Ψ are in-
dependent of X (Note that this is stronger that homogeneity of L). Ignoring the inertial effects,
Noether’s theorem results in

Div(ΨI− FTP) = 0. (7.3)

Roughly speaking, Noether’s theorem states that when the Euler-Lagrange equations are satis-
fied, any symmetry of the Lagrangian density corresponds to a conserved quantity. Here we revisit
Noether’s theorem for nonlinear elasticity assuming that undeformed and deformed configurations
are Riemannian manifolds. Writing action in the reference configuration, Lagrangian density has
the following explicit independent variables

L = L (
XA, ϕa, ϕ̇a, F a

A, GAB , gab

)
. (7.4)

For the sake of clarity, we consider spatial and material symmetries of the Lagrangian density sepa-
rately.
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7.1 Spatial Covariance of Lagrangian Density
Theorem 7.1 If the Lagrangian density is spatially covariant, then the following hold: (i) spatial
homogeneity of the Lagrangian density and (ii) the Doyle-Ericksen formula.

Proof. Suppose ψs is a flow on S generated by a vector field w, i.e.

d

ds

∣∣∣
s=0

ψs ◦ ϕ = w ◦ ϕ. (7.5)

Invariance of L means that¶

L
(

XA, ψa
s (ϕ),

∂ψa
s

∂xb
ϕ̇b,

∂ψa
s

∂xb
F b

A, GAB ,−∂ψc
s

∂xa

∂ψd
s

∂xb
gcd

)
= L (

XA, ϕa, ϕ̇a, F a
A, GAB , gab

)
.

(7.6)
Now differentiating the above relation with respect to s and then evaluating it at s = 0‖, one obtains

∂L
∂ϕa

wa +
∂L
∂ϕ̇a

∂wa

∂xb
ϕ̇b +

(
∂L
∂F

)

a

A
∂wa

∂xb
F b

A − 2
∂L
∂gab

∂wc

∂xa
gbc = 0. (7.7)

Note that
∂L
∂ϕ̇a

∂wa

∂xb
ϕ̇b =

∂

∂t

(
∂L
∂ϕ̇a

wa

)
− ∂

∂t

(
∂L
∂ϕ̇a

)
wa. (7.8)

After some manipulations, it can be shown that
(

∂L
∂F

)

a

A
∂wa

∂xb
F b

A =

[(
∂L
∂F

)

a

A

wa

]

|A
−

(
∂L
∂F

)

a

A

|A
wa −

(
∂L
∂F

)

b

A

γb
acF

c
Awa. (7.9)

Also

−2
∂L
∂gab

∂wc

∂xa
gbc = −

[
2

∂L
∂gab

gbc

(
F−1

)
a

A wc

]

|A
+

[
2

∂L
∂gab

gbc

(
F−1

)
a

A

]

|A
wc

+ 2
∂L
∂gab

gbdγ
d
acw

c. (7.10)

Therefore, symmetry of L implies that
[

∂L
∂ϕa

− ∂

∂t

(
∂L
∂ϕ̇

)

a

−
(

∂L
∂F

)

a

A

|A
−

(
∂L
∂F

)

b

A

F c
Aγb

ac + 2
∂L
∂gcd

gbdγ
b
ac

]
wa

+
∂

∂t

(
∂L
∂ϕ̇a

wa

)
+

[(
∂L
∂F

)

a

A

wa

]

|A
−

[
2

∂L
∂gab

gbc

(
F−1

)
a

A wc

]

|A

+
[
2

∂L
∂gab

gbc

(
F−1

)
a

A

]

|A
wc = 0. (7.11)

Note that the term multiplied by wa is zero if the Euler-Lagrange equations are satisfied. Thus,
Noether’s theorem states that

∂

∂t

(
∂L
∂ϕ̇a

wa

)
+

[(
∂L
∂F

)

a

A

wa

]

|A
−

[
2

∂L
∂gab

gbc

(
F−1

)
a

A wc

]

|A

+
[
2

∂L
∂gab

gbc

(
F−1

)
a

A

]

|A
wc = 0. (7.12)

¶This reminds us of the definition of covariance for internal energy density. So, it would be very natural to expect some
connection between Noether’s theorem and covariant balance laws.
‖This is somewhat similar to subtracting two balance relations and evaluating the result at t = t0.
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Note that [(
∂L
∂F

)

a

A

wa

]

|A
=

(
∂L
∂F

)

a

A

|A
wa +

(
∂L
∂F

)

a

A

F b
A wa|b. (7.13)

Also
[
2

∂L
∂gab

gbc

(
F−1

)
a

A wc

]

|A
=

[
2

∂L
∂gab

gbc

(
F−1

)
a

A

]

|A
wc + 2

∂L
∂gab

gbcw
c|a. (7.14)

Therefore (7.12) is simplified to
[

∂

∂t

(
∂L
∂ϕ̇a

)
+

(
∂L
∂F

)

a

A

|A

]
wa +

(
∂L
∂ϕ̇a

)
∂wa

∂t

+

[(
∂L
∂F

)

a

A

F c
A − 2

∂L
∂gbc

gab

]
wa|c = 0. (7.15)

Note that
∂wa

∂t
=

∂wa

∂xc
ϕ̇c = ϕ̇cwa|c − γa

cdw
dϕ̇c. (7.16)

Therefore statement of Noether’s theorem, eq.(7.12) can be rewritten as
[

∂

∂t

(
∂L
∂ϕ̇a

)
+

(
∂L
∂F

)

a

A

|A
− ∂L

∂ϕ̇d
γd

acϕ̇
c

]
wa

+

[(
∂L
∂F

)

a

A

F c
A +

∂L
∂ϕ̇a

ϕ̇c − 2
∂L
∂gbc

gab

]
wa|c = 0. (7.17)

Note that
∂L
∂ϕ̇a

ϕ̇c = ρ0gabϕ̇
bϕ̇c. (7.18)

If Lagrangian density is covariant, i.e., if w is arbitrary then (7.17) implies that

2
∂L
∂gab

= gbc

(
∂L
∂F

)

c

A

F a
A + gbc ∂L

∂ϕ̇c
ϕ̇a, (7.19)

∂

∂t

(
∂L
∂ϕ̇a

)
+

(
∂L
∂F

)

a

A

|A
− ∂L

∂ϕ̇d
γd

acϕ̇
c = 0. (7.20)

Eq. (7.19) can be rewritten as

2
∂W

∂gab
= gbc

(
∂W

∂F

)

c

A

F a
A, (7.21)

which is nothing but the Doyle-Ericksen formula!‖ Note that

∂

∂t

(
∂L
∂ϕ̇a

)
+

(
∂L
∂F

)

a

A

|A
− ∂L

∂ϕ̇d
γd

acϕ̇
c =

∂L
∂ϕa

−
(

∂L
∂F

)

b

A

F c
Aγb

ac+2
∂L
∂gcd

gbdγ
b
ac−

∂L
∂ϕ̇b

ϕ̇cγb
ac.

(7.22)
But

−
(

∂L
∂F

)

b

A

F c
A + 2

∂L
∂gcd

gbd =
∂L
∂ϕ̇b

ϕ̇c. (7.23)

‖Note that this includes balance of angular momentum.
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Thus
∂

∂t

(
∂L
∂ϕ̇a

)
+

(
∂L
∂F

)

a

A

|A
− ∂L

∂ϕ̇d
γd

acϕ̇
c =

∂L
∂ϕa

. (7.24)

Hence (7.20) implies that
∂L
∂ϕa

= 0. ¤ (7.25)

Note that this theorem implies that arbitrary flows and in particular rigid translations cannot be
transitive (in the sense of Gotay, et al. [17] and [18]) for arbitrary Lagrangian densities.

7.2 Material Covariance of Lagrangian Density
Let us first consider the case of Euclidean spaces. Consider a flow Λs on B generated by a vector
field W. Invariance of L with respect to this flow means that

L

ΛA

s (X), ϕa, ϕ̇a,

[(
∂Λs

∂X

)−1
]B

A

F a
B


 = L (

XA, ϕa, ϕ̇a, F a
A

)
. (7.26)

Differentiating the above relation with respect to s and evaluating the result at s = 0, one obtains

∂L
∂XA

WA − ∂L
∂F a

A

∂WB

∂XA
F a

B = 0. (7.27)

If W is a constant, then
∂L

∂XA
= 0, (7.28)

i.e., the Lagrangian density has to be materially homogeneous. This is also what Nelson [35, 36]
obtains. After some manipulation and assuming that Euler-Lagrange equations are satisfied (7.27)
can be rewritten as

∂

∂XA

(
LWA − ∂

∂F a
A

F a
BWB

)
− ∂

∂t

(
∂L
∂ϕ̇a

F a
AWA

)
− L ∂WA

∂XA
= 0, (7.29)

where use was made of the fact that W is time independent. For a volume-preserving flow this gives
us

∂

∂XA

(
LWA − ∂

∂F a
A

F a
BWB

)
− ∂

∂t

(
∂L
∂ϕ̇a

F a
AWA

)
= 0, (7.30)

which is what Marsden and Hughes [28] obtain. Now let us consider the general case of Riemannian
manifolds and assume that Λs is a flow on the Riemannian manifold (B,G) generated by a vector
field W, i.e.,

d

ds

∣∣∣
s=0

Λs(X) = W(X) X ∈ B. (7.31)

Theorem 7.2 If the Lagrangian density is materially covariant then the following hold: (i) material
homogeneity of the Lagrangian density and (ii) material Doyle-Ericksen formula.
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Proof. Invariance of L with respect to Λs means that

L

ΛA

s (X), ϕa, ϕ̇a,

[(
∂Λs

∂X

)−1
]B

A

F a
B , gab,

[(
∂Λs

∂X

)−1
]C

A

[(
∂Λs

∂X

)−1
]D

B

GCD




= L (
XA, ϕa, ϕ̇a, F a

A, gab, GAB

)
. (7.32)

Differentiating the above relation with respect to s and evaluating the result at s = 0, one obtains

∂L
∂XA

WA − ∂L
∂F a

A

∂WB

∂XA
F a

B − 2
∂L

∂GDK
GDC

∂WC

∂XK
= 0. (7.33)

Note that

− ∂L
∂F a

A

∂WB

∂XA
F a

B = −
(

F a
B

∂L
∂F a

A
WB

)

|A
+

(
F a

B
∂L

∂F a
A

)

|A
WB + F a

C
∂L

∂F a
A

ΓC
ABWB ,

(7.34)
and

−2
∂L

∂GDK
GDC

∂WC

∂XK
= −

(
2

∂L
∂GDK

GDCWC

)

|K
+

(
2

∂L
∂GDK

GDC

)

|K
WC

+ 2
∂L

∂GDK
GBDΓB

CKWC . (7.35)

Also
(

F a
B

∂L
∂F a

A

)

|A
WB =

(
∂F a

B

∂XA
− F a

CΓC
BA

)
∂L

∂F a
A

WB

+ F a
A

[(
∂L

∂F a
B

)

|B
+

∂L
∂F b

B
F c

Bγb
ac

]
WA. (7.36)

Assuming that Euler-Lagrange equations are satisfied and using the above identities after a lengthy
series of simplifications, one obtains

(
LWA − ∂L

∂F a
B

WB

)

|A
− ∂

∂t

(
F a

A
∂L
∂ϕ̇a

WA

)
− LWA|A −

(
2

∂L
∂GDK

GDCWC

)

|K

+
(

2
∂L

∂GDK
GDC

)

|K
WC = 0. (7.37)

Note that

−
(

2
∂L

∂GDK
GDCWC

)

|K
+

(
2

∂L
∂GDK

GDC

)

|K
WC = −2

∂L
∂GDK

GDCWC |K . (7.38)

Therefore in this case Noether’s theorem states that
(
LWA − ∂L

∂F a
B

WB

)

|A
− ∂

∂t

(
F a

A
∂L
∂ϕ̇a

WA

)
−LWA|A − 2

∂L
∂GDK

GDCWC |K = 0. (7.39)

Note that
(

F a
B

∂L
∂F a

A
WB

)

|A
=

∂

∂XA

(
F a

B
∂L

∂F a
A

)
WB + F a

B
∂L

∂F a
A

WB |A

+ F a
B

∂L
∂F a

A

(
WBΓC

AC −WCΓB
CA

)
. (7.40)
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Using the above relation and some lengthy simplifications, one can rewrite (7.39) as
[

∂L
∂XA

+
(

∂L
∂F a

C
F a

B + 2
∂L

∂GCD
GBC

)
ΓB

AC

]
WA−

(
∂L

∂F a
A

F a
B + 2

∂L
∂GAC

GBC

)
WB |A = 0.

(7.41)
If L is materially covariant, i.e. if W is arbitrary, then

∂L
∂XA

+
(

∂L
∂F a

C
F a

B + 2
∂L

∂GCD
GBC

)
ΓB

AC = 0, (7.42)

∂L
∂F a

A
F a

B + 2
∂L

∂GAC
GBC = 0. (7.43)

Or equivalently

∂L
∂XA

= 0, (7.44)

∂W

∂F a
A

F a
B + 2

∂W

∂GAC
GBC = 0, (7.45)

where W is the material potential energy density. Note that (7.45) is nothing but the material Doyle-
Ericksen formula (6.65). ¤

Remarks. There are some differences between covariant energy balance (CEB) and Lagrangian
density covariance (LDC):

• CEB is global while LDC is local.

• In CEB the arbitrary vector fields w and W are time-dependent (being velocities), in general,
while in LDC they are time independent.

• In writing balance of energy in CEB for a materal diffeomorphism spatial quantities contribute
to energy balance. But in LDC a material flow does not affect the spatial quantities.

8 Conclusions and Future Directions
The results of this paper can be summarized as follows.

• We studied continuum mechanics of bodies with global referential evolutions by enlarging the
configuration manifold to two Riemannian manifolds with their own metrics. A deformation
is then a pair of referential evolution, i.e., a motion in the referential manifold, and a stan-
dard motion. We showed that in the absence of discontinuities, configurational and standard
equations of motion are equivalent even if the metrics are allowed to vary.

• The classical theorem of Green, Naghdi and Rivilin [19] was revisited and a material version
of it was investigated. We showed that under a referential isometry balance of energy cannot
be invariant, in general, and obtained its transformation.

• The idea of covariance in elasticity was reviewed. We revisited a theorem by Marsden and
Hughes [28] and some of the details of its proof were clarified and a proof was given for
its converse. It was also shown that spatial covariance of material energy balance leads to
identical results.
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• We posed the question that whether energy balance can be materially covariant. It was shown
that, in general, energy balance cannot be invariant under referential diffeomorphisms. We
obtained the transformation of energy balance under arbitrary material diffeomorphisms. We
found conditions under which energy balance is materially covariant. It was shown that in the
absence of body forces a nontrivial condition for material covariance of balance of energy is
equivalent to configurational stress tensor (Eshelby’s stress tensor) being hydrostatic. It was
shown that for ideal fluids energy balance is materially covariant.

• An explicit relation between covariance and Noether’s theorem was found. We showed that
spatial covariance of a Lagrangian density implies spatial homogeneity of the Lagrangian den-
sity and the Doyle-Ericksen formula. Similarly, material covariance of a Lagrangian density
implies its material homogeneity and the material Doyle-Ericksen formula.

In summary, spatial covariance is reasonable and holds for most materials. The transformation
properties of energy balance under material reframings was obtained. However, material covariance
of energy balance only holds for special materials, such as ideal fluids.

The main application of the ideas presented in this paper will be in gaining a better understanding
of the continuum theory of defects. In particular, if one repeats some of the developments presented
in this paper in a space-time setting, one should, in principle, be able to obtain dynamic equations for
evolution of defects. Another important relevant problem would be the study of covariance and its
meaning in discrete systems. This may lead to a better understanding of “stress” in discrete systems.
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