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Compatibility Equations of Nonlinear
Elasticity for Non-Simply-Connected
Bodies

Abstract Compatibility equations of elasticity are almost 150 years old.
Interestingly they do not seem to have been rigorously studied for non-
simply-connected bodies to this date. In this paper we derive necessary and
sufficient compatibility equations of nonlinear elasticity for arbitrary non-
simply-connected bodies when the ambient space is Euclidean. For a non-
simply-connected body, a measure of strain may not be compatible even if
the standard compatibility equations (“bulk” compatibility equations) are
satisfied. It turns out that there may be topological obstructions to compati-
bility and this paper aims to understand them for both deformation gradient
F and the right Cauchy-Green strain C = FTF. We show that the neces-
sary and sufficient conditions for compatibility of deformation gradient F are
vanishing of its exterior derivative and all its periods, i.e. its integral over
generators of the first homology group of the material manifold. We will show
that not every non-null-homotopic path requires supplementary compatibil-
ity equations for F and linearized strain e. We then find both necessary and
sufficient compatibility conditions for the right Cauchy-Green strain tensor
C for arbitrary non-simply-connected bodies when the material and ambient
space manifolds have the same dimensions. We discuss the well-known neces-
sary compatibility equations in the linearized setting and the Cesàro-Volterra
path integral. We then obtain the sufficient conditions of compatibility for
the linearized strain when the body is not simply-connected.

To summarize, the question of compatibility reduces to two issues: i) an
integrability condition, which is d(FdX) = 0 for deformation gradient and a
curvature vanishing condition for C, and ii) a topological condition. For FdX
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this is a homological condition because the equation one is trying to solve
takes the form dϕ = FdX. For C, however, parallel transport is involved,
which means that one needs to solve an equation of the form dR = RK,
where R takes values in the orthogonal group. This is, therefore, a question
about an orthogonal representation of the fundamental group, which, as the
orthogonal group is not commutative, cannot, in general, be reduced to a
homological question.

1 Introduction

Compatibility equations in elasticity have an old history. Given a measure
of strain, compatibility equations are the necessary and sufficient conditions
that guarantee existence of a deformation mapping or a single-valued dis-
placement field. In the language of differential geometry this is closely related
to existence of an isometry between two Riemannian manifolds. When one
manifold is Euclidean, Riemann showed that locally an isometry exists if and
only if the Riemann curvature tensor vanishes.

Given a field of “strain” one observes that the system of PDEs govern-
ing the deformation field is overdetermined. Existence of a deformation (or
displacement) field corresponding to a strain field requires some integrabil-
ity equations, which have traditionally been called compatibility equations in
continuum mechanics. Love [21] credits Saint Venant (1864) for the derivation
of the “bulk” compatibility equations. Michell [24] studied the compatibil-
ity equations of linearized elasticity in 2D for non-simply-connected bodies.
He showed that compatibility requires vanishing of certain integrals on each
“independent irreducible circuit”.1 Cesàro [8] and Volterra [35] studied com-
patibility equations for non-simply-connected bodies and the possibility of
multi-valuedness of displacements when the body is not simply-connected.2

Love [21] (Article 17) and later on Green and Zerna [17] and Seugling [28]3

realized that the classical compatibility equations of elasticity can be written
as vanishing of the curvature tensor of the Levi-Civita connection of strain
(understood as a metric). Note that, it is known that in a simply-connected
open subset of R3, vanishing the curvature tensor of C is also sufficient for

1 An independent irreducible circuit is a generator of the fundamental group in
the language of algebraic topology. Michell’s statement is correct only for plane
problems of elasticity. Any embedded 2-submanifold of R2 is a (topological) disk
with a finite number of holes. The fundamental group of a planar region obtained
by removing k disjoint disks from it is the free group on k generators, while the first
homology group is the free abelian group on k generators. These are isomorphic
only if k = 1. As we will see in the sequel, for deformation gradient F and linearized
strain e each generator of the first homology group requires supplementary com-
patibility equations. However, in general, not every generator of the fundamental
group requires complementary compatibility equations as we will see in an example.

2 It is interesting that this is almost the same time period at which algebraic
topology was being created by Poincaré [27,13].

3 Truesdell in a review of another paper in Mathematical Reviews (MR0040940
(12,770b)) mentions that this paper is the fourteenth since 1902 to derive the
compatibility equations. Since then there have been at least a dozen more similar
papers all restricted to simply-connected bodies.
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compatibility [10]. Shield [29] derived a system of PDEs for the rotation field
in the polar decomposition of deformation gradient. Pietraszkiewicz [25] and
Pietraszkiewicz and Badur [26] studied the problem of calculating the defor-
mation mapping when the right Cauchy-Green strain is given (see also [9]
for the case of 2D elasticity). In particular, they obtained a nonlinear ana-
logue of the Cesàro integral. Blume [5] discussed the compatibility equations
in terms of the left Cauchy-Green strain B = FFT in 2D. This was studied
later on in 3D by Acharya [1] who provided necessary and sufficient condi-
tions for compatibility of B.4 Skalak, et al. [30] realized the importance of
compatibility equations for non-simply-connected bodies in growth mechan-
ics applications. They pointed out that the compatibility equations for C
in “multiply-connected” bodies5 are not known. In this paper we find these
compatibility equations. For deformation gradient they correctly write the
necessary and sufficient compatibility equations as

∫
c
(F − I)dX = 0, (1.1)

for all closed paths c in the body. This is obviously equivalent to ∫cFdX = 0
for any closed path c in the body. They mention that it is not clear what
closed paths should be chosen to guarantee compatibility of F. In this paper,
we will show that one only needs to consider generators of the first homology
group of the body manifold B.6 They also discuss sufficient compatibility
conditions for linearized elasticity. Their argument is flawed as we will explain
in §2.3; they provide only half of the complementary compatibility equations
in 3D.

Delphenich [12] discussed some topological ideas relevant to compatibility
equations, although he did not give anything other than the well-known com-
patibility equations for simply-connected bodies. For a non-simply-connected
body, a measure of strain may not be compatible even if the standard compat-
ibility equations (“bulk” compatibility equations) are satisfied; there may be
topological obstructions to compatibility and this paper aims to understand
them for both deformation gradient F and the right Cauchy-Green strain C.
It is strange that such a fundamental problem has not been rigorously studied
to this date. It is also surprising and unfortunate that topological methods
have not been systematically used in elasticity to this date.7 Compatibility

4 One striking result regarding the difference between C and B is that if two
deformations have the same C then the deformations differ by at most a rigid body
motion. This is not the case for the corresponding B case [15].

5 A comment is in order here. In complex analysis (of one complex variable)
a multiply-connected domain in the complex plane is one whose complement is
not connected. Here, we are interested in elasticity of arbitrary embedded 2 and
3-submanifolds of Euclidean space and hence refrain from using the term “multiply-
connected”, which is meaningless for general manifolds, and instead use non-simply-
connected.

6 We will see that not every generator of the fundamental group needs comple-
mentary compatibility equations for deformation gradient F and linearized strain
e. The number of complementary compatibility equations is proportional to the
number of the generators of the first homology group of the material manifold.

7 Topological ideas already existed implicitly in the work of Maxwell on elec-
tromagnetism [23]. Maxwell calls the number of independent cycles in a graph its
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equations for simply-connected bodies are well-known and have been studied
by many. Interestingly, they do not seem to have been rigorously studied
for non-simply-connected bodies. This is certainly an important problem as
there are many examples of non-simply-connected bodies in Nature, e.g. ar-
teries, which are thick hollow cylinders. In structural mechanics applications,
for example, multi-compartment thin-walled sections can be in both torsion
and bending. In such structures, in torsion for example, the number of extra
compatibility equations is proportional to the number of holes in the cross
section [19]. Such bodies are deformation retracts of a bouquet of a finite
number of circles.8 We follow Sternberg [32] and call the extra compatibility
equations, complementary compatibility equations. Let us emphasize that for
solids of arbitrary shapes with an arbitrary number of holes (with arbitrary
shapes) compatibility equations are not known in the literature.

Contributions of this paper. In this paper, we derive the necessary and suf-
ficient compatibility equations for F and C using homology and homotopy
group techniques. When the ambient space is Euclidean, it turns out that
a simple generalization of a celebrated theorem by de Rham can be used
to find all the compatibility equations of F. The number of complementary
compatibility equations will be shown to be equal to Nβ1(B), where B is the
material manifold, N = dimS (dimension of the ambient space), and β1(B)
is the first Betti number of B, i.e. the dimension of its first homology group
with real coefficients H1(B;R) or equivalently the rank of its first homology
group with integer coefficients H1(B,Z).

The more familiar method for deriving compatibility equations is to use
the fact that integral of some function of “strain” must vanish over any
closed path in B. A closed path may be continuously deformed to a class
of paths. Thus, this then would force one to work with the first homotopy
group (fundamental group) π1(B). In simple words, this group tells us about
the equivalence classes of those closed paths that can be continuously de-
formed to each other. In the case of compact manifolds (for us this means
bounded bodies) it is known that π1(B) has a finite presentation in the sense
of combinatorial group theory.

When C = FTF is given, deformation gradient is not known a priori. For
simply-connected bodies it is known how to construct F [29,26]. Basically,
using the polar decomposition F = RU, one easily calculates the stretch

“cyclomatic number”. He clearly had the idea of deformation retract and invari-
ance of the “cyclomatic number” under a deformation retract. When an embedded
3-submanifold in R3 has a boundary with more than one connected component,
Maxwell calls it a “periphractic region”. He calls period of a differential form over
a loop, its “cyclic constant”. Homotopic paths are called “reconcilable curves”.
He calls a compatible strain, a “non-rotational strain”. More recently, it has been
observed that algebraic topology is crucial in a deeper understanding of electro-
magnetism and more efficient numerical implementations [18].

8 Consider a solid cylinder with h tubular holes. Note that this body is homeo-
morphic to a genus h handlebody and has a deformation retract to a bouquet of h
circles and hence its fundamental group is the free group on h generators. If this
is a solid body, e.g. a hollow bar under torsion and bending, we will show that
because all group generators are free, each would require its own complementary
compatibility equations.
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tensor U =
√
C. One can then find R by solving a system of linear first-order

PDEs. Solution of R is written in terms of a path integral (the non-linear
analogue of the classical Cesàro-Volterra path integral) that should be path
independent. For simply-connected bodies vanishing the curvature tensor of
C is the necessary and sufficient condition (when dimB = dimS) [26]. In the
case of the non-simply-connected bodies in addition to this one has some
complementary compatibility equations (topological conditions) that we will
obtain using a finite presentation of π1(B). We end the paper by finding the
necessary and sufficient compatibility conditions for linearized strain. We
will see that the number of these complementary compatibility equations is
consistent with Weingarten’s theorem.

2 Compatibility Equations in Nonlinear Elasticity

We assume that a compact material manifold (B,G) is given. We also assume
that both H1(B) and π1(B) are known.9 We first find the compatibility
equations for F using a very simple generalization of de Rham’s theorem.10

Next we revisit the calculations of Shield [29] and Pietraszkiewicz and Badur
[26] on deriving a system of linear PDEs governing R when C is given. We
then find the compatibility equations when dimB = dimS and the body is
not simply-connected.

2.1 Compatibility Equations for Deformation Gradient F

An old question in vector calculus is the following. Given a vector field on
some bounded domain in the Euclidean 3-space, how can one tell if the vector
field is the gradient of some function? It turns out that the topology of the
domain of definition of the vector field plays a crucial role here. The question
that we will answer in this section is compatibility of F for non-simply-
connected bodies: Given a body B ⊂ R3, find the conditions that guarantee
existence of a map ϕ ∶ B → R3 such that F = dϕ.

9 Heinrich F. F. Tietze (1908) showed that fundamental group of any compact,
finite-dimensional, path-connected manifold is finitely presented. One forms the
abelization of a group by taking the quotient over the subgroup generated by
all commutators g−1h−1gh. Poincaré isomorphism theorem tells us that (Poincaré,
1895)

π1(M)/[π1(M), π1(M)] ≅H1(M,Z). (2.1)

If γn1
1 γn2

2 ...γnk
k = 1, Poincaré observed that n1γ1+n2γ2+...+nkγk is null-homologous

[13]. Given a group G with the presentation G = ⟨a1, ..., am; r1, ..., rn⟩ its Abelian-
ization is obtained by adding the relations aiaj = ajai and it is independent of the
presentation of G.
10 This was conjectured by Cartan in 1928 and was proved later on by de Rham
[13]. This theorem can be summarized as follows. If for a closed form ω, (c, ω) = 0
for all p-cycles, then ω is exact. If for a p-cycle c, (c, ω) = 0 for all closed p-forms,
then c is a boundary.
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Proposition 21. The following conditions are both necessary and sufficient
for compatibility of F

dF = 0, ∫
ci
FdX = 0, i = 1, ..., β1(B), (2.2)

where ci, i = 1, ..., β1(B) are generators of H1(B;R).

Proof: F is a vector-valued 1-form with the following coordinate representa-
tion

F = ∂a ⊗ F
a
AdX

A. (2.3)

F is compatible if and only if F aAdX
A’s are exact. We assume that the

ambient space is Euclidean, i.e. F is an RN -valued 1-form. In this case the
compatibility of F is reduced to that of its 1-form components, i.e., we need
to see when F aAdX

A (a = 1, ...,N) are exact 1-forms. We know that a
necessary condition is closedness of F, i.e. d(F aAdX

A) = 0 (a = 1, ...,N).
Thus, a necessary condition for F to be compatible is dF = 0.11 Now if
{ci}i=1,...,k are generators of H1(B;R) from de Rham’s theorem [11] we know

that the closed forms F aAdX
A (a = 1, ...,N) are exact if and only if

∫
ci
F aAdX

A
= 0, i = 1, ..., β1(B). ◻ (2.4)

Remark 22. We now show that not every generator of the fundamental
group requires complementary compatibility equations.12 Assuming that po-
sition of a point X0 ∈ B in the deformed configuration x0 ∈ S is known,
position of an arbitrary point X ∈ B in the deformed configuration is ob-
tained as

x = x0 + ∫
γ
FdX, (2.5)

where the ambient space is assumed to be Euclidean and hence the inte-
gration makes sense for an arbitrary curve γ joining X0 to X. For F to be
compatible, the above integral must be path-independent. This is equivalent
to

∫
γ
FdX = 0, (2.6)

for any closed path γ based at X0.13 Suppose {γi}i=1,...,m are generators of
the fundamental group π1(B). When B is simply-connected and compact, we
know that fundamental group has a finite presentation [33]

π1(B) = ⟨γ1, ..., γm; r1, ..., rn⟩, (2.7)

where
ri = γ

εi1
i1
...γ

εji
ji

= 1, i = 1, ..., n, εk = ±1, (2.8)

11 Note that dF = 0 is what is usually written as CurlF = 0 in the elasticity
literature.
12 This fact is ignored in some previous works as we discussed earlier in §1.
13 As we mentioned in the introduction, the condition (2.6) has been known in
the literature but what is not known is how to rewrite it in terms of the generators
of the fundamental group.
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are relators of the fundamental group. Note that if (2.6) holds on each gener-
ator of the fundamental group then F is compatible. However, these are not
necessary. The fact that ri is a relation in the fundamental group means that
it represents a loop that is null-homotopic, and therefore null-homologous.
Thus, the conditions ∫ri FdX = 0 follow from the fact that d(FdX) = 0. Some

of the relations ∫γi FdX = 0 may be redundant but this has nothing to do

with relations in the fundamental group itself. It follows from the fact that
the real conditions are the homological conditions in (2.4). Thus, we only
need to consider a collection of loops whose images modulo the commutator
subgroup are independent and do not represent torsion.

Remark 23. To Abelianize the fundamental group one adds relations of
the form γiγj = γjγi in the presentation of the fundamental group. These
obviously do not introduce any new compatibility equations. Note also that
the generators of the torsion subgroup do not contribute to compatibility
equations because for γ an element of the torsion subgroup γn = 1 for some
n ∈ N and hence trivially ∫γ FdX = 0. Thus, we need to have ∫γ FdX = 0

only on each generator of the first homology group with real coefficients. This
means that the number of complementary compatibility equations are equal
to Nβ1(B), where N = dimS.

Example 24. Let us look at 2D elasticity on a torus and a punctured torus
and derive their F-compatibility equations. The first homology group of a
torus is generated by the loops γ1 and γ2 in Fig.1a. Thus, the compatibility
equations read

dF = 0, ∫
γ1

FdX = ∫
γ2

FdX = 0. (2.9)

Fundamental group of a torus (see Fig.1) has the following presentation

π1(T
2
) = ⟨γ1, γ2;γ1γ2 = γ2γ1⟩. (2.10)

Therefore, r1 = γ1γ2γ
−1
1 γ−12 = 1. Note that

∫
r1
FdX = ∫

γ1γ2γ
−1
1 γ−12

FdX

= ∫
γ1

FdX + ∫
γ2

FdX − ∫
γ1

FdX − ∫
γ2

FdX = 0, (2.11)

which is trivially satisfied, i.e. (2.9) are the necessary and sufficient compati-
bility equations as expected; relator of the fundamental group does not affect
the complementary compatibility equations.

For a punctured torus (see Fig.1b) the fundamental group has three gen-
erators and the following presentation [33]

π1(H) = ⟨γ1, γ2, γ3;γ3 = γ1γ2γ
−1
1 γ−12 ⟩. (2.12)
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Fig. 1 a) γ1 and γ2 are generators of both the first homology and first homotopy
groups of a torus. b) A punctured torus. γ1, γ2, and γ3 are generators of the
fundamental group.

Therefore, r1 = γ3γ2γ1γ
−1
2 γ−11 = 1. Note that

∫
r1
FdX = ∫

γ3γ2γ1γ
−1
2 γ−11

FdX

= ∫
γ3

FdX + ∫
γ2

FdX + ∫
γ1

FdX − ∫
γ2

FdX − ∫
γ1

FdX

= ∫
γ3

FdX = 0. (2.13)

Therefore, the following are the necessary and sufficient compatibility equa-
tions

dF = 0, ∫
γ1

FdX = ∫
γ2

FdX = 0. (2.14)

It is seen that γ3 is a generator of the fundamental group but does not
correspond to any complementary compatibility equations. Boundary of the
hole in the torus (boundary of a handle) is an example of a null-homologous
path that is not null-homotopic.

2.2 Compatibility Equations for the Right Cauchy-Green Strain C

Let us consider motion of a body ϕt ∶ B → S and assume that dimB =

dimS. If the ambient space (S,g) is Euclidean its Riemann curvature tensor
vanishes, i.e. R(g) = 0. Thus, pull-back of curvature to B vanishes as well,
i.e. ϕ∗tR(g) = 0. But note that [22]

ϕ∗tR(g) =R(ϕ∗t g) =R(C). (2.15)

Therefore, a necessary condition for compatibility of C is vanishing of its
Riemann curvature (thinking of C as a metric in B). Marsden and Hughes
[22] showed that this is locally sufficient as well. Note that when the body is
simply-connected vanishing curvature guarantees a global isometry [10]. In
dimension three Ricci curvature algebraically determines the entire curvature
tensor. Fosdick [16] showed that compatibility equations can be rewritten
in terms of Ricci curvature or Einstein tensor. In dimension two a weaker
requirement is sufficient [4]: A metric is flat if and only if its scalar curvature
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(the Ricci scalar) is zero. This is the geometric reason behind the fact that
in 2D there is only one compatibility equation while in 3D there are six.14

Remark 25. Suppose the ambient space is R3. The left Cauchy-Green strain
B is push-forward of G, metric in the reference configuration. Assuming that
G is flat and that a deformed configuration exists, curvature of B vanishes.
This is a necessary condition for compatibility of B (even if the body is
simply-connected). The sufficiency question requires one to construct a de-
formed configuration whose B tensor matches the prescribed field. See [1] for
more details.15

In coordinate charts {XA} and {xa} for B and S, respectively, let us
denote the Levi-Civita connection coefficients of g and C = ϕ∗g by γabc and
ΓABC , respectively. These connection coefficients are related as

ΓABC =
∂XA

∂xa
∂xb

∂XB

∂xc

∂XC
γabc +

∂2xa

∂XB∂XC

∂XA

∂xa
. (2.16)

If {xa} is a Cartesian coordinate chart for the Euclidean ambient space, then
γabc = 0 and hence

ΓABC =
∂2xa

∂XB∂XC

∂XA

∂xa
. (2.17)

Therefore
∂2xa

∂XB∂XC
=

∂

∂XC
F aB = F aAΓ

A
BC . (2.18)

Substituting the polar decomposition in the above identity we obtain

RaA,B = RaCΩ
C
AB , (2.19)

where

ΩCAB = (ΓMBNU
C
M −UCN,B)UA

N , (2.20)

ΓCAB =
1

2
CCD(CBD,A +CAD,B −CAB,D), (2.21)

and UA
N are components of U−1. We assume that the body is elastic and

hence our material manifold is embedded in the Euclidean ambient space
[37,38,39]. We choose Cartesian coordinates for B and hence GAB = δAB .
Note that the system of differential equations (2.19) is identical to what was
obtained in [29]. Given a path γ connecting X0,X ∈ B and parametrized by
s ∈ I, we have the following system of linear ODEs governing the rotation
tensor16

d

ds
R =RK, (2.24)

14 In this paper, we restrict ourselves to the case dimB = dimS for which the
metric (the first fundamental form) is specified. When dimB < dimS, in addition
to metric, the second fundamental form should be considered and it must satisfy
its own compatibility equations.
15 We are grateful to Amit Acharya for a discussion on B-compatibility.
16 From (2.24) we have

d

ds
RT =KTRT. (2.22)
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where

KC
A(s) = Ω

C
AB(s)ẊB

(s). (2.25)

Thus, for each a
dRaA

ds
−ΩCABR

a
CẊ

B
(s) = 0. (2.26)

This is the equation of parallel transport of RaA along the curve γ when B is
equipped with the connection Ω. Let us assume that R(0) =R0. We see that
rotation tensor at s is the parallel transport of R0. Integrability conditions
of (2.26), i.e., path independence of the integral modulo homotopies fixing
the endpoints are equivalent to vanishing of the curvature tensor of C [26].

The solution of (2.24) can be written in terms of product integration,17

which was introduced by Vito Volterra [34] (see also [14] and [31]). Solution
of (2.24) in terms of a product integral reads

R(s) =R0

s

∏
0

(γ) eK(ξ)dξ, (2.27)

where R0 is an orthogonal tensor assumed to be given and ∏
s
0(γ) e

K(ξ)dξ is
the product integral of K along the path γ from 0 to s. Product integral has
the following properties [14]:

i) ∏(1) eK(ξ)dξ = I, where 1 is the identity loop.

ii) ∏(γ−1) eK(ξ)dξ = (∏(γ) eK(ξ)dξ)
−1

, for any path γ (not necessarily closed).

iii) ∏(γ1.γ2) e
K(ξ)dξ = ∏(γ2) e

K(ξ)dξ
∏(γ1) e

K(ξ)dξ, for arbitrary paths γ1
and γ2.

iv) If K(s1)K(s2) =K(s2)K(s1), ∀s1, s2, then ∏(γ) eK(ξ)dξ = e∫γK(ξ)dξ.

Note that the conditions i), ii), and iii) imply that γ → ∏(γ) eK(ξ)dξ

defines a group representation of π1(B). We know that K is continuous and
hence the product integral can be written in terms of the following uniformly
convergent series [14]

s

∏
0

(γ) eK(s)ds
=

∞
∑
k=0

Jk(s;γ), (2.28)

where

J0(s;γ) = I, Jn(s;γ) = ∫
s

0
K(τ ;γ)Jn−1(τ ;γ)dτ, n ≥ 1. (2.29)

Differentiating RTR = I, we obtain

0 =
dRT

ds
R +RT dR

ds
=KTRTR +RTRK =KT +K. (2.23)

In components, this reads KA
B +KB

A = 0, i.e. K is skew-symmetric.
17 In the physics literature, this is called path-ordered integration or path-ordered
exponential integration.
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For C to be compatible, rotation tensor calculated from (2.27) must be in-
dependent of the path γ. This means that

∏
γ

eK(s)ds
= I, ∀ closed path γ. (2.30)

A necessary and sufficient condition for (2.30) is vanishing of the product
integral of K over the generators of the fundamental group π1(B).

Remark 26. If K(s1)K(s2) = K(s2)K(s1), ∀s1, s2, then, the condition
(2.30) is equivalent to

∫

1

0
K(s)ds = 0, (2.31)

where γ ∶ [0, 1] → B is any closed path.

Note that because K is skew-symmetric, (2.30) has N(N − 1)/2 inde-
pendent components. If the path independence of the product integral is
guaranteed, then a unique rotation field R and hence a unique deformation

gradient F =R
√
C is calculated.

Now in summary, given C, U =
√
C is uniquely determined. Rotation

R is governed by the system of PDEs (2.19). Rotation is determined using
a product integral, which is path independent if and only if the curvature
tensor of C vanishes and (2.30) is satisfied over each generator of the first
homotopy group π1(B).

As a consequence of the previous discussions we have the following proposi-
tion.

Proposition 27. The necessary and sufficient conditions for compatibility
of C in B are the following:

i) R(C) = 0 in B,

ii) ∏γi e
K(s)ds = I, where γi’s are generators of π1(B),

ii) for the uniquely calculated deformation gradient F =R
√
C, we must have,

∫ci FdX = 0, i = 1, ..., β1(B), where ci are generators of H1(B;R).

It is seen that each generator of the first homotopy group corresponds to
N(N − 1)/2 complementary compatibility equations and each generator of
H1(B;R) corresponds to additional N complementary compatibility equa-
tions.

2.3 Compatibility Equations in Linearized Elasticity

In this section, we derive the necessary and sufficient compatibility equations
for linearized strain when dimB = dimS. If the ambient space is Euclidean
and the coordinates are Cartesian the linear strain components read

eab =
1

2
(
∂ua

∂xb
+
∂ub

∂xa
) . (2.32)
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We know that the necessary and sufficient conditions for compatibility in
terms of F are

∫
γ
FdX = 0, (2.33)

for every loop γ in B. Linearization of (2.33) reads

∫
γ
∇UdX = 0. (2.34)

In components, we have ∫γ u
a
,BdX

B = 0, where {XA} and {xa} are coordi-

nate charts for B and S, respectively. We assume that linearization is about

the standard embedding of B in RN , i.e. F aA = δaA. Thus, dXB = ∂XB

∂xb
dxb =

δBb dx
b and hence we can write

∫
γ
ua,BdX

B
= ∫

γ
ua,bdx

b
= ∫

γ
(eab + ωab)dx

b
= 0, (2.35)

where eab = u(a,b) =
1
2
(ua,b + ub,a) and ωab = u[a,b] =

1
2
(ua,b − ub,a), are the

linearized strain and rotation tensors, respectively. Note that

∫
γ
ωabdx

b
= ∫

γ
[(xcωac),b − x

cωac,b]dx
b
= −∫

γ
xcωac,bdx

b. (2.36)

Note also that

ωac,b =
1

2
(ua,cb − uc,ab) +

1

2
(ub,ac − ub,ac)

=
1

2
(ua,bc + ub,ac) −

1

2
(uc,abc + ub,ac)

= eab,c − ebc,a. (2.37)

Given eab, ωab is obtained by integrating ωab,c = eac,b−ecb,a along an arbitrary
curve. To ensure that the given strain tensor corresponds to a well-defined
rotation field over any closed path γ ∈ B we must have18

∫
γ
(eac,b − ecb,a)dx

c
= 0. (2.38)

When γ is null-homotopic, γ = ∂Ω (Ω is the parameter domain of the null-
homotopy) and hence

∫
γ
(eac,b − ecb,a)dx

c
= ∫

Ω
d (eac,b − ecb,a) ∧ dx

c

= ∫
Ω
(ead,bc + ebc,ad − eac,bd − ebd,ac) (dx

c
∧ dxd)

= 0, (2.39)

where {(dxc ∧ dxd)} = {dxc ∧ dxd}c<d is a basis of 2-forms. It can be shown
that (2.39) are equivalent to Curl Curle = 0, which are the classical bulk

18 We benefited from a discussion with James R. Barber on the number of com-
plementary compatibility equations in linearized elasticity when the body is not
simply-connected when he clarified his treatment of compatibility equations in [2].
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compatibility equations [21]. Knowing that the first homology group with
real coefficients has the generators ci, i = 1, ..., β1(B), we have the following
complementary compatibility equations

∫
ci

(eac,b − ecb,a)dx
c
= 0, i = 1, ..., β1(B). (2.40)

Note that eac,b − ecb,a is anti-symmetric in (ab) and hence each integral has
N(N − 1)/2 independent components (N = dimB = dimS).

Now using (2.37), we have

∫
γ
ua,bdx

b
= ∫

γ
[eab − x

c
(eab,c − ebc,a)]dx

b
= 0. (2.41)

This is called the Cesàro path integral [8]. Let us define the Cesàro tensor
Cab = eab−x

c(eab,c−ebc,a). Suppose γ is null-homotopic and hence γ = ∂Ω (Ω
is the parameter domain of the null-homotopy). Thus, using Stokes’ theorem

∫
γ
Cabdx

b
= ∫

Ω
dCab ∧ dx

b

= ∫
Ω
Cab,cdx

c
∧ dxb

= ∫
Ω
[ebc,a − x

d
(eab,cd − ebd,ac)]dx

c
∧ dxb. (2.42)

Note that because of symmetry of strain ebc,adx
c ∧ dxb = 0, and hence

∫
γ
ua,bdx

b
= ∫

Ω
xd (ebd,ac − eab,cd)dx

c
∧ dxb

= ∫
Ω
xd (eab,cd + ecd,ab − eac,bd − ebd,ac) (dx

b
∧ dxc)

= 0. (2.43)

It can be shown that (2.43) are equivalent to Curl Curle = 0, which are the
classical bulk compatibility equations [21]. Thus, we have proved the following
proposition.

Proposition 28. The necessary and sufficient conditions for compatibility
of linearized strain e = Lug in B are the following:

i) Curl Curle = 0 in B,
ii) for each generator of H1(B;R)

∫
ci

[eab − x
c
(eab,c − ebc,a)]dx

b
= 0, i = 1, ..., β1(B), (2.44)

∫
ci

(eac,b − ecb,a)dx
c
= 0, i = 1, ..., β1(B). (2.45)

Example 29. Let us consider the Saint Venant’s torsion problem. One con-
siders a cylindrical bar parallel to x3-axis with an arbitrary cross section Ω
with n holes with boundaries ci (the bar has the same cross section every-
where). In Saint-Venant’s semi-inverse solution the following displacements
are assumed: u1 = −ϑx

2x3, u2 = ϑx
1x3, u3 = ϑψ(x

1, x2), where ϑ is the rate of
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twist (twist per unit length) and ψ(x1, x2) is the warping function. The only
nonzero strains are e13 =

1
2
ϑ(ψ,1 − x

2) and e23 =
1
2
ϑ(ψ,2 + x

1). The equilib-
rium equations are trivially satisfied if stresses σ13 = 2Ge13 and σ23 = 2Ge23
(G is the shear modulus) are expressed in terms of Prandtl stress function
φ(x1, x2) as σ13 = φ,2 and σ23 = −φ,1. Eliminating ψ from σ13 = Gϑ(ψ,1 −x

2)

and σ23 = Gϑ(ψ,2+x
1) yields ∇2φ = −2Gϑ (the bulk compatibility equation).

The traction-free boundary conditions imply that φ is constant on each con-
nected component of ∂Ω (the boundary of Ω). We assume that φ = 0 on the
outer boundary of Ω and equal to φi on the boundary of the ith hole.

We assume that the cross section Ω is normal to the bar axis and for all
its points x3 = a (we can consider any other cross section, of course). From
(2.44) we obtain

∫
ci

(e13,1dx
1
+ e23,1dx

2) = 0, (2.46)

∫
ci

(e13,2dx
1
+ e23,2dx

2) = 0, (2.47)

∫
ci

[(e13 − x
1e13,1 − x

2e13,2)dx
1
+ (e23 − x

1e23,1 − x
2e23,2)dx

2] = 0. (2.48)

It can be easily shown that when the above three equations are satisfied
(2.45) would be trivially satisfied, i.e. each hole has only three complementary
compatibility equations. In terms of stresses complementary compatibility
equations are identical to (2.46), (2.47), and (2.48) when strains are replaced
by their corresponding stresses. Note that

σ13,1dx
1
+ σ23,1dx

2
= d(φ,2) − ∇

2φ dx2 = d(φ,2) + 2Gϑdx2, (2.49)

σ13,2dx
1
+ σ23,2dx

2
= −d(φ,1) + ∇

2φ dx1 = d(φ,1) − 2Gϑdx1. (2.50)

This means that the first two complementary compatibility equations (2.46)
and (2.47) are trivially satisfied. Note also that

(σ13 − x
1σ13,1 − x

2σ13,2)dx
1
+ (σ23 − x

1σ23,1 − x
2σ23,2)dx

2

= 2 (φ,2dx
1
− φ,1dx

2) + 2Gϑ (x2dx1 − x1dx2)

+ d (−x1φ,2 + x
2φ,1) (2.51)

Thus (2.48) gives us

∫
ci

(φ,2dx
1
− φ,1dx

2) + 2Gϑ∫
ci
ϑ (x2dx1 − x1dx2) = 0. (2.52)

Therefore

∫
ci
∇φ ⋅ n̂ds = −2GϑAi, (2.53)

where n̂ is the unit normal vector to the boundary of the ith hole and Ai is
the area of the ith hole.
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Remark 210. Note that for each ci, (2.44) and (2.45) give N and N(N −

1)/2 complementary compatibility equations, respectively. Thus, each ci has
N(N + 1) complementary compatibility equations. This is obviously consis-
tent with Weingarten’s theorem [36], which says that if a body is cut along a
surface the jump in the displacement field is a rigid-body motion (N(N+1)/2
degrees of freedom). See Love [21] for a detailed discussion (Love calls homo-
topic paths, “reconcilable circuits” and a null-homotopic path, a “evanescible
circuit”.). Zubov [40] and Casey [7] showed that this theorem holds for finite
strains as well. We should also mention that the discussion in [30] regarding
sufficient compatibility equations in linear elasticity is flawed as they missed
those complementary compatibility conditions that guarantee existence of a
well-defined field of rotations, i.e. (2.45).

Remark 211. Relative homology groups were introduced by Lefschetz [20].19

Lefschetz duality tells us that for a compact n-manifold M , Hn−p
c (M) ≅

Hp(M,∂M). From de Rham’s theorem, Hn−p(M) ≅ Hp
c (M/∂M). There-

fore, Hn−p(M) ≅ Hp(M,∂M). Thus, βn−p(M) = βp(M,∂M). Let us now
restrict ourselves to embedded 3-submanifolds of R3, which model our three-
dimensional deformable bodies [6]. H1(M) is generated by equivalence classes
of oriented loops; two loops are in the same equivalence class if their “differ-
ence” is the boundary of an oriented surface in M . H1(M,∂M) is generated
by the equivalence class of oriented paths with end points on ∂M ; two paths
are equivalent if their “difference” (augmented by paths on ∂M if necessary)
is the boundary of an oriented surface in M . From Poincaré duality we know
that H2(M) ≅ H1(M,∂M). Define M c = R3/M . Alexander duality tells us
that H1(M) ≅ H1(M

c). Let Σ1, ...,Σk be a family of cross-sectional surfaces
in M with boundaries on ∂M such that they generate H2(M,∂M). As an
example, consider the two-hole solid torus shown in Fig.2 for which k = 2. Let
γ1, γ2 (loops in the interior of M) be generators of H1(M) chosen such that
intersection number of ci with Σj is δij . One can make these loops disjoint.
If one pushes the boundaries of Σ1,Σ2 a bit into M c, one obtains the loops
Γ1, Γ2, which generate H1(M

c).

γ
1

γ
2

Γ
1

Σ
1

Γ
2

Σ
2

Fig. 2 A two-hole solid torus M (a genus two handlebody). γ1 and γ2 are gener-
ators of H1(M). Γ1 and Γ2 are generators of H1(R3/M).

19 It is interesting that the first academic degree of Solomon Lefschetz–one of the
most influential algebraic topologists–was in mechanical engineering.
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Love [21] in Article 156 writes: “Now suppose the multiply-connected
region to be reduced to a simply-connected one by means of a system of bar-
riers.” Note that a “barrier” Ω in a three-dimensional body B is a generator
of H2(B, ∂B) ≅ H1(B) and in a two-dimensional body it is a generator of
H2(B, ∂B) ≅ H1(B).
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