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Abstract

In this paper we investigate the possibility of elastodynamic transformation cloaking in bodies made
of non-centrosymmetric gradient solids. The goal of transformation cloaking is to hide a hole from elastic
disturbances in the sense that the mechanical response of a homogeneous and isotropic body with a
hole covered by a cloak would be identical to that of the corresponding homogeneous and isotropic body
outside the cloak. It is known that in the case of centrosymmetric gradient solids exact transformation
cloaking is not possible; the balance of angular momentum is the obstruction to transformation cloaking.
We will show that this no-go theorem holds for non-centrosymmetric gradient solids as well.

Keywords: Cloaking, Gradient Elasticity, Cosserat Elasticity, Elastic Waves, Non-Centrosymmetric Solids,
Chiral Solids.

1 Introduction

The idea of transformation cloaking in electromagnetism goes back to the works of Pendry et al. [2006] and
Leonhardt [2006]. Many researchers have tried to use the idea of transformation cloaking in other fields. In
the case of elastodynamics, this has led to many inconsistent formulations that were critically reviewed in
[Yavari and Golgoon, 2019] and [Golgoon and Yavari, 2020]. We should emphasize that the ideas related to
elastodynamic cloaking are much older and go back to the works [Gurney, 1938, Reissner and Morduchow,
1949, Mansfield, 1953] on reinforced holes in elastic sheets, and [Hashin, 1962, Hashin and Shtrikman, 1963,
Hashin, 1985, Hashin and Rosen, 1964, Benveniste and Milton, 2003] on neutral inhomogeneities.

Cloaking a hole in an elastic body can be formulated in terms of two equivalent boundary-value problems
[Yavari and Golgoon, 2019]. The hole is covered by a cloak whose elastic properties and mass density need
to be determined. The cloak is expected to have inhomogeneous mass density and inhomogeneous and
anisotropic elastic constants. Outside the cloak the response of the body (the physical body B) is required
to be identical to that of a homogeneous and isotropic body with a very small hole (the virtual body B̃).
The two bodies are under the same external loads and have the same boundary conditions outside the cloak.
More precisely, the virtual body B̃ is defined such that B = B̃ \H, where H is the hole(s). It is assumed that
the virtual and physical bodies have the same mass density and elastic constants outside the cloak. Outside
the cloak, the virtual body is under the same traction and displacement boundary conditions as the physical
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body. The body force distributions in the two problems are assumed to be identical outside the cloak (see
Fig.1).

In transformation cloaking one uses a map Ξ : B → B̃ (cloaking map) that has two properties: i)
Outside the cloak C it is the identity map, i.e., Ξ|B\C= id, and ii) while fixing the outer boundary of the
cloak it shrinks its inner boundary to a very small hole (see Fig.1). Starting from the balance of linear
momentum in one configuration one transforms it using the Piola transform to the other configuration. This
gives transformation relations for the mass density and the elastic constants assuming that the displacement
fields in the two configurations are equal at the corresponding points. In order to have identical mechanical
responses outside the cloak, the cloaking map needs to fix the outer boundary of the cloak to the first order;
both Ξ, and its derivative map TΞ must be identity maps on the outer boundary of the cloak. The last thing
to check is the balance of angular momentum. In the case of classical linear elasticity, generalized Cosserat
elasticity, and centrosymmetric gradient elasticity, starting from a homogeneous and isotropic virtual body
in which the balance of angular momentum is satisfied, it turns out that the balance of angular momentum
cannot be satisfied in the physical problem unless the cloaking map is the identity map everywhere. In other
words, the balance of angular momentum is the obstruction to exact transformation cloaking [Yavari and
Golgoon, 2019]. In the case of elastic plates a set of cloaking compatibility equations obstruct transformation
cloaking [Golgoon and Yavari, 2020].

Figure 1: Ξ : B → B̃ is a map between two submanifolds of Rn. The virtual body B̃ is homogenous and isotropic and has a
tiny hole H̃. The physical body B has the same homogeneous and isotropic properties outside the cloak, i.e., in B \ C. The two
bodies have the same Dirichlet and Neumann boundary conditions on their outer boundaries.

There has been a misconception in the literature that an elastic cloak should be made of a Cosserat
solid (see [Yavari and Golgoon, 2019] for an extensive literature review). In [Yavari and Golgoon, 2019] it
was shown that even in the case of generalized Cosserat solids the balance of angular momentum is still
the obstruction to transformation cloaking. No assumption was made on the elastic constants other than
objectivity, and positive-definiteness of the elastic energy. This means that transformation cloaking is not
possible in either non-centrosymmetric or centrosymmetric generalized Cosserat solids (and consequently
Cosserat solids). Yavari and Golgoon [2019] proved the impossibility of exact transformation cloaking for
centrosymmetric gradient solids. In this paper we investigate the possibility of transformation cloaking for
non-centrosymmetric gradient solids.

Noncentrosymmetric solids can be modeled in the setting of generalized continuum mechanics and have
been studied by many researchers [Cheverton and Beatty, 1981, Lakes and Benedict, 1982, Lakes, 2001,
Sharma, 2004, Liu et al., 2012, Ieşan and Quintanilla, 2016, Böhmer et al., 2020]. Papanicolopulos [2011]
studied chirality in 3D isotropic gradient elasticity under the assumption of small strains. Chirality is
controlled by a single material parameter in the fifth-order coupling elasticity tensor. Auffray et al. [2015,
2017] studied the material symmetries in 2D linear gradient elasticity. In dimension two, chirality is due
to the lack of mirror symmetry, and it affects both the coupling and the second-order elasticity tensors.
They showed that there are fourteen symmetry classes, eight of which have isotropic first-order elasticity
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tensors. In an effort to use chirality for cloaking applications, Nassar et al. [2019] considered a sheet made
of a classical linear elastic solid connected to an elastic foundation that resists rotations. They called such
structures “polar solids”, which is a misleading term; the energy functions they considered are not objective.
Also, their cloaking structure construction cannot be generalized to 3D.

This paper is structured as follows. In §2 we tersely review the governing equations of elastodynamics.
In §3 gradient elasticity, its governing equations, and non-centrosymmetry are discussed. We formulate the
problem of transformation cloaking in linearized non-centrosymmetric gradient elasticity in §4. We prove
the impossibility of cloaking for arbitrary cylindrical holes and arbitrary cloaking maps. Conclusions are
given in §5.

2 Nonlinear Elasticity

Kinematics. In nonlinear elasticity, motion is a time-dependent mapping between a reference configuration
(or natural configuration) and the ambient space. We write this as ϕt : B → S, where (B,G) and (S,g) are
the material and the ambient space Riemannian manifolds, respectively [Marsden and Hughes, 1983]. Here,
G is the material metric (that allows one to measure distances in a natural stress-free configuration) and g
is the background metric of the ambient space. The Levi-Civita connections associated with the metrics G
and g are denoted as ∇G and ∇g, respectively. The corresponding Christoffel symbols of ∇G and ∇g in the
local coordinate charts {XA} and {xa} are denoted by ΓA

BC and γabc, respectively. These can be directly
expressed in terms of the metric components as

γabc =
1

2
gak (gkb,c + gkc,b − gbc,k) , ΓA

BC =
1

2
GAK (GKB,C +GKC,B −GBC,K) . (2.1)

The deformation gradient F is the tangent map of ϕt, which is defined as F(X, t) = Tϕt(X) : TXB →
Tϕt(X)S. The transpose of F is denoted by FT, where

FT(X, t) : Tϕt(X)S → TXB , 〈〈W,FTw〉〉G = 〈〈FW,w〉〉g, ∀W ∈ TXB, w ∈ Tϕt(X)S . (2.2)

In components, (FT)Aa = GABF b
Bgab. The right Cauchy-Green deformation tensor is defined as C = FTF :

TXB → TXB, which in components reads CA
B = F a

LF
b
BgabG

AL. Note that C[ = ϕ∗tg.
The material velocity of the motion is the mapping V : B × R+ → TS, where V(X, t) ∈ Tϕt(X)S, and

in components, V a(X, t) = ∂ϕa

∂t (X, t). The material acceleration is a mapping A : B × R+ → TS defined
as A(X, t) := Dg

t V(X, t) = ∇g
V(X,t)V(X, t) ∈ Tϕt(X)S, where Dg

t denotes the covariant derivative along the

curve ϕt(X) in S. In components, Aa = ∂V a

∂t + γabcV
bV c.

Balance laws. The balance of linear momentum in material form reads

DivP + ρ0B = ρ0A, (2.3)

where P is the first Piola-Kirchhoff stress. ρ0, B, and A are the material mass density, material body force,
and material acceleration, respectively. DivP has the following coordinate expression

DivP = P aA
|A

∂

∂xa
=

(
∂P aA

∂XA
+ P aBΓA

AB + P cAF b
Aγ

a
bc

)
∂

∂xa
. (2.4)

The Jacobian of deformation J relates the deformed and undeformed Riemannian volume elements as
dv(x,g) = JdV (X,G), and is written as

J =

√
detg

detG
detF. (2.5)

Identifying a material point with its position in the material manifold X ∈ B, we have x = ϕt(X). When
the ambient space is Euclidean one defines the material displacement field as U = ϕt(X)−X.1

1In §3.1, in linearized gradient elasticity we will use U for the linearized displacement instead of δU.
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Balance of angular momentum in local form reads FP? = PF?, where P? and F? are duals of P and F,
respectively, and are defined as

F = F a
A
∂

∂xa
⊗ dXA, F? = F a

AdX
A ⊗ ∂

∂xa
,

P = P aA ∂

∂xa
⊗ ∂

∂XA
, P? = P aA ∂

∂XA
⊗ ∂

∂xa
.

(2.6)

Note that F? : T ∗ϕt(X)S → T ∗XB, where T ∗ϕt(X)S and T ∗XB denote the cotangent spaces of Tϕt(X)S and TXB,

respectively. Balance of angular momentum in components reads F a
AP

bA = F b
AP

aA.
Conservation of mass implies that ρdv = ρ0dV or ρJ = ρ0, where ρo and ρ denote the material and spatial

mass densities, respectively. In terms of Lie derivatives, conservation of mass can be written as Lvρ = 0
[Marsden and Hughes, 1983].

3 Gradient Elasticity

In this section we extend the analysis of Yavari and Golgoon [2019] to non-centrosymmetric solids. We
refer the reader to [Yavari and Golgoon, 2019] for the detailed derivation of the governing equations and
the transformed fields. In gradient elasticity (or strain-gradient elasticity) energy function has the following
form [Toupin, 1964]

W = W (X,F,∇F,G,g ◦ ϕ) . (3.1)

From compatibility equations F a
A|B = F a

B|A [Yavari, 2013]. Material frame indifference (objectivity)

implies that [Toupin, 1964, Yavari and Golgoon, 2019] W = Ŵ (X,CAB , CAB|C , GAB). The first Piola-
Kirchhoff stress has the following representation

P aA = gab

[
∂W

∂F b
A
−
(

∂W

∂F b
A|B

)
|B

]
. (3.2)

Hyper-stress is defined as Ha
AB = Ha

BA = ∂W
∂Fa

A|B
. Traction is written as

T a = P aANA −HaAB
|BNA +HaABBAB , (3.3)

where BAB = BBA = −NA|B is the second fundamental form of the surface ∂B embedded in the Euclidean
space, and N is the unit normal vector to ∂B. Note that in a stress-free gradient solid both the (total) first
Piola-Kirchhoff stress and hyper-stress vanish.

3.1 Balance of linear and angular momenta

In terms of the first Piola-Kirchhoff stress the balance of angular momentum reads

P [aAF b]
A +

(
H [aABF b]

A

)
|B

= 0 . (3.4)

Linearizing the balance of linear momentum about a motion ϕ̊ one obtains (δP aA)|A +ρ0δB
a = ρ0Ü

a, where

δP aA =
∂P aA

∂F b
B
δF b

B +
∂P aA

∂F b
B|C

δF b
B|C = AaA

b
B U b

|B + BaA
b
BC U b

|B|C , (3.5)

δ denotes the first variation of a field, and Ua are the components of the linearized displacement field, i.e.,
Ua = δϕa, and

AaA
b
B =

∂P aA

∂F b
B
, BaA

b
BC =

∂P aA

∂F b
B|C

. (3.6)
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A and B are the dynamic elastic constants [DiVincenzo, 1986]. Notice that BaAbBC = BaAbCB . From
P aA = gam ∂W

∂Fm
A
−HaAM

|M , one writes

δP aA = gam
∂2W

∂Fm
A∂Fn

N
δFn

N + gam
∂2W

∂Fm
A∂Fn

N |M
δFn

N |M − δ(HaAM
|M )

= gam
∂2W

∂Fm
A∂Fn

N
Un
|N + gam

∂2W

∂Fm
A∂Fn

N |M
Un
|N |M − (δHaAM )|M .

(3.7)

But

δHaAM =
∂HaAM

∂F c
C
δF c

C +
∂HaAM

∂F c
C|D

δF c
C|D

= gam
∂2W

∂F c
C∂Fm

A|M
U c
|C + gam

∂2W

∂F c
C|D∂Fm

A|M
U c
|C|D .

(3.8)

The static elastic constants are defined as [DiVincenzo, 1986]

Aa
A
b
B =

∂2W

∂F a
A∂F b

B
, Ba

A
b
BC =

∂2W

∂F a
A∂F b

B|C
, Ca

AB
b
CD =

∂2W

∂F a
A|B∂F b

C|D
. (3.9)

The static elastic constants have the following symmetries:

Aa
A
b
B = Ab

B
a
A,

Ba
A
b
BC = Ba

A
b
CB ,

Ca
AB

b
CD = Ca

BA
b
CD = Ca

BA
b
DC = Cb

DC
a
BA .

(3.10)

Thus, from (3.8) δHaAM = Bb
BaAMU b

|B + Cb
BCaAMU b

|B|C , and hence

(δHaAM )|M = (Bb
BaAMU b

|B + Cb
BCaAMU b

|B|C)|M . (3.11)

Therefore
AaA

b
B = AaA

b
B − Bb

BaAM
|M ,

BaA
b
BC = BaA

b
BC − Bb

BaAC − CaAM
b
BC
|M .

(3.12)

Or equivalently
AaAbB = AaAbB − BbBaAM

|M ,

BaAbBC = BaAbBC − BbBaAC − CaAMbBC
|M .

(3.13)

In deriving the second relation we ignored the term U b
|B|C|M in δHaAM

|M as we are assuming a second-
gradient elasticity; displacement derivatives of orders three or higher are neglected.

When linearized with respect to a stress-free initial configuration, the linearized balance of angular
momentum is written as

A[aM
m

AF̊ b]
M = 0,

B[aM
m

ABF̊ b]
M = 0,

(3.14)

and with an abuse of notation
A[ab]

m
A = 0, B[ab]

m
AB = 0. (3.15)

3.2 The coupling elastic constants for isotropic solids

Materials with non-vanishing coupling elasticity tensors B are those that are not invariant under inversions.
These are called non-centrosymmetric solids. These materials can be either chiral if they are not invariant
under orientation-reversing transformations, or achiral. According to Auffray et al. [2019], the symmetry
groups for these materials are of Type I (chiral) or of Type III (neither chiral nor centrosymmetric). A further
classification can be done using the property of polarity, i.e., the property of having a single rotational axis of
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symmetry. Therefore, in summary, non-centrosymmetric materials are divided into four cases: chiral polar,
achiral polar, chiral apolar, achiral apolar. Isotropic non-centrosymmetric solids are the isotropic chiral ones.

For non-centrosymmetric solids the coupling elastic constants do not vanish. Let us consider the corre-
sponding fifth-order elastic constants in terms of the right Cauchy-Green strain C, namely

LABCDE =
∂2W

∂CAB∂CCD|E
. (3.16)

L has the minor LABCDE = LBACDE = LABDCE , and major LABCDE = LCDEAB symmetries. When the
elastic constants are defined with respect to a stress-free initial configuration, one can show that

BaAbBC = 4F̊ a
M F̊

b
N LAMNBC . (3.17)

For an isotropic solid, in Cartesian coordinates one has the following representation for L [Suiker and Chang,
2000]:

LIJKLM =`1ε
IJKδLM + `2ε

IJLδKM + `3ε
IJMδKL + `4ε

IKLδJM + `5ε
IKMδJL

+ `6ε
ILMδJK + `7ε

JKLδIM + `8ε
JKMδIL + `9ε

JLMδIK + `10ε
KLMδIJ ,

(3.18)

where εIJK is the permutation symbol, and `i are elastic constants. From CIJ = CJI we have the minor
symmetries LIJKLM = LJIKLM , and LIJKLM = LJILKM , which dictate `1 = `2 = `3 = `4 = `7 = `10 = 0.2

Thus
LIJKLM =

(
`5ε

IKMδJL + `8ε
JKMδIL

)
+
(
`6ε

ILMδJK + `9ε
JLMδIK

)
. (3.19)

Looking at the contribution of L to energy, one can see that due to the symmetry of the right Cauchy-Green
strain only the sum of the remaining four elastic constants `5 + `8 + `6 + `9 appears in the energy expression.
This implies that there is only one elastic constant b0, and

LIJKLM = b0
(
εIKMδJL + εJKMδIL + εILMδJK + εJLMδIK

)
. (3.20)

This is consistent with the results of Dell’Isola et al. [2009], Papanicolopulos [2011], and Auffray et al. [2019].3

In arbitrary curvilinear coordinates (3.20) is written as

LIJKLM = b0
(
εIKMgJL + εJKMgIL + εILMgJK + εJLMgIK

)
, (3.21)

where εIJK = 1√
g ε

IJK , and g = detg.

3.3 Positive-definiteness of the elastic energy

Starting from a stress-free initial configuration, the change in the elastic energy is written as

δW =
1

2

∂2W

∂F a
A∂F b

B
Ua
|AU

b
|B +

∂2W

∂F a
A∂F b

B|C
Ua
|AU

b
|B|C +

1

2

∂2W

∂F a
A|B∂F b

C|D
Ua
|A|BU

b
|C|D

=
1

2
AaAbBUa|AUb|B + BaAbBCUa|AUb|B|C +

1

2
CaABbCDUa|A|BUb|C|D.

(3.22)

Positive-definiteness of the elastic energy requires that δW > 0 for any pair (Ua|A, Ua|A|B) 6= (0, 0). In

particular, when Ua|A 6= 0, and Ua|A|B = 0, AaAbBUa|AUb|B > 0, which implies that A must be positive-
definite. In the case of isotropic solids this is equivalent to µ > 0, and 3λ + 2µ > 0. Similarly, C must be
positive-definite. It turns out that −k < b0 < k, where k depends on µ and two sixth-order elastic constants
[Papanicolopulos, 2011].

2Once the balance of angular momentum is enforced, both coupling elasticity tensors B and L have 108 independent compo-
nents in the most general case. In [Yavari and Golgoon, 2019] it was mentioned that B has 90 independent components, which
is incorrect. However, this inaccurate statement did not affect any of the results or conclusions of that work.

3Note that this tensor does not have any major symmetries; the symmetries claimed in Eq.(3.2)2 in [Dell’Isola et al., 2009]
are incorrect. As a matter of fact, from the representation (3.20) in the isotropic case the coupling elasticity tensor L has the
following major antisymmetry: LIJKLM = −LKLIJM . From (3.17), B has the same property in the isotropic case.
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Figure 2: Ξ : B → B̃ is a map between two submanifolds of Rn. The shifter map s parallel transports W at X to sW at
X̃ = Ξ(X).

4 Transformation Cloaking in Linearized Gradient Elastodynam-
ics

4.1 Shifters in Euclidean ambient space

It is assumed that the reference configurations of both the physical and virtual bodies are embedded in the
Euclidean space. In order to relate vector fields in the physical problem to those in the virtual problem
one uses shifters. We assume that B ⊂ S = Rn (n = 2 or 3). The shifter map s : TS → TS is defined as
s(x,w) = (x̃,w). Its restriction to x ∈ S is denoted by sx = s(x) : TxS → Tx̃S, and parallel transports w
based at x ∈ S to w based at x̃ ∈ S (see Fig. 2). Let us choose two global colinear Cartesian coordinates

{z̃ ĩ} and {zi} for the virtual and physical deformed configurations in the ambient space. Also consider

curvilinear coordinates {x̃ã} and {xa} for the two configurations. Noting that sĩi = δĩi , one can show that
[Marsden and Hughes, 1983]

sãa(x) =
∂x̃ã

∂z̃ ĩ
(x̃)

∂zi

∂xa
(x)δĩi . (4.1)

As an example, in the cylindrical coordinates (r, θ, z) and (r̃, θ̃, z̃) at x ∈ R3 and x̃ ∈ R3, respectively, one
can show that the shifter map has the following matrix representation

s =

 cos(θ̃ − θ) r sin(θ̃ − θ) 0

− sin(θ̃ − θ)/r̃ r cos(θ̃ − θ)/r̃ 0
0 0 1

 . (4.2)

Similarly, in the spherical coordinates (r, θ, φ) and (r̃, θ̃, φ̃) at x ∈ R3 and x̃ ∈ R3, respectively, the shifter
map has the following matrix representation

s =

 cos(φ̃− φ) sin θ̃ sin θ + cos θ̃ cos θ r[cos(φ̃− φ) sin θ̃ cos θ − cos θ̃ sin θ] r sin(φ̃− φ) sin θ̃ sin θ

[cos(φ̃− φ) cos θ̃ sin θ − sin θ̃ cos θ]/r̃ r[cos(φ̃− φ) cos θ̃ cos θ + sin θ̃ sin θ]/r̃ r sin(φ̃− φ) cos θ̃ sin θ/r̃

− sin(φ̃− φ) sin θ/(r̃ sin θ̃) −r sin(φ̃− φ) cos θ/(r̃ sin θ̃) r cos(φ̃− φ) sin θ/(r̃ sin θ̃)

 .
(4.3)

In Fig. 3 a radial map Ξ : B → B̃ is shown. The shifter parallel transports a vector W at X = (R,Θ, Z)
(or X = (R,Θ,Φ)) to (f(R),Θ, Z) (or (f(R),Θ,Φ)).

4.2 Transformation cloaking formulated as equivalent boundary-value problems

In the coordinate charts {XA} and {xa}, the divergence term in the balance of linear momentum in the
physical body δ (DivP) + ρ0δB = ρ0A, has the following component form

δ (DivP) = Div δP = Div (A : ∇U + B : ∇∇U) =
(
AaA

b
B U b

|B + BaA
b
BC U b

|B|C
)
|A

∂

∂xa
. (4.4)
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Figure 3: Shifters along a cylindrically/spherically-symmetric map Ξ : (R,Θ, Z) 7→ (f(R),Θ, Z) or Ξ : (R,Θ,Φ) 7→
(f(R),Θ,Φ). The shifter map s parallel transports W in the radial direction from R to R̃ = f(R).

Under a cloaking transformation Ξ : B → B̃ it is transformed to [Yavari and Golgoon, 2019]

JΞ

(
ÃãÃ

b̃
B̃ Ũ b̃

|B̃ + B̃ãÃ
b̃
B̃C̃ Ũ b̃

|B̃|C̃

)
|Ã

∂

∂x̃ã
, (4.5)

where
Ũ ã = sãaU

a ,

ÃãÃ
b̃
B̃ = J−1

Ξ sãa
Ξ

F Ã
A(s−1)bb̃

Ξ

F B̃
B AaA

b
B + J−1

Ξ sãa
Ξ

F Ã
A(s−1)bb̃

Ξ

F B̃
B|C BaA

b
BC ,

B̃ãÃ
b̃
B̃C̃ = J−1

Ξ sãa
Ξ

F Ã
A(s−1)bb̃

Ξ

F B̃
B

Ξ

F C̃
C BaA

b
BC .

(4.6)

Note that the material and spatial coordinate charts for the virtual body are denoted by {X̃Ã}, and {x̃ã},
respectively. Equivalently, (4.6) can be written as

AaA
b
B = JΞ(s−1)aã(

Ξ

F−1)AÃs
b̃
b(

Ξ

F−1)BB̃ ÃãÃ
b̃
B̃ + JΞ(s−1)aã(

Ξ

F−1)AÃs
b̃
b(

Ξ

F−1)BB̃|C̃ B̃ãÃ
b̃
B̃C̃ ,

BaA
b
BC = JΞ(s−1)aã(

Ξ

F−1)AÃs
b̃
b(

Ξ

F−1)BB̃(
Ξ

F−1)CC̃ B̃ãÃ
b̃
B̃C̃ .

(4.7)

It is assumed that F̊ a
A = δaA, and ˚̃F ã

Ã = δã
Ã

. This implies that F̊ a
A|B = 0, and ˚̃F ã

Ã|B̃ = 0. It is also

assumed that there is no initial stress in either configuration, i.e., P̊ a
A = 0, H̊aAB = 0, and ˚̃P ã

Ã = 0,
˚̃H ãÃB̃ = 0. From (3.14) the balance of angular momentum in the physical and virtual bodies read

A[aM
m

AF̊ b]
M = 0, B[aM

m
ABF̊ b]

M = 0, (4.8)

Ã[ãM̃
m̃

Ã ˚̃F b̃]
M̃ = 0, B̃[ãM̃

m̃
ÃB̃ ˚̃F b̃]

M̃ = 0. (4.9)

For the uniform virtual body, from (3.12) one obtains

ÃãÃ
b̃
B̃ = ÃãÃ

b̃
B̃ , B̃ãÃ

b̃
B̃C̃ = B̃ãÃ

b̃
B̃C̃ − B̃b̃

B̃ãÃC̃ . (4.10)

Thus, from (4.9)1 one obtains

Ã[ãM̃
m̃

Ã ˚̃F b̃]
M̃ = 0, or Ã[ãb̃]

m̃
Ã = 0. (4.11)

As for the physical body, from (3.13)1 we have

AaAbB = BbBaAM
|M + AaAbB . (4.12)

From the above relation and the balance of angular momentum (4.8)1 one obtains

BbB[aA]M
|M + A[aA]bB = 0 . (4.13)
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Taking the antisymmetric part of the other pair of indices, i.e., A[aA][bB], and since from (4.8)2 one has
B[bB][aA]C

|C = 0, we obtain the following relations:

A[aA][bB] = 0 . (4.14)

Now we are able to use the transformation (4.7)1. In particular, we make use of its fully contravariant
version, viz.

AaAbB = JΞ(s−1)aã(
Ξ

F−1)AÃ(s−1)bb̃

[
(

Ξ

F−1)BB̃ ÃãÃb̃B̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃb̃B̃C̃
]
. (4.15)

Note that in order to obtain (4.15) we used the fact that gãb̃ s
b̃
b g

ba = (s−1)aã, which in turn comes from the
fact that the shifter preserves the ambient space metric. Hence we can write (4.14) as

(s−1)[a
ã(

Ξ

F−1)A]
Ã(s−1)[b

b̃

[
(

Ξ

F−1)B]
B̃ ÃãÃb̃B̃ + (

Ξ

F−1)B]
B̃|C̃ B̃ãÃb̃B̃C̃

]
= 0 , (4.16)

or in the expanded form[
(s−1)aã(

Ξ

F−1)AÃ − (s−1)Aã(
Ξ

F−1)aÃ

]{
(s−1)bb̃

[
(

Ξ

F−1)BB̃ ÃãÃb̃B̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃb̃B̃C̃
]

− (s−1)Bb̃

[
(

Ξ

F−1)bB̃ ÃãÃb̃B̃ + (
Ξ

F−1)bB̃|C̃ B̃ãÃb̃B̃C̃
]}

= 0 .
(4.17)

Note that (4.16), i.e., A[aA][bB] = 0, consists of six independent equations by virtue of the major symmetry
(3.10)1 for A. Albeit the static constants AaAbB in the physical body must satisfy this property, it does not
come automatically from the transformation (4.15). This is in contrast with classical linearized elasticity
[Yavari and Golgoon, 2019]. In transformation cloaking for gradient elasticity, the preservation of the balance
of linear momentum gives a transformation in terms of the dynamic elastic constants AaAbB , and hence, the
major symmetries of static constants AaAbB for the physical problem are not immediate. Therefore, the
constraints (4.16) consist of nine equations. Note that enforcing the major symmetry on AaAbB in the
physical body separately would not provide any useful equation besides an identity involving the derivatives
of the tensor B.

Remark 4.1. From (4.13) one has BbB[aA]C
|C = −A[aA]bB and hence from (4.15)

BbB[aA]C
|C = −JΞ(s−1)[a

ã(
Ξ

F−1)A]
Ã(s−1)bb̃

[
(

Ξ

F−1)BB̃ ÃãÃb̃B̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃb̃B̃C̃
]
. (4.18)

Moreover, taking the divergence of (3.13)2 (applied to the elastic constants in the physical body) with respect
to the index C, and antisymmetrizing with respect to the pair aA, one obtains

B[aA]bBC
|C − BbB[aA]C

|C = B[aA]bBC
|C + C[aA]MbBC

|M |C . (4.19)

By virtue of the balance of angular momentum in the physical body (4.8)2, one can then write

− BbB[aA]C
|C = B[aA]bBC

|C + C[aA]MbBC
|M |C , (4.20)

and from (4.13)
C[aA]MbBC

|M |C = −B[aA]bBC
|C − A[aA]bB . (4.21)

Note that from (4.7)2

BaAbBC = JΞ(s−1)aã(
Ξ

F−1)AÃ(s−1)bb̃(
Ξ

F−1)BB̃(
Ξ

F−1)CC̃ B̃ãÃb̃B̃C̃ , (4.22)

and therefore (4.21) becomes

C[aA]NbBM
|M |N =

[
JΞ(s−1)[a

ã(
Ξ

F−1)A]
Ã(s−1)bb̃(

Ξ

F−1)BB̃(
Ξ

F−1)MM̃ B̃ãÃb̃B̃M̃
]
|M

+ JΞ(s−1)[a
ã(

Ξ

F−1)A]
Ã(s−1)bb̃

[
(

Ξ

F−1)BB̃ ÃãÃb̃B̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃb̃B̃C̃
]
.

(4.23)

Eqs. (4.18) and (4.23) represent differential constraints for BaAbBC and CaANbBM
|M |N , respectively, and

are a consequence of the balance of angular momentum.
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Next, we assume that the virtual body is isotropic and non-centrosymmetric. Knowing that ˚̃F ã
M̃ = δã

M̃
,

with an abuse of notation from (3.17) one can write

B̃ãÃb̃B̃C̃ = 4L̃Ããb̃B̃C̃ = 4L̃ãÃb̃B̃C̃ . (4.24)

Therefore, for the isotropic virtual body in Cartesian coordinates

B̃ãÃb̃B̃C̃ = 4b̃0

(
εãb̃C̃δÃB̃ + εÃb̃C̃δãB̃ + εãB̃C̃δÃb̃ + εÃB̃C̃δãb̃

)
. (4.25)

In arbitrary curvilinear coordinates, one has

B̃ãÃb̃B̃C̃ = 4b̃0

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃ + εãB̃C̃gÃb̃ + εÃB̃C̃gãb̃

)
, (4.26)

where εãb̃c̃ = 1√
g ε

ãb̃c̃, and g = detg. Note that the balance of angular momentum, i.e., B̃[ãÃ]b̃B̃C̃ = 0 is

satisfied. In Cartesian coordinates, since the representation (4.25) is such that B̃ãÃb̃B̃C̃ = −B̃b̃B̃ãÃC̃ , the

dynamic elastic constants are written as B̃ãÃb̃B̃C̃ = B̃ãÃb̃B̃C̃ − B̃b̃B̃ãÃC̃ = 2B̃ãÃb̃B̃C̃ and hence

B̃ãÃb̃B̃C̃ = 8b̃0

(
εãb̃C̃δÃB̃ + εÃb̃C̃δãB̃ + εãB̃C̃δÃb̃ + εÃB̃C̃δãb̃

)
. (4.27)

In curvilinear coordinates

B̃ãÃb̃B̃C̃ = 8b̃0

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃ + εãB̃C̃gÃb̃ + εÃB̃C̃gãb̃

)
. (4.28)

From the compatibility of
Ξ

F we know that (
Ξ

F−1)B [B̃|C̃] = 0. Thus, in curvilinear coordinates

(
Ξ

F−1)BB̃|C̃ B̃ãÃb̃B̃C̃ = 8b̃0(
Ξ

F−1)BB̃|C̃

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃

)
. (4.29)

Moreover, with the usual abuse of notation for the indices, in the isotropic case one has the representation

AãÃb̃B̃ = λgãÃgb̃B̃ + µ
(
gãb̃gÃB̃ + gãB̃gÃb̃

)
, (4.30)

so that (4.16) becomes

(s−1)[a
ã(

Ξ

F−1)A]
Ã(s−1)[b

b̃

[
(

Ξ

F−1)B]
B̃

(
λgãb̃gb̃B̃ + µgãb̃gÃB̃ + µgãB̃gÃb̃

)
+ 8b̃0(

Ξ

F−1)BB̃|C̃

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃

) ]
= 0 .

(4.31)

4.3 Circular cylindrical and spherical cloaks

We work with cylindrical (R,Θ, Z) and spherical (R,Θ,Φ) coordinates, with Θ and Φ being the azimuthal
and polar angles, respectively. In both cases, the cloaking map is radial, and is represented by a function R̃ =

f(R), so that one has
Ξ

F = diag(f ′(R), 1, 1). As for the shifters, from (4.2) one obtains s = diag(1, R/f(R), 1)
for the cylindrical case, while (4.3) gives the spherical case s = diag(1, R/f(R), R/f(R)). The metric tensor
in the physical body has the representations g = diag(1, R2, 1) and g = diag(1, R2, R2 sin2 Θ) in cylindrical
and spherical coordinates, respectively, while the ones in the virtual body read g̃ = diag(1, f(R)2, 1) and
g̃ = diag(1, f(R)2, f(R)2 sin2 Θ). We show that the conditions (4.17) cannot be satisfied for either a circular
cylindrical or a spherical cloak when a radial cloaking map is utilized (see Fig. 4). Let us expand (4.31) for
a = b = 1, and A = B = 3:[

(s−1)1
ã(

Ξ

F−1)3
Ã − (s−1)3

ã(
Ξ

F−1)1
Ã

]{
(s−1)1

b̃

[
(

Ξ

F−1)3
B̃ ÃãÃb̃B̃ + (

Ξ

F−1)3
B̃|C̃ B̃ãÃb̃B̃C̃

]
− (s−1)3

b̃

[
(

Ξ

F−1)1
B̃ ÃãÃb̃B̃ + (

Ξ

F−1)1
B̃|C̃ B̃ãÃb̃B̃C̃

]}
= 0 .

(4.32)
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Knowing that in the spherical (or cylindrical) coordinates and for a radial cloaking map s−1 and
Ξ

F−1 have
diagonal representations, the above relation is simplified to read[

(s−1)1
ã(

Ξ

F−1)3
Ã − (s−1)3

ã(
Ξ

F−1)1
Ã

]{
(s−1)1

1

[
(

Ξ

F−1)3
3 ÃãÃ13 + (

Ξ

F−1)3
3|C̃ B̃ãÃ13C̃

]
− (s−1)3

3

[
(

Ξ

F−1)1
1 ÃãÃ31 + (

Ξ

F−1)1
1|C̃ B̃ãÃ31C̃

]}
= 0 .

(4.33)

Hence

(s−1)1
1(

Ξ

F−1)3
3

{
(s−1)1

1

[
(

Ξ

F−1)3
3 Ã1313 + (

Ξ

F−1)3
3|C̃ B̃1313C̃

]
− (s−1)3

3

[
(

Ξ

F−1)1
1 Ã1331 + (

Ξ

F−1)1
1|C̃ B̃1331C̃

]}
−(s−1)3

3(
Ξ

F−1)1
1

{
(s−1)1

1

[
(

Ξ

F−1)3
3 Ã3113 + (

Ξ

F−1)3
3|C̃ B̃3113C̃

]
− (s−1)3

3

[
(

Ξ

F−1)1
1 Ã3131 + (

Ξ

F−1)1
1|C̃ B̃3131C̃

]}
= 0 .

(4.34)

Figure 4: Circular cylindrical (left) and spherical (right) holes and cloaks. The cloaking maps are assumed to be radially
symmetric.

Note that from (4.30), and from the expression of the metric g̃ in both cylindrical and spherical coordi-
nates, one has Ã1313 = Ã1331 = Ã3113 = Ã3131 = µ̃/C > 0, with C = 1 and C = f(R)2 sin2 Θ in cylindrical
and spherical cloaking, respectively. Moreover, noting that the metric tensor in both cylindrical and spherical

coordinates is diagonal, from (4.26) one can easy see that B̃1313C̃ = B̃1331C̃ = B̃3113C̃ = B̃3131C̃ = 0. Hence4

(s−1)1
1(

Ξ

F−1)3
3

[
(s−1)1

1(
Ξ

F−1)3
3 − (s−1)3

3(
Ξ

F−1)1
1

]
−(s−1)3

3(
Ξ

F−1)1
1

[
(s−1)1

1(
Ξ

F−1)3
3 − (s−1)3

3(
Ξ

F−1)1
1

]
= 0 .

(4.35)

Therefore, (
Ξ

F−1)3
3(s−1)1

1 = (s−1)3
3(

Ξ

F−1)1
1. As

Ξ

F−1 = diag(1/f ′(R), 1, 1), and s−1 = diag (1, f(R)/R, 1)
and s−1 = diag (1, f(R)/R, f(R)/R), in the cylindrical and spherical coordinates, respectively, one must
have f(R) = R, i.e., Ξ = id. This means that cloaking is not possible.

4.4 Spheroidal cloaks

Next we consider prolate and oblate spheroidal holes and consider cloaking maps that respect the sphenoidal
symmetry in the sense that they map a spheroid to another confocal spheroid (see Fig. 5). This will be a
generalization of the spherical cloak problem.

4This is identical to the corresponding relation for centrosymmetric gradient solids investigated in [Yavari and Golgoon,
2019].
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Figure 5: Prolate (left) and oblate (right) spheroidal holes and cloaks. The cloaking maps are assumed to be spheroidally-
symmetric. The cloaking map on the left shrinks a spheroidal hole to a needle-like hole. The one on the right shrinks the
spheroidal hole to a disk-shaped hole.

Proposition 4.2. Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic
transformation cloaking is not possible for either prolate or oblate spheroidal holes using any spheroidally-
symmetric cloaking map.

Proof. Let us consider a prolate spheroidal hole with focal distance a. The natural coordinates are the
prolate spheroidal coordinates (H,Θ,Φ), 0 ≤ H < ∞, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π defined as [Moon and
Spencer, 2012] 

X = a sinhH sin Θ cos Φ,

Y = a sinhH sin Θ sin Φ,

Z = a coshH cos Θ.

(4.36)

Note that H = const are prolate spheroids. We consider a cloaking map of the form (H̃, Θ̃, Φ̃) = Ξ(H,Θ,Φ) =
(f(H),Θ,Φ). The shifter map reads

s =


2 sinhH sinh

˜
H cos2 Θ+coshH cosh

˜
H sin2 Θ

cosh 2
˜
H−cos 2Θ

2 sin Θ cos Θ sinh(H− ˜
H)

cosh 2
˜
H−cos 2Θ

0

sin 2Θ sinh(H− ˜
H)

cos 2Θ−cosh 2
˜
H

2 sinhH sinh
˜
H cos2 Θ+coshH cosh

˜
H sin2 Θ

cosh 2
˜
H−cos 2Θ

0

0 0 sinhH csch H̃

 . (4.37)

The spatial metric has the following representation

g =

a2(sinh2H + sin2 Θ) 0 0

0 a2(sinh2H + sin2 Θ) 0

0 0 a2 sinh2H sin2 Θ

 . (4.38)

The cloaking derivative map has the coordinate representation

Ξ

F =

f ′(H) 0 0
0 1 0
0 0 1

 . (4.39)

The (a,A, b, B) = (2, 3, 2, 3) component of the constraint (4.31) reads

µ [cothH − coth(f(H))]
2

a4(cos 2Θ− cosh 2H) [cos 2Θ− cosh(2f(H))]
= 0 . (4.40)

Therefore, coth(f(H)) = cothH, or f(H) = H, i.e., cloaking is not possible.
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In the case of an oblate spheroidal hole, one uses the oblate spheroidal coordinates (H,Θ,Φ), 0 ≤ H <
∞, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π defined as [Moon and Spencer, 2012]

X = a coshH sin Θ cos Φ,

Y = a coshH sin Θ sin Φ,

Z = a sinhH cos Θ.

(4.41)

The spatial metric has the following representation

g =

a2(cosh2H − sin2 Θ) 0 0

0 a2(cosh2H + sin2 Θ) 0

0 0 a2 cosh2H sin2 Θ

 . (4.42)

We again consider a cloaking map of the form (H̃, Θ̃, Φ̃) = Ξ(H,Θ,Φ) = (f(H),Θ,Φ). In this case, the
(a,A, b, B) = (2, 3, 2, 3) component of the constraint (4.31) reads

µ [tanhH − tanh(f(H))]
2

a4(cos 2Θ + cosh 2H) [cos 2Θ + cosh(2f(H))]
= 0 . (4.43)

Therefore, tanh(f(H)) = tanhH, or f(H) = H, i.e., cloaking is not possible.

4.5 Non-symmetric cloaks

Now one may ask whether cloaking would be possible for less symmetric holes and cloaking maps. From
(4.17) we have[

δaã(
Ξ

F−1)AÃ − δ
A
ã (

Ξ

F−1)aÃ

]{
δb
b̃

[
(

Ξ

F−1)BB̃ ÃãÃb̃B̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃb̃B̃C̃
]

− δB
b̃

[
(

Ξ

F−1)bB̃ ÃãÃb̃B̃ + (
Ξ

F−1)bB̃|C̃ B̃ãÃb̃B̃C̃
]}

= 0 .
(4.44)

Or [
δaã(

Ξ

F−1)AÃ − δ
A
ã (

Ξ

F−1)aÃ

]{ [
(

Ξ

F−1)BB̃ ÃãÃbB̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃbB̃C̃
]

−
[
(

Ξ

F−1)bB̃ ÃãÃBB̃ + (
Ξ

F−1)bB̃|C̃ B̃ãÃBB̃C̃
]}

= 0 .
(4.45)

Thus

δaã(
Ξ

F−1)AÃ

{[
(

Ξ

F−1)BB̃ ÃãÃbB̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃbB̃C̃
]
−
[
(

Ξ

F−1)bB̃ ÃãÃBB̃ + (
Ξ

F−1)bB̃|C̃ B̃ãÃBB̃C̃
]}

− δAã (
Ξ

F−1)aÃ

{[
(

Ξ

F−1)BB̃ ÃãÃbB̃ + (
Ξ

F−1)BB̃|C̃ B̃ãÃbB̃C̃
]
−
[
(

Ξ

F−1)bB̃ ÃãÃBB̃ + (
Ξ

F−1)bB̃|C̃ B̃ãÃBB̃C̃
]}

= 0 .

(4.46)
Hence

(
Ξ

F−1)AÃ

{[
(

Ξ

F−1)BB̃ ÃaÃbB̃ + (
Ξ

F−1)BB̃|C̃ B̃aÃbB̃C̃
]
−
[
(

Ξ

F−1)bB̃ ÃaÃBB̃ + (
Ξ

F−1)bB̃|C̃ B̃aÃBB̃C̃
]}

− (
Ξ

F−1)aÃ

{[
(

Ξ

F−1)BB̃ ÃAÃbB̃ + (
Ξ

F−1)BB̃|C̃ B̃AÃbB̃C̃
]
−
[
(

Ξ

F−1)bB̃ ÃAÃBB̃ + (
Ξ

F−1)bB̃|C̃ B̃AÃBB̃C̃
]}

= 0 .

(4.47)
Note that if either a = A or b = B the above relations are trivial. We assume that a 6= A, and b 6= B.

Let us consider an arbitrary cloaking transformation whose inverse derivative map
Ξ

F has the following
representation in Cartesian coordinates

Ξ

F−1 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (4.48)
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The covariant derivative of
Ξ

F−1 has the following representation:

∇
Ξ

F−1 =



F111 F121 F131

F211 F221 F231

F311 F321 F331


F112 F122 F132

F212 F222 F232

F312 F322 F332


F113 F123 F133

F213 F223 F233

F313 F323 F333




. (4.49)

Taking into account the compatibility equations, ∇
Ξ

F−1 has the following representation:

∇
Ξ

F−1 =



F111 F112 F113

F211 F212 F213

F311 F312 F313


F112 F122 F123

F212 F222 F223

F312 F322 F323


F113 F123 F133

F213 F223 F233

F313 F323 F333




. (4.50)

As was mentioned earlier, (4.16), or its equivalent variants (4.17), (4.31) and (4.47), provide a total of 81
equations, of which only 9 are independent. When b̃0 = 0 the number of equations reduces to 6. After
plugging (4.30) and (4.28) into (4.47), one obtains the following nine independent equations:5

(3λ+ 2µ)(a12 − a21)2 + µ
[
3(a11 − a22)2 + 3(a2

13 + a2
23) + 3(a12 + a21)2 + (a12 − a21)2

]
+ β[(a11 − a22)(F123 + F213) + 2(a12F223 − a21F113)

+ a23(F111 − F133 + F212)− a13(F112 + F222 − F233)] = 0,

(4.51)

(3λ+ 2µ)(a23 − a32)2 + µ
[
3(a22 − a33)2 + 3(a2

21 + a2
31) + 3(a23 + a32)2 + (a23 − a32)2

]
+ β[(a22 − a33)(F213 + F312) + 2(a23F313 − a32F212)

+ a31(−F211 + F222 + F323)− a21(F223 − F311 + F333)] = 0,

(4.52)

(3λ+ 2µ)(a13 − a31)2 + µ
[
3(a11 − a33)2 + 3(a2

12 + a2
32) + 3(a13 + a31)2 + (a13 − a31)2

]
+ β[(a33 − a11)(F123 + F312) + 2(a31F112 − a13F323)

+ a12(F113 − F322 + F333)− a32(F111 − F122 + F313)] = 0,

(4.53)

3µ [−a11(a23 + a32) + a12a13 + 2a21a31 + a22a32 + a23a33] + 3λ(a12 − a21)(a13 − a31)

+ β[(a11 − a22)(F111 − F122 + F313) + a13(F113 − F322 + F333)

+ 2a12(F112 + F323) + 2a21F112 + a23(F123 + F312)] = 0,

(4.54)

3µ [−a11(a23 + a32) + a12a13 + 2a21a31 + a22a32 + a23a33] + 3λ(a12 − a21)(a13 − a31)

+ β[(a33 − a11)(F111 − F133 + F212)− a12(F112 + F222 − F233)

− 2a13(F113 + F223)− 2a31F113 − a32(F123 + F213)] = 0,

(4.55)

5Symbolic computations were done with Mathematica Version 12.0.0.0, Wolfram Research, Champaign, IL.
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− 3µ [a11a31 + 2a12a32 − a22(a13 + a31) + a13a33 + a21a23] + 3λ(a12 − a21)(a23 − a32)

+ β[(a11 − a22)(F211 − F222 − F323) + a23(F223 − F311 + F333)

+ 2a12F212 + a13(F213 + F312) + 2a21(F212 + F313)] = 0,

(4.56)

− 3µ [a11a31 + 2a12a32 − a22(a13 + a31) + a13a33 + a21a23] + 3λ(a12 − a21)(a23 − a32)

+ β[−a21(F111 − F133 + F212)− (a22 − a33)(F112 + F222 − F233)

− 2a23(F113 + F223)− a31(F123 + F213)− 2a32F223] = 0,

(4.57)

3µ [a11a21 − a33(a12 + a21) + a12a22 + 2a13a23 + a31a32] + 3λ(a13 − a31)(a23 − a32)

+ β[(a33 − a11)(F223 − F311 + F333) + a32(−F211 + F222 + F323)

+ a12(F213 + F312) + 2a13F313 + 2a31(F212 + F313)] = 0,

(4.58)

3µ [a11a21 − a33(a12 + a21) + a12a22 + 2a13a23 + a31a32] + 3λ(a13 − a31)(a23 − a32)

+ β[(a22 − a33)(F113 − F322 + F333)− a31(F111 − F122 + F313)

− a21(F123 + F312)− 2a23F323 − 2a32(F112 + F323)] = 0,

(4.59)

where β = 8b̃0. Note that b̃20 is bounded by a product of µ̃ and the sixth-order elastic constants [Papani-
colopulos, 2011]. In the above system of PDEs one can only assume that β 6= 0 as the sixth-order elastic
constants do not appear in the constraints (4.47).

Subtracting Eq.(4.55) from Eq.(4.54), Eq.(4.57) from Eq.(4.56), and Eq.(4.59) from Eq.(4.58), and as-
suming that β 6= 0 one obtains the following system of PDEs:

− a11(F223 − F311 + F333)− a22(F113 − F322 + F333) + a33(F113 + F223 − F311 − F322 + 2F333)

+ a31(F111 − F122 + 2F212 + 3F313) + a32(2F112 − F211 + F222 + 3F323)

+ a12(F213 + F312) + a21(F123 + F312) + 2(a13F313 + a23F323) = 0,

(4.60)

a11(F211 − F222 − F323)− a33(F112 + F222 − F233) + a22(F112 − F211 + 2F222 − F233 + F323)

+ a21(F111 − F133 + 3F212 + 2F313) + a23(2F113 + 3F223 − F311 + F333)

+ 2a12F212 + 2a32F223 + a13(F213 + F312) + a31(F123 + F213) = 0,

(4.61)

a22(F111 − F122 + F313) + a33(F111 − F133 + F212) + a11(−2F111 + F122 + F133 − F212 − F313)

− a12(3F112 + F222 − F233 + 2F323)− a13(3F113 + 2F223 − F322 + F333)

− 2a21F112 − 2a31F113 − a23(F123 + F312)− a32(F123 + F213).

(4.62)

The above system of nonlinear PDEs are too complicated to solve analytically. However, we can analytically
study cloaking an arbitrary cylindrical hole (see Fig. 6).

Figure 6: A body with a cylindrical hole.
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Proposition 4.3. Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic trans-
formation cloaking is not possible for any cylindrical hole (not necessarily circular).

Proof. Let us consider a cylindrical hole (not necessarily circular) that is covered by a cylindrical cloak. Let
us assume that in the Cartesian coordinates (X1, X2, X3), the X3 axis is the axis of the cylindrical hole. In
this case the cloaking map has the form Ξ(X1, X2, X3) = (X̃1, X̃2, X̃3) = (Ξ1(X1, X2),Ξ2(X1, X2), X3).

Therefore,
Ξ

F−1 and its covariant derivative have the following representations:

Ξ

F−1 =

a11 a12 0
a21 a22 0
0 0 1

 , ∇
Ξ

F−1 =



F111 F112 0

F211 F212 0

0 0 0


F112 F122 0

F212 F222 0

0 0 0


0 0 0

0 0 0

0 0 0




. (4.63)

Eq.(4.51) is simplified to read

(3λ+ 2µ)(a12 − a21)2 + µ
[
3(a11 − a22)2 + 3(a12 + a21)2 + (a12 − a21)2

]
= 0. (4.64)

Knowing that µ > 0, and 3λ + 2µ > 0, one concludes that a12 = a21 = 0, and a11 = a22. Now, Eq.(4.52) is
simplified to read 3µ(a22 − 1)2 = 0, which implies that a22 = 1. The other constraints are trivially satisfied.
Therefore, Ξ = id, which implies that cloaking is not possible.

We suspect that transformation cloaking in dimension three is not possible for a cavity of any shape.

Conjecture 4.4. Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic
transformation cloaking is not possible for a hole of any shape in dimension three.

5 Conclusions

In this paper we investigated the possibility of transformation cloaking in non-centrosymmetric gradient
solids. There have been claims in the literature that chirality can be utilized in achieving cloaking from
stress waves. We formulated the transformation cloaking problem in terms of two equivalent boundary-value
problems. We showed that transformation cloaking is not possible for any cylindrical hole (not necessarily
circular). The obstruction to transformation cloaking is the balance of angular momentum. We were able to
prove this no-go theorem for holes with the topology of the 2-sphere only for spheroidal holes and cloaking
maps that preserve the spheroidal symmetry. We conjecture that exact transformation cloaking is not
possible for a hole of any shape. Some of the existing works in the literature show approximate cloaking
for some particular examples. They are, however, misleading as they are i) based on fundamentally flawed
formulations that do not consider all the balance laws, and ii) one has no control over the errors. Our
conclusion is that the path forward for engineering applications of elastodynamic cloaking is approximate
cloaking formulated as an optimal design problem.
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