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Abstract

An elastic cloak hides a hole (or an inhomogeneity) from elastic fields. In this paper, a formulation
of the optimal design of elastic cloaks based on the adjoint state method, in which the balance of linear
momentum is enforced as a constraint, is presented. The design parameters are the elastic moduli of the
cloak, and the objective function is a measure of the distance between the solutions in the physical and
in the virtual bodies. Both the elastic medium and the cloak are assumed to be made of isotropic linear
elastic materials. However, the proposed formulation can easily be extended to anisotropic solids. In order
to guarantee smooth inhomogeneous elastic moduli within the cloak a penalization term is added to the
objective function. Mixed finite elements are used for discretizing the weak formulation of the optimization
problem. Several numerical examples of optimal elastic cloaks designed for both single and multiple loads are
presented. We consider different geometries and loading types and observe that in some cases the optimal
elastic cloaks for cloaking holes (cavities) are made of auxetic materials.
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1 Introduction

Cloaking objects from different types of waves has been a problem of interest for decades. In elasticity some
original ideas related to cloaking can be found in [Gurney, 1938, Reissner and Morduchow, 1949, Mansfield, 1953]
on reinforced holes in elastic sheets, and in [Hashin, 1962, Hashin and Shtrikman, 1963, Hashin, 1985, Hashin
and Rosen, 1964, Benveniste and Milton, 2003] on neutral inhomogeneities. One approach to cloaking is to use
the invariance of the governing equations of a field theory under certain transformations. This has been referred
to as transformation cloaking in the literature. In the case of electromagnetism the first works on transformation
cloaking are due to Pendry et al. [2006] and Leonhardt [2006]. In the literature of elastic transformation cloaking
there have been many inconsistent formulations in the past fifteen years, which were recently critically reviewed
in [Yavari and Golgoon, 2019] and [Golgoon and Yavari, 2021]. It is now known that exact elastodynamic (and
elastostatic) transformation cloaking is not possible; the obstruction to transformation cloaking is the balance
of angular momentum. More specifically, the impossibility of elastodynamic (and elastostatic) transformation
cloaking has been proved for classical linear elastic solids, gradient solids (both centrosymmetric and non-
centrosymmetric), and (generalized) Cosserat solids [Yavari and Golgoon, 2019, Sozio et al., 2021]. It turns
out that exact transformation cloaking is not possible even for elastic plates [Golgoon and Yavari, 2021]. The
following are the no-go theorems of elastodynamic transformation cloaking:

• Nonlinear elastodynamic transformation cloaking is not possible regardless of the shape of the hole and the
cloak [Yavari and Golgoon, 2019].

• Elastodynamic transformation cloaking is not possible in the setting of classical linear elasticity regardless
of the shape of the hole and the cloak [Yavari and Golgoon, 2019].

• In the small-on-large theory, i.e., linearized elasticity with respect to a pre-stressed configuration, elastody-
namic transformation cloaking is not possible regardless of the shape of the hole and the cloak [Yavari and
Golgoon, 2019].

• Assuming that the virtual body is isotropic and centro-symmetric, elastodynamic transformation cloaking
is not possible for gradient elastic solids in either 2D or 3D for a hole (cavity) of any shape [Yavari and
Golgoon, 2019].

• Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic transformation cloaking
is not possible for any cylindrical hole (not necessarily circular) [Sozio et al., 2021].

• Elastodynamic transformation cloaking is not possible for linear (generalized) Cosserat elastic solids in
dimension two [Yavari and Golgoon, 2019].

• Elastodynamic transformation cloaking is not possible for a spherical cavity using a spherical cloak in linear
(generalized) Cosserat elastic solids [Yavari and Golgoon, 2019].

These no-go theorems imply that one cannot use transformation methods to design cloaks that can work for all
possible loadings. The engineering solution for elastic cloaking applications is to resort to approximate cloaking
formulated as an optimal design problem. This is what is done in the present paper.

There have been recent systematic studies of the optimal design of acoustic cloaks in the literature [Sanders
et al., 2018, Chen et al., 2021, Cominelli et al., 2022]. There are no such systematic formulations in the case of
elasticity. Fachinotti et al. [2018] approximated a 2D elasticity problem by displacement-based finite elements
and formulated the optimal design of an elastic cloak at the level of finite elements. Each finite element has
a vector of design parameters that describe the microstructure in that element. Sanders et al. [2021] used an
optimization method to design 2D elastostatic cloaks for lattice materials. In a recent paper, Wang et al. [2022]
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proposed a discretized formulation that allowed them to consider different shapes of voids and cloaks, as well
as different boundary conditions and loadings. They used a data-driven approach for the design of unit cell
tessellations that best fit the results of the optimization. There have also been recent efforts in the literature in
using topology optimization techniques for the design of elastic cloaks [Ota and Fujii, 2022].

In this paper, we formulate the optimal design of elastic cloaks as a partial differential equation (PDE)-
constrained optimization problem. The design variables are the elastic properties of the cloak. We derive both
the strong and weak governing equations of the optimal design problem. A class of mixed finite elements are
used to discretize the weak form of the governing equations. We will present several examples of optimal elastic
cloaks for both single and multiple loads.

This paper is structured as follows. In §2 the problem of elastic cloaking for a body with holes/inhomogeneities
is defined and a simple 1D example is discussed. The PDE-constrained optimization problem of elastic cloaking
is formulated in §3. Both the strong and weak governing equations of the optimization problem are derived. In
§4 the optimization problem is discretized using mixed finite elements. Several numerical examples are presented
and discussed in §5. Conclusions are given in §6.

2 Optimal Design of a Static Elastic Cloak

In this section we formulate elastostatic cloaking as an optimal design problem. We introduce the design
variables, define an objective function, and discuss a simple axisymmetric example.

2.1 Design variables and objective functions

Let us consider a body B made of a linear elastic solid. We assume that there is an object occupying a region
H in this body. This object can be a hole, a cavity, an inhomogeneity or a combination of the three, while the
set H can be either simply-connected or non-simply-connected. Our goal is to design a cloak that encloses the
object and hides it from static loads as much as possible. Let us denote the cloaking region by C ⊂ B. We
assume that in the physical body the elastic constants Cabcd and the mass density ρ0 in the exterior domain
B̊ = B \C are given and are uniform. The virtual body has the same uniform mass density and elastic constants
everywhere (see Fig. 1).

We denote the boundary of the cloak by ∂oC, thus ∂C = ∂oC ∪ ∂H. In the optimal design of a static elastic
cloak the goal is to find the optimal elastic moduli inside the cloak. We assume the following traction and
displacement boundary conditions

σn̂ = t̄, on ∂NB,
u = ū, on ∂DB,

(2.1)

where ∂B = ∂NB ∪ ∂DB, and ∂NB ∩ ∂DB = ∅. In the case of a hole or a cavity, one can assume traction-free
∂H, while in the case of inhomogeneities, one would enforce the continuity of the traction vector. Other than
the external traction forces we assume a given body force b defined on B̊.

We define the corresponding virtual body B̃ to have the geometry of the (physical) body B but without any
holes or inhomogeneities, i.e., B̃ = B ∪ H. We also assume that the virtual body has the mass density and

elastic constants identical to those of the physical body outside the cloak. Outside the cloak, i.e., in ˚̃B = B̊, the
virtual body is under the same traction and displacement boundary conditions as the physical body is. Also,
the body force distributions in the two problems are identical in the region outside the cloak.

The design parameters are the elastic constants in the cloak, i.e., Cabcd(x), x ∈ C. Given b, t̄, ū, we would
like the mechanical responses of the two bodies to be as close as possible outside the cloak (the exterior domain
B̊ or a subset of it). There are several possibilities for the objective functions. Examples are minimizing the
difference between displacement fields, stress fields, or energies. The objective function that we will be using is

g =
1

2

∫
B\C
‖u− ũ‖2dv , (2.2)

where ‖u − ũ‖2= (u − ũ) · (u − ũ). Note that unlike the classical minimum compliance problem [Jog et al.,
1994, Bendsøe and Sigmund, 2013] the objective function in the elastic cloaking problem is not defined on the
entire body. For given boundary conditions, the virtual body has a unique displacement field that can be easily
calculated and is independent of the design parameters. The optimization problem is written as

inf
C∈Ela(C)

g[C], (2.3)

3



Figure 1: (a) Assuming a fixed cloak, the design parameters are the elastic moduli in the cloak C. (b) The virtual body is without
any holes, cavities or inhomogeneities. The optimal elastic constants of the cloak make the response of the physical body in B \ C
as close as possible to that in the same set in the virtual body.

where Ela(C) is the set of elasticity tensors defined in the cloaking region. Assuming that the cloak is isotropic1

but inhomogeneous, in Cartesian coordinates Cabcd(x) = λ(x) δabδcd + µ(x)(δacδbd + δadδbc),2 where the Lamé
constants satisfy the constraints µ(x) > 0, and 3κ(x) = 2µ(x) + 3λ(x) > 0.

2.2 Example of an infinitely-long hollow solid cylinder

Let us consider an infinitely-long hollow solid cylinder with inner and outer radii ri and ro, respectively, as
shown in Fig. 2 (top left). The outer radius of the cloak is denoted by rc, with ri < rc < ro. The cylinder is
under a far-field traction σ∞, i.e., σrr(ro) = σ∞, while the inner boundary is traction-free. Assuming radial
displacements u = u(r) êr, the non-zero strain components are εrr(r) = u′(r) and εθθ(r) = r u(r). In cylindrical
coordinates (r, θ, z) the non-zero elastic moduli for an isotropic solid are

Crrrr(r) = κ(r) +
4

3
µ(r), Crrθθ(r) =

1

r2

[
κ(r)− 2

3
µ(r)

]
, Cθθθθ(r) =

1

r4

[
κ(r) +

4

3
µ(r)

]
, (2.4)

while the only non-trivial equilibrium equation is3

d

dr
σrr +

1

r
σrr − rσθθ = 0 . (2.5)

The virtual problem. The virtual body is a solid cylinder with uniform elastic constants κ̊ and µ̊. In this
case the equilibrium equation (2.5) simplifies to read

r2ũ′′(r) + rũ′(r)− ũ(r) = 0 . (2.6)

Solutions of (2.6) have the form ũ(r) = C̃1r + C̃2/r. Knowing that the displacement is bounded as r → 0, we
conclude that C̃2 = 0, while the traction boundary condition σrr(ro) = σ∞ gives

C̃1 =
3σ∞

2(3̊κ+ µ̊)
, ũ(r) =

3σ∞r

2(3̊κ+ µ̊)
, σ̃rr(r) ≡ σ∞ . (2.7)

The physical problem. The physical body is assumed to have the uniform elastic constants µ̊ and κ̊ for
rc < r < ro. In this region, Eq. (2.6) holds, and hence one has u(r) = C1r + C2/r. The traction boundary
condition at r = ro implies that

C2 =
3̊κ+ µ̊

µ̊
r2
oC1 −

σ∞

2µ̊
r2
o . (2.8)

1Extending this analysis to anisotropic cloaks would be straightforward.
2In general curvilinear coordinates, Cabcd(x) = λ(x) gabgcd + µ(x)(gacgbd + gadgbc), where gab are components of the inverse

metric tensor of the Euclidean ambient space.
3The physical components of the Cauchy stress σ̂ab are related to the components of the Cauchy stress σab as σ̂ab =

√
gaa
√
gbb σ

ab

(no summation) [Truesdell, 1953]. Recall that the non-zero components of the spatial metric in polar coordinates are grr = 1 and
gθθ = r2. Thus, σ̂rr = σrr and σ̂θθ = r2σθθ. In terms of the physical components, one recovers the familiar form of the equilibrium
equation in the literature: d

dr
σ̂rr+ 1

r
(σ̂rr−σ̂θθ) = 0. It should also be noted that in (2.4) we are showing the curvilinear components

of the elastic constants and not their physical components.
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For ri < r < rc, the elastic moduli µ(r) and κ(r) are the design parameters. In this region, Eq. (2.6) is no
longer valid, as (2.5) is written as

u′′(r) +

[
3κ′(r) + 4µ′(r)

3κ(r) + 4µ(r)
+

1

r

]
u′(r) +

1

r

[
3κ′(r)− 2µ′(r)

3κ(r) + 4µ(r)
− 1

r

]
u(r) = 0 . (2.9)

The objective function. We consider an objective function as defined in (2.2), which in this case reads
g = g[µ(r), κ(r)]. It should be noted that g is obtained by integrating ‖u(r) − ũ(r)‖2 over [rc, ro]. Therefore,
Eq. (2.8) allows one to write the objective function in the form g = g(C1). Using (2.7) one obtains

g(C1) = π
(
r2
o − r2

c

) 3µ̊ r2
c + (3̊κ+ µ̊) r2

o

2µ̊(3̊κ+ µ̊) r2
c

[
σ∞ − 2

3
(3̊κ+ µ̊)C1

]2

, (2.10)

which needs to be minimized with respect to C1. It is seen that g vanishes for the following value of C1:

C1 =
3σ∞

2(3̊κ+ µ̊)
. (2.11)

The vanishing of g implies that the physical and virtual solutions are identical, which can be checked by
plugging (2.11) into (2.8) and comparing it with (2.7). Moreover, the value given in (2.11) does not depend
on the choice of the norm that is used to define the objective function, as ‖u − ũ‖= 0 if and only if u = ũ.
Therefore, any µ(r) and κ(r), ri ≤ r ≤ rc, that satisfy the equilibrium equation (2.9), together with the
boundary conditions

u(rc) =
3σ∞

2(3̊κ+ µ̊)
rc , σrr(rc) = σ∞ , σrr(ri) = 0 , (2.12)

generate a solution that is indistinguishable from the virtual problem, and hence, constitute a “perfect cloak”.
This might suggest that the solution to the cloaking problem is not unique, as we see next.

The design variables. First we assume elastic moduli in the cloak of the type µ(r) ≡ µ̊P and κ(r) ≡ κ̊P ,
for a parameter P > 0. This allows us to study the objective function as a function of a single variable, i.e.,
g = g(P ), as shown in Fig. 2 (bottom left). The displacement field u(r) for ri < r < rc satisfies (2.6) and has
the form u(r) = D1r +D2/r. It is seen that g(P ) vanishes for

P =
3r2
i κ̊+ (3r2

c + r2
i )µ̊

3(r2
c − r2

i )µ̊
. (2.13)

Next, we consider general uniform elastic moduli µ(r) ≡ µ and κ(r) ≡ κ for ri < r < rc . In this case,
the objective function has the form g = g(κ, µ), and hence, the displacement field u(r) for ri < r < rc still
satisfies (2.6). It can be seen that g vanishes on the curve

κ = µ
−µ(r2

c + r2
i ) + (̊λ+ µ̊)(r2

c + r2
i )

µ(r2
c − r2

i )− r2
i (̊λ+ µ̊)

, (2.14)

as long as µ > 0 and κ > 0, i.e., when

r2
i (3̊κ+ µ̊)

3(r2
c − r2

i )
< µ <

(3̊κ+ µ̊)
(
3r2
c + r2

i

)
3 (r2

c − r2
i )

, (2.15)

see Fig. 2 (top right). Note that both solutions (2.13) and (2.14) for the elastic constants are independent of the
far-field load σ∞. Lastly, we assume that the elastic moduli are linear in r, and can be written as µ(r) = µ̊ P (r)
and κ(r) = κ̊ P (r), for

P (r) =
(rc − r)Pi + (r − ri)Pc

rc − ri
. (2.16)

This implies that µ(ri) = µ̊ Pi, µ(rc) = µ̊ Pc, κ(ri) = κ̊ Pi, and κ(rc) = κ̊ Pc. In this case, the objective function
can be written as g = g(Pi, Pc). Since the elastic moduli are not uniform, Eq. (2.6) is no longer valid, and one
must solve (2.9) numerically, see Fig. 2 (bottom right).
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Figure 2: Objective function for the cloaking of an infinitely-long hollow solid cylinder, with ri = 0.5, rc = 1.0, ro = 2.0, µ̊/σ∞ = 1,
κ̊/σ∞ = 1. Bottom left: Objective function g = g(P ) for the case µ(r) ≡ µ̊P and κ(r) ≡ κ̊P ; g = 0 for P as in (2.13). Top right:
Two uniform independent elastic moduli; the objective function vanishes on the curve (2.14) in the design plane κ-µ; the upper
and lower bounds (2.15) are indicated with dashed lines. Bottom right: Linear elastic moduli κ(r) = κ̊P (r) and µ(r) = µ̊P (r)
(2.16); the objective function vanishes on the curve indicated in the design plane Pi-Pc.

Remark 2.1. Yavari and Golgoon [2019] showed that, for radial deformations, exact transformation cloaking
is possible in both nonlinear4 and linearized elasticity. In transformation cloaking the reference configuration of
the physical body is mapped to the reference configuration of a virtual body, that in this case is a hollow cylinder
with inner and outer radii ε > 0 and ro, respectively. This is done using a cloaking map ξ(r, θ, z) = (f(r), θ, z),
which is such that f(ri) = ε, f(rc) = rc, f

′(rc) = 1, while for r > rc one has f(r) = r. In the case of radial
deformations in a cylindrically-symmetric body, one obtains the following elastic moduli [Yavari and Golgoon,
2019]

Crrrr(r) =
[3κ(r) + 4µ(r)] f(r)

3rf ′(r)
, Crrθθ(r) =

3κ(r)− 2µ(r)

3r2
, Cθθθθ(r) =

[3κ(r) + 4µ(r)] f(r)

3r3f ′(r)
, (2.17)

that is to be compared with (2.4). However, it can be shown that (2.17) violates the isotropy assumption.

3 Elastic Cloaking Optimization Formulation

In this section, we obtain the strong form of the governing equations associated with the optimal design problem.
Instead of working with (2.3), we choose to minimize the objective function in the space of all possible design
variables C and displacements u, while equilibrium on the entire body is enforced as a constraint. We use
the method of adjoint state. This method provides a physical interpretation of the structure of the governing
equations in the context of the method of Lagrange multipliers [Plessix, 2006].

4An underlying assumption is that radial deformations in the absence of body forces are permitted for the given energy function.
Recall that radial deformations are not universal for compressible solids [Ericksen, 1955].
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3.1 The augmented objective function

Assuming that the physical body is made of a compressible linear elastic solid, the design of an optimal elastic
cloak is written as the following PDE-constrained optimization problem

inf
u,C

g(u,C) subject to div(C∇u) + b = 0 in B ,
t̄− (C∇u)n̂ = 0 on ∂NB ,

(3.1)

where

g =
1

2
‖u− ũ‖2L2=

1

2

∫
B̊
‖u− ũ‖2 dv , (3.2)

and the displacements are restricted to those that satisfy u = ū on ∂DB. In the strong form of the governing
equations, we assume as much smoothness as needed. We will be more specific when writing the weak form of
the governing equations. It should be emphasized that in this optimization problem the displacement field is
unknown on the entire body B, while C is unknown only inside the cloak; outside the cloak C = C̊, and inside
the inhomogeneities (if there are any) C is given. It should also be mentioned that the domain over which the
integral in (3.2) is evaluated does not need to be the entire set B̊; it can be reduced to a subset B̊M ⊂ B̊ in which
the effects of the cloak are to be measured. In order to solve (3.1), we define the following objective function

f =
1

2

∫
B̊
‖u− ũ‖2 dv +

∫
B
γ · [div(C∇u) + b] dv +

∫
∂NB

γ · [t̄− (C∇u)n̂] da , (3.3)

where the Lagrange multiplier γ, which is associated with the equilibrium equations, is an adjoint displacement
variable, see §A. Later in this section we will prove that it satisfies the boundary condition γ|∂DB= 0.

The way the functional (3.3) is written there is no control over how much the elastic constants of the cloak
deviate from those of the virtual body. In order to ensure that the cloak is not much softer or stiffer than the
outside medium we would need to add an extra term that penalizes large deviations from the elastic constants
of the outside medium.5 We would also like to avoid abrupt changes of the elastic moduli of the cloak by adding
a penalizing term involving some norm of ∇C. Suppose dC(C, C̊) is the distance between the elasticity tensor
of the cloak and that of the virtual body, where dC(., .) is a Sobolev metric that will be specified for isotropic
cloaks in the following. The modified objective function is defined as

f =
k

2

∫
B̊
‖u− ũ‖2 dv +

1

2
d2

C(C, C̊) +

∫
B
γ · [div(C∇u) + b] dv +

∫
∂NB

γ · [t̄− (C∇u)n̂] da , (3.4)

where the first term is multiplied by a constant k > 0 to have a comparable value to d2
C(C, C̊). We later use k

as a control parameter in the minimization scheme, see §5. The minimization problem (3.1) is now rewritten as

inf
C,u,γ

f(C,u,γ) . (3.5)

3.2 The design space

We assume that both the virtual body and the cloak are made of isotropic solids. Positive-definiteness of C is
equivalent to the following inequalities in the cloak:

µ(x) > 0 , and κ(x) > 0 . (3.6)

Similarly, outside the cloak one has µ̊ > 0, and κ̊ > 0. It is possible to eliminate the inequality constraints (3.6)
by using a change of variables for the unknown elastic constants. Using an idea similar to what was used in
designing approximate acoustic cloaks [Chen et al., 2021, Cominelli et al., 2022], let us assume that

µ(x) = µ̊ e−ξ(x) , κ(x) = κ̊ e−η(x) . (3.7)

Knowing that µ̊ > 0 and κ̊ > 0, one has µ(x) > 0 and κ(x) > 0 for any functions ξ(x) and η(x). Instead
of using (µ(x), κ(x)) as design parameters with two inequality constraints, one can use (ξ(x), η(x)) without
any constraints.6 Hence, one can uniquely identify each isotropic elasticity tensor C(x) with a vector field

v(x) = (ξ(x), η(x)) with values in R2. Notice that a constant elasticity tensor C̊ in the outside region B̊
5This extra term is standard in optimal control [Tröltzsch, 2010].
6Another choice for the change of variables is µ(x) = µ̊ ξ2(x), and κ(x) = κ̊ η2(x).
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corresponds to v ≡ 0. Clearly, penalizing large deviations from the elastic constants of the outside medium
is equivalent to penalizing the norm of v. Penalizing sharp gradients of the Lamé constants is equivalent to
penalizing sharp gradients of v, as

∇µ(x) = −µ̊ e−ξ(x)∇ ξ(x) , ∇κ(x) = −κ̊ e−η(x)∇η(x) . (3.8)

Therefore, we define the following metric in the design space

d2
C(C1,C2) = ‖v1 − v2‖2H1 , (3.9)

where ‖·‖H1 is any H1-equivalent Sobolev norm. For two isotropic elasticity tensors C1 and C2 corresponding
to the pairs (ξ1, η1) and (ξ2, η2), we choose the following metric

d2
C(C1,C2) =

∫
C

[
m1(ξ1 − ξ2)2 +m2(η1 − η2)2

]
dv +

∫
C

[
α1‖∇(ξ1 − ξ2)‖2+α2‖∇(η1 − η2)‖2

]
dv , (3.10)

where m1, m2, α1, and α2 are some positive constants. In §B we prove that dC is indeed a metric. Hence, the
second term in (3.4) reads

d2
C(C, C̊) =

∫
C

[
m1ξ

2 +m2η
2
]
dv +

∫
C

[
α1‖∇ξ‖2+α2‖∇η‖2

]
dv . (3.11)

3.3 The strong form of the governing equations

We solve (3.5) by using the methods of calculus of variations. We start by taking C-variations of the objective
function.

C-variations. Plugging (3.11) in (3.4) and taking variations with respect to ξ and η, one can write

δCf =

∫
C

(m1ξ δξ +m2η δη) dv+

∫
C

[α1∇ξ · ∇δξ + α2∇η · ∇δη] dv+

∫
B
γ ·div(δC∇u) dv−

∫
∂NB

γ · (δC∇u)n̂ da .

(3.12)
Note that the second term in (3.12) can be written as∫
C

[α1∇ξ · ∇δξ + α2∇η · ∇δη] dv =

∫
∂C

(α1∇ξ · n̂ δξ + α2∇η · n̂ δη) da−
∫
C

(
α1∇2ξ δξ + α2∇2η δη

)
dv . (3.13)

For the last two terms in (3.12) one has∫
B
γ · div(δC∇u) dv −

∫
∂NB

γ · (δC∇u)n̂da

=

∫
B

div[(δC∇u)γ] dv −
∫
B
∇γ : δC∇u dv −

∫
∂NB

γ · (δC∇u)n̂da

=

∫
∂NB

(δC∇u)γ · n̂da−
∫
C
∇γ : δC∇u dv −

∫
∂NB

γ · (δC∇u)n̂da

= −
∫
C
∇γ : δC∇udv ,

(3.14)

where use was made of the fact that δC|B\C= 0, and γ = 0 on ∂DB (as is shown later in this section). Note
that for isotropic solids one has

∇γ : δC∇u = δλ(div γ)(divu) + 2δµ (sym∇γ : sym∇u)

=

(
δκ− 2

3
δµ

)
(div γ)(divu) + 2δµ (sym∇γ : sym∇u) ,

(3.15)

as Cabcd = λ δabδcd + µ(δacδbd + δadδbc) in Cartesian coordinates. Therefore, using δµ = −µ̊ e−ξ(x) δξ and
δκ = −κ̊ e−η(x) δη, one obtains

−
∫
C
∇γ : δC∇udv =

∫
C

[
−2

3
µ̊ e−ξ(div γ)(divu) + 2µ̊ e−ξ (sym∇γ : sym∇u)

]
δξ dv

+

∫
C
κ̊ e−η(div γ)(divu) δη dv ,

(3.16)
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where sym indicates the symmetric part of a second-order tensor, i.e., (symA)ab = 1
2 (Aab + Aba). We are

looking for extremal points of f, i.e., fields C,u,γ such that δCf = 0. Using the arbitrariness of both δξ and δη,
from (3.13) and (3.16) one obtains the strong form of the governing equations associated with C-variations:

−2

3
µ̊ e−ξ(div γ)(divu) + 2µ̊ e−ξ (sym∇γ : sym∇u) +m1ξ − α1∇2ξ = 0 ,

κ̊ e−η(div γ)(divu) +m2η − α2∇2η = 0 ,
(3.17)

while on ∂C we have the Neumann boundary conditions ∇ξ · n̂ = 0 and ∇η · n̂ = 0.

u-variations. Next, we take the u-variation of the objective function, which reads

δuf =

∫
B̊
k(u− ũ) · δudv +

∫
B
γ · div(C∇δu) dv −

∫
∂NB

γ · (C∇δu)n̂ da . (3.18)

The second term on the right-hand side of (3.18) can be simplified as∫
B
γ · div(C∇δu) dv =

∫
B

[div(C∇δu · γ)−∇γ : C∇δu] dv

= −
∫
B

C∇γ : ∇δudv +

∫
∂B
γ · (C∇δu)n̂ da

= −
∫
B

{
div [(C∇γ)δu]− div(C∇γ) · δu

}
dv +

∫
∂B
γ · (C∇δu)n̂da

=

∫
B

div(C∇γ) · δudv −
∫
∂NB

(C∇γ)n̂ · δuda+

∫
∂B
γ · (C∇δu)n̂ da .

(3.19)

The boundary condition u = ū on ∂DB implies that δu = 0 on ∂DB. Knowing that δu = 0 on ∂DB is not
enough to imply the vanishing of ∇δu on ∂DB, as ∇n̂δu is not specified. The last term on the right-hand side
of (3.19) can be written as∫

∂B
γ · (C∇δu)n̂ da =

∫
∂NB

γ · (C∇δu)n̂da+

∫
∂DB
∇n̂δu · [C(γ ⊗ n̂)] n̂da . (3.20)

The u-variation (3.18) now reads

δuf =

∫
B̊
k(u− ũ) · δu dv +

∫
B

div(C∇γ) · δu dv −
∫
∂NB

(C∇γ)n̂ · δu da

+

∫
∂DB
∇n̂δu · [C(γ ⊗ n̂)] n̂da = 0 .

(3.21)

Arbitrariness of ∇n̂δu on ∂DB implies that

[C(γ ⊗ n̂)] n̂ = 0 on ∂DB, (3.22)

or in components Cabcd nb γc nd = 0. Using an argument similar to that used in §A one can show that γ = 0 on
∂DB. Therefore, the u-variation (3.18) is simplified to read

δuf =

∫
B̊
k(u− ũ) · δu dv +

∫
B

div(C∇γ) · δu dv −
∫
∂NB

(C∇γ)n̂ · δu da . (3.23)

Thus, the strong form of the governing equations associated with u-variations is

div(C∇γ) = 0 in C ,

div(C̊∇γ) + k(u− ũ) = 0 in B̊ ,
(C∇γ)n̂ = 0 on ∂NB ,

γ = 0 on ∂DB .

(3.24)

Eqs. (3.24) represent the adjoint elasticity problem, in which γ is a displacement field on B. In this adjoint
problem, the body forces are discontinuous, being k(u − ũ) in B̊, while they vanish in C. As for the adjoint
boundary conditions, γ is fixed on ∂DB, while ∂NB is traction-free.
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The governing equations of the optimization problem. Notice that γ-variations give the balance of
linear momentum with its associated boundary conditions. Therefore, it is now possible to write the complete
set of governing equations. First, we define the following operators:7

W1(ξ,u,γ) = −2

3
µ̊ e−ξ(div γ)(divu)g] + 2µ̊ e−ξ(sym∇γ : sym∇u) ,

W2(η,u,γ) = κ̊ e−η(div γ)(divu) ,
(3.25)

representing the work done by the stress on the adjoint displacements γ (or vice versa, the work done by the
adjoint stress on the standard displacements u ). In particular, W1 is associated with shear deformations, while
W2 is associated with changes in volume. The total work is given by W1 +W2. We also define the stress operator
as

σ(ξ, η,y) =

(
−2

3
µ̊ e−ξ + κ̊ e−η

)
(divy)g] + 2µ̊ e−ξ(sym∇y)] . (3.26)

In summary, the complete optimization BVP reads:

W1(ξ,u,γ) e−ξ +m1ξ − α1∇2ξ = 0 in C ,
W2(η,u,γ) e−η +m2η − α2∇2η = 0 in C ,

∇ξ · n̂ = 0 on ∂C ,
∇η · n̂ = 0 = 0 on ∂C ,

divσ(ξ, η,γ) = 0 in C ,
divσ(0, 0,γ) + k(u− ũ) = 0 in B̊ ,

σ(ξ, η,γ)n̂ = 0 on ∂NB ,
γ = 0 on ∂DB ,

divσ(ξ, η,u) + b = 0 in B ,
t̄− σ(ξ, η,u)n̂ = 0 on ∂NB ,

u− ū = 0 on ∂DB .

(3.27)

Remark 3.1. Under a proper rescaling of the penalty factor k, the design of a cloak is not affected by the
intensity of the load it is optimized for. Moreover, the performance of a given cloak is not affected by the
intensity of the external loads. In order to show this, let us assume that ū, t̄ and b are replaced by ū′ = c ū,
t̄′ = c t̄ and b′ = cb, for c ∈ R. Since the virtual problem is linear, its solution is c ũ. Then, if the penalty
factor is rescaled as k′ = k/c2, it is straightforward to see that cu, γ/c, ξ, η are solutions of (3.27) for the
loads and boundary conditions ū′, t̄′ and b′. Moreover, since we measure the performance of a cloak using a
normalized metric, one has

‖cu− c ũ‖L2

‖c ũ‖L2

=
‖u− ũ‖L2

‖ũ‖L2

. (3.28)

Note that the rescaling of the penalty factor can be avoided by normalizing it with respect to ‖ũ‖L2 . The same
rescaling property does not hold when one replaces ū, t̄ and b with linear combinations

ū′ =
∑
i

ciūi , t̄′ =
∑
i

cit̄ , b′ =
∑
i

cib . (3.29)

This is due to the fact that, although the L2 norm satisfies absolute homogeneity ‖cx‖2L2= c2‖x‖, in the case
of sums only the triangular inequality holds. Therefore, while the intensity is not a factor, the placement and
direction of loads affect both the design of a cloak and its performance. For this reason, it is crucial to consider
optimal design for multiple loads as well.

3.4 Cloaking under multiple loads

Consider N different loads with their corresponding boundary tractions t̄(i), and body forces b(i), i = 1, 2, ..., N .
We denote the corresponding physical and virtual displacement fields by u(i) and ũ(i) respectively. We assign

7The sharp operator ] raises indices. g is the spatial metric and has components gab in the curvilinear coordinates {xa}. g] is
the inverse of the spatial metric and has components gab such that gac gcb = δab .
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a weight wi ≥ 0 to each load such that
∑N
i=1 wi = 1. Each combination of traction and displacement boundary

conditions is associated with a partition of ∂B into ∂D(i)
B and ∂N(i)

B, i = 1, 2, ..., N . Recalling (3.4) and (3.10),
the objective function is defined as

f =
k

2

N∑
i=1

wi

∫
B̊
‖u(i) − ũ(i)‖2 dv +

∫
C

[
m1ξ

2 +m2η
2
]
dv +

∫
C

[
α1‖∇ξ‖2+α2‖∇η‖2

]
dv

+

N∑
i=1

wi

∫
B
γ(i) ·

[
div
(
C∇u(i)

)
+ b(i)

]
dv +

N∑
i=1

wi

∫
∂N(i)

B
γ(i) ·

[
t̄(i) −

(
C∇u(i)

)
n̂
]

da ,

(3.30)

where γ(i) is the Lagrange multiplier field enforcing equilibrium equations for the i-th loading. The minimization
problem for the optimal design of an elastic cloak under multiple loads is rewritten as

inf
C

u(1),...,u(N)
γ(1),...,γ(N)

f(C,u(1), . . . ,u(N),γ(1), . . . ,γ(N)) . (3.31)

In the case of isotropic solids, we take variations of ξ, η, u(i), γ(i). Following the same calculations as in the
single-load case, one obtains the strong form of the governing equations as

e−ξ
∑N

j=1
wiW1

(
ξ,u(j),γ(j)

)
+m1ξ − α1∇2ξ = 0 in C ,

e−η
∑N

j=1
wiW2

(
η,u(j),γ(j)

)
+m2η − α2∇2η = 0 in C ,

∇ξ · n̂ = 0 on ∂C ,
∇η · n̂ = 0 = 0 on ∂C ,

divσ(ξ, η,γ(i)) = 0 in C ,
divσ(0, 0,γ(i)) + k(u(i) − ũ(i)) = 0 in B̊ ,

σ(ξ, η,γ(i))n̂ = 0 on ∂N(i)
B ,

γ(i) = 0 on ∂D(i)
B ,

divσ(ξ, η,u(i)) + b(i) = 0 in B
t̄(i) − σ(ξ, η,u(i))n̂ = 0 on ∂N(i)

B ,
u(i) − ū(i) = 0 on ∂D(i)

B ,

(3.32)

for i = 1, 2, . . . , N .

4 Finite Element Discretization of the Optimization Problem

In this section we propose a weak formulation of the cloaking optimization problem and discuss a mixed finite
element discretization of the weak governing equations.

4.1 The weak form of the governing equations

Let L2(B), L2(TB), and L2(⊗2TB) be the spaces of square integrable scalar fields, vector fields, and
(

2
0

)
-tensor

fields in B, respectively. We also define the same spaces for C, and B̊ ⊂ B and their boundaries. Let us also
define

H1(TB) :=
{
u ∈ L2(TB) : ∇u ∈ L2(⊗2TB)

}
,

H1(TB, ∂DB, ū) :=
{
u ∈ H1(TB) : u|∂DB= ū

}
,

H1(TB, ∂DB) := H1(TB, ∂DB,0) ,

H1(C) :=
{
f ∈ L2(C) : ∇f ∈ L2(TC)

}
,

(4.1)

and H1/2(T∂B) := tr
(
H1(TB)

)
, where tr : H1(TB)→ L2(T∂B) is the trace operator [Evans, 2010].
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Problem 4.1 (Weak form of the governing equations). Let b(i) be a body force of L2-class, u(i) a boundary

displacement on ∂D(i)
B of H1/2-class, and t(i) a boundary traction on ∂N(i)

B of L2-class for i = 1, 2, ..., N . Let

the displacement field ũ(i) ∈ H1(T B̃, ∂D(i)
B̃, ū(i)) be the solution of the virtual problem for the same given b(i),

u(i), t(i), for i = 1, 2, ..., N .8 Find (ξ, η,u(1), ...,u(N),γ(1), ...,u(N)) ∈ H1(C)×H1(C)×H1(TB, ∂D(1)
B, ū(1))×

...×H1(TB, ∂D(N)
B, ū(N))×H1(TB, ∂D(1)

B)× ...×H1(TB, ∂D(N)
B) such that, for i = 1, 2, ..., N ,

N∑
j=1

wj

∫
C
W1(ξ,u(i),γ(j)) δξ dv +

∫
C
m1ξ δξ dv +

∫
C
α1∇ξ · ∇δξdv = 0, ∀δξ ∈ H1(C) ,

N∑
j=1

wj

∫
C
W2(η,u(j),γ(j)) δη dv +

∫
C
m2η δη dv +

∫
C
α2∇η · ∇δη dv = 0, ∀δη ∈ H1(C) ,

k

∫
B̊

(u(i) − ũ(i)) · δu(i) dv −
∫
B
σ(ξ, η,γ(i)) : ∇δu(i) dv = 0, ∀δu(i) ∈ H1(TB, ∂D(i)

B) ,

−
∫
B
σ(ξ, η,u(i)) : ∇δγ ,dv +

∫
B
b(i) · δγ(i) dv +

∫
∂NB

t̄(i) · δγ(i) da = 0, ∀δγ(i) ∈ H1(TB, ∂D(i)
B) .

(4.3)

Let ⟪, ⟫A denote the L2-inner products of scalar, vector, and tensor fields on a set A, which are defined as
⟪f, g⟫A :=

∫
A fg da, ⟪Y ,Z⟫A :=

∫
A Y

IZIdA, and ⟪S,T⟫A :=
∫
A S

IJT IJdA, respectively. The weak form of
the governing equations is written more compactly as∑N

j=1
wj ⟪W1(ξ,u(j),γ(j)) +m1ξ, δξ⟫C + ⟪α1∇ξ,∇δξ⟫C = 0 , ∀δξ ∈ H1(C) ,∑N

j=1
wj ⟪W2(η,u(j),γ(j)) +m2η, δη⟫C + ⟪α2∇η,∇δη⟫C = 0 , ∀δη ∈ H1(C) ,

k⟪(u(i) − ũ(i)), δu(i)⟫B̊ − ⟪σ(ξ, η,γ(i)),∇δu(i)⟫B = 0 , ∀δu(i) ∈ H1(TB, ∂D(i)
B) ,

−⟪σ(ξ, η,u(i)),∇δγ(i)⟫B + ⟪b(i), δγ(i)⟫B + ⟪t̄(i), δγ(i)⟫∂N(i)
B = 0 , ∀δγ(i) ∈ H1(TB, ∂D(i)

B) ,

(4.4)

for i = 1, 2, . . . , N . Eq. (4.4) represents a system of 2N + 2 equations,9 all coupled by the effect of the elastic
constants ξ(x) and η(x). Each load case independently contributes to the system with the balance of the standard
and adjoint linear momenta (4.4)3 and (4.4)4. Moreover, all the load cases appear in the C-equations (4.4)1

and (4.4)2 through the mixed energies W1(ξ,u(j),γ(j)) and W2(η,u(j),γ(j)), i = 1, 2, ..., N .
As for the second variations of the objective function, they can be arranged in a matrix with the following

structure 
δξξf sym sym sym
δξηf δηηf sym sym

[δξu(i)
f]N×1 [δηu(i)

f]N×1 [δu(i)u(i)
f]N×N sym

[δξγ(i)
f]N×1 [δηγ(i)

f]N×1 [δu(i)γ(i)
f]N×N [δγ(i)γ(i)

f]N×N

 . (4.5)

Recalling the definitions (3.25) and (3.26), in the single-load case the matrix (4.5) is reduced to the following
4× 4 matrix:

⟪−W1(ξ,u,γ) +m1, δξδξ⟫C + ⟪α1∇δξ,∇δξ⟫C

0

⟪W1(ξ, δu,γ), δξ⟫C

⟪W1(ξ,u, δγ), δξ⟫C

sym

⟪−W2(η,u,γ) +m2, δηδη⟫C + ⟪α2∇δη,∇δη⟫C

⟪W2(η, δu,γ), δη⟫C

⟪W2(η,u, δγ), δη⟫C

sym

sym

k⟪δu, δu⟫B̊

−⟪W1(ξ, δu, δγ) +W2(η, δu, δγ), 1⟫B

sym

sym

sym

0


.

(4.6)

8Note that ũ(i) is the solution of the following problem∫
B̃

[̊
λ(div ũ(i))g

] + 2µ̊(sym∇ũ(i))
])
]

:∇w(i) dv =

∫
B̃
b(i) ·w(i) dv +

∫
∂N(i)

B̃
t̄(i) ·w(i) da, ∀w(i) ∈ H1(T B̃, ∂D(i)

B̃) . (4.2)

9In the anisotropic case, one would obtain 2N +M equations, where M is the number of independent elastic moduli.
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4.2 Mixed finite elements

Let Bh denote an arbitrary triangulation (or simply a mesh) of the reference configuration B, where h :=
max diam T for all triangles ∀T ∈ Bh. Also, Ch and B̊h are the triangulation of the cloaking region C and its
complement B̊, respectively. We define the following finite element space:

Vh(TBh) :=
{
Vh ∈ L2(TBh) : ∀T ∈ Bh, Vh|T ∈ P1(TT ), ∀E ∈ EiBh , JVhKE = 0

}
,

Vh(Ch) :=
{
fh ∈ L2(Ch) : ∀T ∈ Ch, fh|T ∈ P1(T ), ∀E ∈ EiCh , JfhKE = 0

}
,

(4.7)

where EiBh and EiCh are the sets of interior edges of Bh and Ch, respectively. Note that P1(T ) and P1(TT )
are first-order (linear) scalar-valued and vector-valued polynomial spaces in a triangle (element) T . Note that
Vh(TBh) ⊂ H1(TBh) and Vh(Ch) ⊂ H1(Ch). Let us also define

Vh(TBh, ∂DBh, ū) :=
{
Vh ∈ Vh(TBh), ∀E ∈ EDh , Vh|E= IE(ū)

}
,

Vh(TBh, ∂DBh) := Vh(TBh, ∂DBh,0) ,
(4.8)

where EDh is the set of edges in ∂DBh, and IE is a linear interpolation operator over the edge E with the property
IE(0) = 0. Using the above approximation spaces the mixed finite element form of the cloaking optimization
problem (4.4) is written as:

Problem 4.2 (Finite elements equations). Let b(i) be a body force of L2-class, u(i) a boundary displacement

on ∂D(i)
B of H1/2-class, and t(i) a boundary traction on ∂N(i)

B of L2-class for i = 1, 2, . . . , N . Let the dis-

placement field ũh(i)
∈ Vh(T B̃h, ∂D(i)

B̃h, ū(i)) be the solution of the discretized virtual problem for the same

given b(i), u(i), t(i) for i = 1, 2, . . . , N . Find (ξh, ηh,uh(1)
, . . . ,uh(N)

,γh(1)
, . . . ,uh(N)

) ∈ Vh(Ch) × Vh(Ch) ×
Vh(TBh, ∂D(1)

Bh, ū(1))× . . .× Vh(TBh, ∂D(N)
Bh, ū(N))× Vh(TBh, ∂D(1)

Bh)× . . .× Vh(TBh, ∂D(N)
Bh) such that,

for i = 1, 2, . . . , N ,∑N

j=1
wj ⟪W1h(ξh,uh(j)

,γh(j)
) +m1ξh, δξh⟫Ch + ⟪α1∇δξh,∇δξh⟫Ch = 0 , ∀δξh ∈ Vh(Ch) ,∑N

j=1
wj ⟪W2h(ηh,uh(j)

,γh(j)
) +m2ηh, δηh⟫Ch + ⟪α2∇δηh,∇δηh⟫Ch = 0 , ∀δηh ∈ Vh(Ch) ,

k⟪uh(i)
− ũ(i), δuh(i)

⟫B̊h − ⟪σh(ξh, ηh,γh(i)
),∇δuh(i)

⟫Bh = 0 , ∀δuh(i)
∈ Vh(TBh, ∂D(i)

Bh) ,

−⟪σh(ξh, ηh,uh(i)
),∇δγh(i)

⟫Bh + ⟪b(i), δγh(i)
⟫Bh + ⟪t̄(i), δγh(i)

⟫∂N(i)
Bh = 0 , ∀δγh(i)

∈ Vh(TBh, ∂D(i)
Bh) .

(4.9)

4.3 Matrix formulation

Next, we discuss a matrix formulation of the finite element discretization. For the sake of simplicity of presen-
tation, we assume 2D finite elements. However, the formulation can be used for 3D problems as well. We define

the column vector representation of a second-order tensor T by dT e :=
[
T 11 T 12 T 21 T 22

]T
. Note that

⟪Y ,Z⟫A = ⟪dY e, dZe⟫A =
∫
AdY e

TdZedv =
∫
AdZe

TdY edv. Using the Lagrange basis functions of P1(T ) and
P1(TT ), one can approximate the field variables of the weak formulation in an element T using the following
matrix relations:

ξT = bT qξT , ∇ξT = GT qξT ,

ηT = bT qηT , ∇ηT = GT qηT ,

uT(i) = BT q
u(i)

T , divuT(i) = dT q
u(i)

T , d sym∇uT(i)e = ST q
u(i)

T ,

γT(i) = BT q
γ(i)
T , div γT(i) = dT q

γ(i)
T , d sym∇γT(i)e = ST q

γ(i)
T ,

(4.10)

where the vectors qξT 3×1, qηT 3×1, q
u(i)

T 6×1, and q
γ(i)
T 6×1 contain the values of degrees of freedom, i.e., the values

of ξ, η, u(i), and γ(i) at the three vertices of T , respectively. The matrices bT 1×3 and BT 2×6 contain the
Lagrange basis (shape) functions of T and GT 2×3, dT 1×6, and ST 4×6 consist of their spatial derivatives. One
can obtain the variations of (4.10) by replacing the vectors of degrees of freedom with the vectors of arbitrary
real numbers of the same size, e.g., δξT = bT a, where a3×1 is a vector of arbitrary real numbers. Using the
above discretized fields, we can approximate (3.25) in T in terms of degrees of freedom:

W1T

(
qξT ,q

u(i)

T ,q
γ(i)
T

)
= q

γ(i)
T

T
W1T (qξT ) q

u(i)

T ,

W2T

(
qηT ,q

u(i)

T ,q
γ(i)
T
)

= q
γ(i)
T

T
W2T (qηT ) q

u(i)

T ,
(4.11)
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where the symmetric matrices W1T 6×6 and W2T 6×6 are defined as

W1T (qξT ) = −2

3
µ̊ e−(bT qξT ) dT

T dT + 2µ̊ e−(bT qξT ) ST
T ST ,

W2T (qηT ) = κ̊ e−(bT qηT ) dT
T dT .

(4.12)

Next, guided by (4.5), we define the following matrices in T :

Kξξ
T =

∫
T

(
m1 bT

T bT + α1 GT
T GT

)
dv ,

Kηη
T =

∫
T

(
m2 bT

T bT + α2 GT
T GT

)
dv ,

K̄
ξξ
T

(
qξT ,q

u(i)

T ,q
γ(i)
T

)
= −

∫
T
W1T

(
qξT ,q

u(i)

T ,q
γ(i)
T

)
bT
T bT dv ,

K̄
ηη
T
(
qηT ,q

u(i)

T ,q
γ(i)
T
)

= −
∫
T
W2T

(
qηT ,q

u(i)

T ,q
γ(i)
T
)

bT
T bT dv ,

Kξu
T

(
qξT ,q

γ(i)
T

)
=

∫
T

bT
T q

γ(i)
T

T
W1T (qξT ) dv , Kξγ

T

(
qξT ,q

u(i)

T

)
=

∫
T

bT
T q

u(i)

T
T

W1T (qξT ) dv ,

Kηu
T
(
qηT ,q

γ(i)
T
)

=

∫
T

bT
T q

γ(i)
T

T
W2T (qηT ) dv , Kηγ

T
(
qηT ,q

u(i)

T
)

=

∫
T

bT
T q

u(i)

T
T

W2T (qηT ) dv ,

Kuγ
T

(
qξT ,q

η
T

)
= −

∫
T

(
W1T (qξT ) + W2T (qηT )

)
dv ,

Kuu
T =

{
k
∫
T BT

T BT dv , if T ∈ B̊h ,
06×6, otherwise ,

FuT
(
ũh(i)

)
=

{
k
∫
T BT
T ũh(i)

dv, if T ∈ B̊h ,
06×1, otherwise ,

FγT
(
b(i), t(i)

)
= −

∫
T

BT
T b(i) dv −

{ ∫
E BT
E t(i) da, if E ∈ ∂N(i)

Bh ,
06×1 , otherwise .

(4.13)

We assemble the vectors of degrees of freedom and the above matrices as

{Qξ
h,Q

η
h} = ÃT ∈Ch{q

ξ
T ,q

η
T } ,

{Qu(i)

h ,Q
γ(i)
h } = ÃT ∈Bh{q

u(i)

T ,q
γ(i)
T } ,

{Kξξ
h ,K

ηη
h , K̄

ξξ
h , K̄

ηη
h } = AT ∈Ch{K

ξξ
T ,K

ηη
T , K̄

ξξ
T , K̄

ηη
T } ,

{Kuu,(i)
h ,Kuγ

h ,F
u,(i)
h ,F

γ,(i)
h } = AT ∈Bh{K

uu,(i)
h ,Kuγ

T ,F
u,(i)
T ,F

γ,(i)
T } ,

{Kξu
h ,K

ξγ
h ,K

ηu
h ,Kηγ

h } = AT ∈Ch,Bh{K
ξu
T ,K

ξγ
T ,K

ηu
T ,K

ηγ
T } .

(4.14)

We then define the following matrices by considering N load cases:

Quh =

Q
u(1)

h
...

Q
u(N)

h

 , Qγh =

Q
γ(1)
h
...

Q
γ(N)

h

 , Fuh =

 w1Fuh
(
ũh(1)

)
...

wNFuh
(
ũh(N)

)
 , Fγh =

 w1Fγh
(
b(1), t(1)

)
...

wNFγh
(
b(N), t(N)

)
 ,

Kuuh =

 w1Kuu
h

. . .

wNKuu
h

 , Kγuh = Kuγh =

 w1Kuγ
h (Qξ

h,Q
η
h)

. . .

wNKuγ
h (Qξ

h,Q
η
h)

 ,
Kξuh (Qξ

h,Q
γ
h) =

[
w1Kξu

h (Qξ
h,Q

γ(1)
h ) · · · wNKξu

h (Qξ
h,Q

γ(N)

h )
]
,

Kξγh (Qξ
h,Q

u
h) =

[
w1Kξu

h (Qξ
h,Q

u(1)

h ) · · · wNKξu
h (Qξ

h,Q
u(N)

h )
]
,

Kηuh (Qη
h,Q

γ
h) =

[
w1Kηu

h (Qη
h,Q

γ(1)
h ) · · · wNKηu

h (Qη
h,Q

γ(N)

h )
]
,

Kηγh (Qη
h,Q

u
h) =

[
w1Kξu

h (Qη
h,Q

u(1)

h ) · · · wNKξu
h (Qη

h,Q
u(N)

h )
]
,

Jξξh (Qξ
h,Q

u
h,Q

γ
h) =

N∑
j=1

wjK̄
ξξ
h (Qξ

h,Q
u(j)

h ,Q
γ(j)
h ), Jηηh (Qη

h,Q
u
h,Q

γ
h) =

N∑
j=1

wjK̄
ηη
h (Qη

h,Q
u(j)

h ,Q
γ(j)
h ).

(4.15)
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Figure 3: Cloaking of an elliptic hole (a), an elliptic cut (b), a rectangular inhomogeneity (c), and randomly distributed circular
inhomogeneities (d). The blue color shows the cloak C.

Note that Kξuh (Qξ
h,Q

γ
h)Quh = Kξγh (Qξ

h,Quh)Qγh, and Kηuh (Qη
h,Q

γ
h)Quh = Kηγh (Qη

h,Quh)Qγh. We write the matrix
formulation of problem 4.2 as:

Problem 4.3 (Matrix equation). Find Qh such that Kh(Qh)Qh = Fh, where

Qh =


Qξ
h

Qη
h

Quh
Qγh

 , Kh(Qh) =


Kξξ
h 0 Kξuh (Qξ

h,Q
γ
h) 0

0 Kηη
h Kηuh (Qη

h,Q
γ
h) 0

0 0 Kuuh Kuγh (Qξ
h,Q

η
h)

0 0 Kγuh (Qξ
h,Q

η
h) 0

 , and Fh =


0
0
Fuh
Fγh

 . (4.16)

One can show that the symmetric Jacobian matrix

[Jh]ij =
∂ [Kh(Qh)Qh − Fh]i

∂[Qh]j
, (4.17)

for the nonlinear problem 4.3 reads

Jh(Qh) =


Kξξ
h + Jξξh (Qξ

h,Quh,Q
γ
h) 0 Kξuh (Qξ

h,Q
γ
h) Kξγh (Qξ

h,Quh)
0 Kηη

h + Jηηh (Qη
h,Quh,Q

γ
h) Kηuh (Qη

h,Q
γ
h) Kηγh (Qη

h,Quh)

Kuξh (Qξ
h,Q

γ
h) Kuηh (Qη

h,Q
γ
h) Kuuh Kuγh (Qξ

h,Q
η
h)

Kγξh (Qξ
h,Quh) Kγηh (Qη

h,Quh) Kγuh (Qξ
h,Q

η
h) 0

 , (4.18)

where Kuξh = (Kξuh )T, Kuηh = (Kηuh )T, Kγξh = (Kξγh )T, and Kγηh = (Kηγh )T.

5 Numerical Results

In this section we discuss a few numerical examples of the optimization problem for isotropic cloaks in dimension
two.

5.1 Implementation

We have implemented a mixed finite element code in MATLAB to construct and solve the nonlinear system of
algebraic equations of Problem 4.3. Given an explicit symmetric Jacobian matrix Jh (4.18), one can efficiently
solve Problem 4.3 using the Newton method. We use MATLAB direct solver for the linear system in each
Newton iteration. To solve the problem, first some numerical values for the control parameters m1, m2, α1,
and α2 are chosen. Recall that larger values of m1 and m2 penalize large deviations of the elastic moduli from
their corresponding elastic moduli in the virtual body, whereas larger values of α1 and α2 are more preventive
of sharp gradients in the material parameters of the cloak.

We use k as a load control parameter, which agrees with what was observed in Eq. (3.27), i.e., the term
k‖u− ũ‖ represents a body force in the adjoint balance of linear momentum associated with the field γ (see also

Figure 4: Symbols for the load cases.

15



Eq. (3.32) for the multiple-load case). In the load control process, we start with a very small k and the initial
guess Qh = [0,0,UT

h ,0]T for the Newton method, where Uh is the displacement degrees of freedom linearly
solved for a domain without a cloak, which also minimizes the augmented objective function for k = 0. Once
the Newton method has converged, we gradually increase the value of k and use the solution as the initial guess
for the next load-control step. We keep repeating this process until the solution for the desired value of k is
obtained.

The value of k must be carefully chosen based on each load case. For multiple-load optimization, better
results can be achieved if one works with N different ki’s to take into account the differences between load
cases. As was mentioned earlier, in the general multiple-load optimal design, each load case participates in the
C-equations (4.3)1,2 according to the work done by the standard forces on the adjoint displacements, defined
in (3.25). In particular, the terms W1(ξ,u(i),γ(i)) and W2(η,u(i),γ(i)) represent the work done on the adjoint
shear deformations and the adjoint changes of volume, respectively, for each load case i = 1, . . . , N . These
terms are linear in the u(i)’s and γ(i)’s, and hence, are proportional to the external loads (enforced via either
tractions or displacement boundary conditions), as well as to the adjoint distributed loads k(u(i) − ũ(i)). A
reasonable choice would be to normalize k with respect to ‖ũ(i)‖2 to obtain N different ki’s [Fachinotti et al.,
2018]. Another fairly reasonable choice for the normalization of k is to divide it by ‖u(i) − ũ(i)‖2 in each step.
Alternatively, one can use combinations of these quantities. As the normalization is not unique, we choose
suitable normalizers for each load case depending on the example we are solving.

5.2 Examples of optimal elastic cloaks

We consider a rectangular sheet made of an isotropic linear elastic solid, homogeneous in the virtual setting,
and with several distributions of holes or inhomogeneities in the physical problem, see Fig. 3. The elastic sheets
undergo either extension in the x or y directions or shear in the xy plane. These deformations can be enforced
either via traction or displacement boundary conditions. No body forces are considered. In total, we consider six
load cases that will be denoted as XT, YT, ST, XD, YD, SD, where the first letter indicates the load direction
(X and Y for the extension in the x and y directions, S for shear), and the second letter the type of boundary
conditions (T and D for traction or displacement controlled, respectively), see Fig. 4. External loads will be
considered in two different settings: i) the design loads are the ones used in the Optimization Problem 4.1, i.e.,
the loading combination one is optimizing for, and ii) the service loads are the ones used to test each design,
and test the efficacy of the cloak in terms of how much it differs from the virtual solution. Additionally, we
will be considering combinations of the traction-controlled load cases XT, YT, ST—denoted as MT—and of
the displacement-controlled load cases XD, YD, SD—denoted as MD. It should be noted that the multiple-load
combinations MT and MD are only considered in the context of design loads, while the only service loads used
to test the designs are the six cases XT, YT, ST, XD, YD, SD.

The performance of a design can be measured using the L2 distance between u and ũ calculated on B̊,
cf. (2.2). We introduce the normalized distance between the virtual and the physical displacements outside the
cloak as

ĝ =
‖u− ũ‖L2

‖ũ‖L2

=

(∫
B̊‖u− ũ‖2dv∫
B̊‖ũ‖2dv

) 1
2

. (5.1)

As for multiple-load deigns, we are mainly interested in their performance under a single service load, which
can still be measured via Eq. (5.1). However, since for the convergence plots a performance measure that takes
into account a service load made of a combination of different loads is needed, we define:

ĝM =
∑
j

wj
‖u− ũ(j)‖L2

‖ũ(j)‖L2

. (5.2)

All the quantities are dimensionless, and are expressed with respect to a characteristic length Lo, and a
characteristic stiffness that we take equal to the shear modulus µ̊ of the homogeneous medium, i.e., of the
region B̊ outside the cloak in the physical problem. We consider a bulk modulus κ̊ = 2µ̊, and hence obtain a
Young’s modulus E̊ = 18

7 µ̊ ≈ 2.57µ̊ and a Poisson’s ratio ν̊ = 2
7 ≈ 0.29.

Lastly, it should be noticed that in the present formulation the size and the shape of the cloak are not deter-
mined as a result of the optimization algorithm, but they are simply given as inputs of the problem. Moreover,
in the following examples the areas of the cloaks are taken to be comparable to that of the heterogeneities. To
justify this choice, let us denote with |C| and |H| the areas of the sets C and H, respectively. If |C|/|H|� 1,
then the cloak will be either highly inhomogeneous or ineffective. On the other hand, if |C|/|H|� 1 the cloak
will occupy a large part of the body and that would not be a desirable design either.
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5.2.1 Example 1: Design of a symmetric elastic cloak for a hole

We consider an elliptic hole at the center of a rectangle of sides a = 6Lo and b = 4Lo, with the cloak consisting
of an elliptic annulus, see Fig. 3(a). The semi-axes of the hole are 2

3Lo and Lo, while the semi-axes of the outer
rim of the cloak are 4

3Lo and 5
3Lo. Both combinations MT and MD have weights wX = wY = wS = 1

3 . The
coefficients in the augmented objective functions are k = 107, m1 = m2 = α1 = α2 = 1. The designs are shown
in Fig. 5, while their efficacy is reported in Table 1 with respect to each service load. Fig. 6 shows the stress
distribution for some of the combinations in Table 1.

XT YT ST XD YD SD average

NC 62.9 45.8 22.1 17.7 4.9 7.4 26.8

XT 8.4 17.6 6.8 7.8 7.1 1.7 8.2
YT 21.0 8.5 3.1 11.2 4.2 3.4 8.6
ST 24.3 18.8 1.6 13.3 14.9 2.7 12.6
XD 8.9 15.6 7.0 7.8 6.4 1.7 7.9
YD 24.7 9.1 5.6 11.8 1.5 3.9 9.4
SD 11.2 18.6 8.1 9.4 6.7 1.4 9.3

XT 10.1 9.6 2.9 8.8 4.3 2.5 6.4
MD 10.3 9.3 7.4 8.7 2.1 1.4 6.5

Table 1: Efficacy of an optimal cloak in the symmetric case of a single elliptic hole. Each row corresponds to one of the six
optimization loads (XT, YT, ST, XD, YD, SD) plus the no-cloak case (NC) at the top. Each column corresponds to a service load,
with the last column showing the average. Excluding the first row and the last column, the main diagonal of the table corresponds
to cases in which the optimization and service loads are the same.

5.2.2 Example 2: Design of an elastic cloak for an elliptic cut

We consider cloaking of a cut with the shape of a sharp semi-elliptic hole, see Fig. 3(b). In this case the object
to hide is not fully embedded in the considered medium, in the sense that it shares part of its boundary. In
particular, the elliptic cut has major semi-axis 3

2Lo and is centered on the middle point of the bottom boundary
of the same rectangular medium considered in the previous examples. The cut is surrounded by a half-elliptic
cloak with major semi-axis of 2Lo. We only consider the combination MT, with weights wX = wS = 1

2 , and
wY = 0. The coefficients in the augmented objective functions are k = 107, m1 = m2 = 2, α1 = α2 = 3. In
Fig. 7 the designs for each load combination are shown. The efficacy of each design with respect to each service
load is reported in Table 2 and Fig. 8.

XT ST average

NC 141.0 38.1 89.5

XT 14.6 4.9 9.8
ST 16.7 2.9 9.8

MT 15.1 3.6 9.4

Table 2: Efficacy of a carpet cloak. Each row corresponds to one of the two optimization loads (XT, ST) plus the no-cloak case
(NC) at the top. Each column corresponds to a service load, with the last column showing the average. Excluding the first row
and the last column, the main diagonal of the table corresponds to cases in which the optimization and service loads are the same.

5.2.3 Example 3: Design of an elastic cloak for a rectangular inhomogeneity

We consider a rectangular hard inhomogeneity inside the same rectangular region of sides a = 6 and b = 4
as in the previous example, see Fig. 3(c). The inhomogeneity is assumed to have a much higher stiffness than
the matrix B̊. The rectangular inhomogeneity is rotated 45◦ with respect to the x and y axes, and has sides
of 4

3Lo and 8
21Lo, while the cloak is a rectangular annulus of length 5

3Lo and width 5
7Lo. The thickness of the

rectangular annulus is 1
3Lo along both sides. Both combinations MT and MD have weights wX = wY = wS = 1

3 .
The coefficients in the augmented objective functions are k = 107, m1 = m2 = α1 = α2 = 1. The eight different
designs are shown in Fig. 9, while their efficacy with respect to each service load is reported in Table 3. Fig. 10
shows the stress distribution for some of the design-service load combinations.
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Figure 5: Design of the optimal cloak for a single elliptic hole. Left: Convergence in terms of the solution metric (5.1), (5.2), and
of the design H1 metric (3.10). The solution metric is normalized with respect to the no-cloak case and is expressed in percentages.
Right: Distribution of the elastic moduli in the solid for each design load.
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Figure 6: Performance of the optimal cloaks under different service loads they are optimized for, in the symmetric case of a single
elliptic hole. The performance is given in terms of the Frobenius norm of the stress. Each column represents a loading condition:
XT, YT, ST, XD, YD, SD. Each row refers to virtual body, body with no cloak, same-load design, multiple-load design MT, and
multiple-load design MD.

Figure 7: Design of a carpet cloak surrounding an elliptic cut. Left: Convergence in terms of the solution metric (5.1), (5.2),
and of the design H1 metric (3.10). The solution metric is normalized with respect to the no-cloak case and is expressed in
percentages. Right: Distribution of the elastic moduli in the body for each design load. Each row represents a design, under
different optimization loads (XT, ST, MT).
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Figure 8: Performance of the optimal cloaks under different service loads they are optimized for, in the case of a carpet cloak
surrounding an elliptic cut. The performance is given in terms of the Frobenius norm of the stress. Each column represents a
loading condition: XT, ST. Each row refers to virtual body, body with no cloak, same-load design, and multiple-load design MT.

XT YT ST XD YD SD average

NC 27.5 28.2 15.5 15.9 14.0 6.4 17.9

XT 2.6 13.6 4.9 2.4 6.4 3.1 5.5
YT 10.9 3.1 5.5 5.8 2.6 3.2 5.2
ST 16.0 25.3 1.2 6.9 12.0 2.4 10.6
XD 3.0 13.2 4.8 1.8 6.0 3.0 5.3
YD 12.2 3.2 5.1 6.5 1.9 3.1 5.3
SD 28.9 35.0 6.8 12.7 9.7 1.1 15.7

MT 4.4 5.9 2.2 3.8 4.7 2.7 4.0
MD 5.0 6.6 4.4 3.0 3.4 2.8 4.2

Table 3: Efficacy of a cloak in the case of a rectangular inhomogeneity. Each row corresponds to one of the six optimization loads
(XT, YT, ST, XD, YD, SD) plus the no-cloak case (NC) at the top. Each column corresponds to a service load, with the last
column showing the average. Excluding the first row and the last column, the main diagonal of the table corresponds to cases in
which the optimization and service loads are the same.

5.2.4 Example 4: Design of an elastic cloak for a random distribution of inhomogeneities

We consider multiple circular inhomogeneities inside the same rectangular region of sides a = 6 and b = 4
as in the previous example, see Fig. 3(d). The inhomogeneities are assumed to have a much higher stiffness
than the matrix B̊. In particular, we consider eight disks of different radii between 0.15Lo and 0.45Lo. Each
inhomogeneity is surrounded by an annular cloak of external radius 1.5 times the inner radius. Both combinations
MT and MD have weights wX = wY = wS = 1

3 . The coefficients in the augmented objective functions are
k = 107, m1 = m2 = α1 = α2 = 1. The efficacy of each design shown in Fig. 11 is reported in Table 4 with
respect to each service load, and is shown in Fig. 12 in terms of the stress distribution.

5.3 Discussion

The performance or efficacy of a cloak, intended as the ability to hide the object it is designed for, is shown in
Tables 1-4 in terms of the quantity defined in (5.1) and expressed in percentages. It should be noticed that,
compared to the optimization conditions, some designs are more effective under service loads that they are not
optimized for. This means that the minimum value of each row in the tables is not necessarily located under the
corresponding column. This occurs because the distance between the no-cloak and the virtual solutions is lower
for some loading modes than others, i.e., some values in the first row—showing the no-cloak data—are much
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Figure 9: Design of a cloak surrounding a rectangular hard inhomogeneity (rotated by 45◦ with respect to the x and y axis). Left:
Convergence in terms of the solution metric (5.1), (5.2), and of the design H1 metric (3.10). The solution metric is normalized
with respect to the no-cloak case and is expressed in percentages. Right: Distribution of the elastic moduli in the body for each
design load. Each row represents a design, under different optimization loads (XT, ST, MT).
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Figure 10: Performance of the optimal cloaks under different service loads they are optimized for, in the case of a rectangular
hard inhomogeneity. The performance is given in terms of the Frobenius norm of the stress. Each column represents a loading
condition: XT, YT, ST, XD, YD, SD. Each row refers to virtual body, body with no cloak, same-load design, multiple-load design
MT, and multiple-load design MD.

XT YT ST XD YD SD average

NC 37.4 35.7 22.7 13.8 13.3 4.5 21.2

XT 2.0 3.0 0.4 1.9 2.7 0.6 1.8
YT 2.4 2.7 0.4 2.2 2.5 0.6 1.8
ST 2.4 3.4 0.3 2.2 3.2 0.6 2.0
XD 2.8 3.2 1.4 1.7 2.7 0.6 2.0
YD 3.5 5.0 3.0 2.4 1.9 0.7 2.8
SD 2.6 3.5 0.6 2.2 2.8 0.5 2.0

MT 2.1 2.8 0.3 2.0 2.6 0.6 1.7
MD 2.7 3.4 1.6 1.9 2.3 0.5 2.1

Table 4: Efficacy of a cloak in the case of randomly distributed hard inhomogeneities. Each row corresponds to one of the six
optimization loads (XT, YT, ST, XD, YD, SD) plus the no-cloak case (NC) at the top. Each column corresponds to a service load,
with the last column showing the average. Excluding the first row and the last column, the main diagonal of the table corresponds
to cases in which the optimization and service loads are the same.

lower than others. Since we use a displacement-based objective function, this is the case for the displacement-
controlled optimization loads XD, YD, SD. However, the minimum value of each column is located in the
corresponding row—the boxed values in Tables 1, 4, 2. This means that the best performance for each service
load is achieved by optimizing for the same load as expected. This is consistent with what is expected from the
optimization problem.

Assuming isotropic solids allows us to only work with two design variables µ and κ. In spite of this restriction,
our results are promising, as in many cases we were able to reduce the initial difference between the physical
and the virtual elastic fields to less than 10%. The iterations were stopped once small improvements in the
performance corresponded to large changes in the design, as is shown in the convergence plots in Figs. 5, 11, 7
(where the solution metrics (5.1) and (5.2) are expressed in terms of percentage of the no-cloak one). The
example of the cloaking of a sharp elliptic cut (carpet cloak) is more challenging, as the system tends to choose
less regular distributions. For this reason, we worked with higher penalty coefficients in order to obtain more
reasonable elastic moduli distributions. The effectiveness of the designs can also be seen in the stress plots in
Figs. 6, 12, 8; when compared to the stress distributions in the virtual cases (first rows in the stress plots), the
response of the designs (third, fourth, fifth rows) are much more similar than the uncloaked case (second row).
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Figure 11: Design of optimal cloaks surrounding randomly distributed multiple hard inhomogeneities. Left: Convergence in terms
of the solution metric (5.1), (5.2), and of the design H1 metric (3.10). The solution metric is normalized with respect to the
no-cloak case and is expressed in percentages. Right: Distribution of the elastic moduli in the body for each design load. Each row
represents a design, under different optimization loads (XT, YT, ST, XD, YD, SD, MT, MD).
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Figure 12: Performance of the optimal cloaks under different service loads they are optimized for, in the case of randomly distributed
multiple hard inhomogeneities. The performance is given in terms of the Frobenius norm of the stress. Each column represents a
loading condition: XT, YT, ST, XD, YD, SD. Each row refers to virtual body, body with no cloak, same-load design, multiple-load
design MT, and multiple-load design MD.

It should be emphasized that, regardless of the efficacy of a cloak, its presence prevents the stress concentration
that one observes in the no-cloak case, suggesting optimal cloaking approach as a way to enhance the toughness
of materials. This is noticeable especially in Fig. 12 for the random distribution of inhomogeneities. Particular
attention should be given to the multiple-load design. The last columns of Tables 1 and 4 show good average
drop of the cloaking metric, and hence an average improvement of the performance of the cloak, with respect
to all the service loads. However, in Table 2 there is no significant improvement, which is due to the fact that
the average of performance is a meaningful measure only when the normalized distances (5.1) corresponding to
the no-cloak solutions of different load cases are similar.

The continuum approach allows us to span the whole design space, without any restrictions due to a particular
choice of the class of lattice materials for the cloak. In other words, in designing the optimal elastic cloaks we
consider all the admissible values of µ > 0 and κ > 0. For example, in some of the cloak designs Poisson’s ratio
is negative, see the right columns in Figs. 5 and 7. This suggests the use of auxetic materials for the purposes of
cloaking holes, cavities, and cracks. For engineering applications of elastic cloaks, the proposed optimal cloaks
in this paper can be additively manufactured following data-driven methods [Wilt et al., 2020, Wang et al.,
2022], and using functionally graded auxetic lattice materials [Ren et al., 2018].

6 Conclusions

In this paper we formulated elastostatic cloaking as an optimal design problem. Similar to electromagnetic
cloaking, the goal in elastic cloaking is to make an object—a cavity, a through hole, or any type of inhomogeneity
or inclusion—invisible to elastic fields. This concealment can be achieved by surrounding the object with a
cloaking device with the goal of controlling the elastic field outside of it. Because of the unattainability of exact
transformation cloaking, we propose an original formulation of optimal elastic cloaking based on the adjoint
state method, in which the balance of linear momentum is enforced as a constraint. The objective function
measures the distance between the solutions in the physical and in the virtual homogeneous elastic bodies. The
cloak is assumed to be made of isotropic inhomogeneous linear elastic materials. Hence, the design parameters
are the two elastic moduli in the cloak, namely the bulk modulus κ and the shear modulus µ. In order to
guarantee positive definiteness of the elasticity tensor of the cloak, we used a change of variables. Relatively
smooth variations of the elastic moduli within the cloak are enforced via a penalization term, based on an H1
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metric defined on the design space.
Variations of the objective function with respect to γ and u give the standard and the adjoint balance

equations, respectively. Although the elastic problem is linear, variations of the design parameters η and ξ yield
nonlinear equations with associated Neumann boundary conditions. The optimization formulation is extended
to multiple-load design. We used mixed finite elements to discretize the weak formulation of the governing
equations, and considered several numerical examples of optimal cloaks designed for single and multiple loads.
In spite of the restrictive isotropic assumption, the results are promising as in many cases we were able to
reduce the initial difference between the physical and the virtual elastic fields to less than 10%. Moreover, the
general continuum approach allows us to span the entire design space, and find results such as the use of auxetic
materials for the cloaking of holes and cavities.

A future extension of this work will be to include anisotropic and non-centrosymmetric solids. We believe
that being able to operate within a much larger design space would allow one to get closer to exact cloaking.
Moreover, extending the present formulation to elastodynamics will be the subject of a future communication.
When considering elastic waves, not only is it necessary to take into account combinations of loads, but it
becomes fundamental to optimize with respect to multiple frequencies. Other future extensions of our work
would consist of investigating the effect of different objective functions (e.g., energy or stress-based) on the
design, and extending the present formulation to nonlinear elastostatic cloaking. Extension of the present work
to cloaking in elastic plates will also be the subject of another future communication.
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A Lagrange Multipliers in the Optimization Problem

In this appendix we show that a single Lagrange multiplier γ can be associated with both the equilibrium
constraint and the traction boundary condition, as was assumed in (3.4). Assuming two different Lagrange
multipliers, γ for div(C∇u) + b and χ for t̄− (C∇u)n̂, (3.19) is rewritten as

δuf =

∫
B

div(C∇γ) ·δudv−
∫
∂NB

(C∇γ)n̂ ·δu da+

∫
∂NB

(γ−χ) ·(C∇δu)n̂ da+

∫
∂oC

C̊(∇u−∇ũ)n̂ ·δuda . (A.1)
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For the sake of simplicity we set m = γ − χ, and M = C(m ⊗ n̂), so that the integrand in the third term
of (A.1) reads M : ∇δu. We want to show that m = 0. We also denote with P = I − n̂ ⊗ n̂ the orthogonal
projection to the tangent space of ∂NB.10 Then, one can decompose M : ∇δu as

M : ∇δu = MP : ∇δu + (Mn̂) · ∇n̂δu = M : (∇δu)P + (Mn̂) · ∇n̂δu , (A.2)

because (∇δu)n̂ = ∇n̂δu, and where (∇δu)P represents the derivatives of δu along directions tangent to ∂NB.
Therefore, the third term on the right-hand side of (A.1) reads∫

∂NB
M : ∇δuda =

∫
∂NB

M : (∇δu)Pda+

∫
∂NB

(Mn̂) · ∇n̂δuda . (A.3)

Note that on ∂NB the field ∇n̂δu is independent from both δu and (∇δu)P. Therefore, by the fundamental
lemma of calculus of variations, the vanishing of δuf in (A.1) for arbitrary ∇n̂δu implies the vanishing of the
integrand of the last term in (A.3), i.e., Mn̂ = 0. This means that [C(m⊗ n̂)] n̂ = 0, which implies that m = 0
because of the invertibility of C. This can be seen in a chart in which the first two coordinates are tangent
and the third one is orthogonal to ∂NB. Then, the constants Ca3b3 can be selected by extracting the rows and
columns 3, 5, 6 from the Voigt representation of C. Being a principal submatrix of an invertible matrix, it is
invertible, and hence, Ca3b3mb = 0 implies that mb = 0.

B Metrics and Norms in the Design Space

For two isotropic elasticity tensors C and C′ corresponding to the pairs (ξ, η) and (ξ′, η′), respectively, let us
define

d2(C,C′) = m1 [ξ(x)− ξ′(x)]
2

+m2 [η(x)− η′(x))]
2

+ α1‖∇(ξ(x)− ξ′(x))‖2+α2‖∇(η(x)− η′(x))‖2 , (B.1)

where m1, m2, α1, and α2 are some positive constants. Our goal is to prove that for fixed x, d(., .) is a metric.
Obviously, d(C,C′) = d(C′,C), and d(C,C′) = 0 if and only if C = C′. It remains to show that d satisfies the
triangular inequality. Notice that

d2(C,C′) = m1 [ξ − ξ′]2 +m2 [η − η′]2 + α1‖∇(ξ − ξ′)‖2+α2‖∇(η − η′)‖2

= m1 [(ξ − ξ′′) + (ξ′′ − ξ′)]2 +m2 [(η − η′′) + (η′′ − η′)]2

+ α1‖∇(ξ − ξ′′) +∇(ξ′′ − ξ′)‖2+α2‖∇(η − η′′) +∇(η′′ − η′)‖2

= m1(ξ − ξ′′)2 +m2(η − η′′)2 +m1(ξ′′ − ξ′)2 +m2(η′′ − η′)2

+ 2m1(ξ − ξ′′)(ξ′′ − ξ′) + 2m2(η − η′′)(η′′ − η′)
+ α1‖∇(ξ − ξ′′)‖2+α1‖∇(ξ′′ − ξ′)‖2+2α1∇(ξ − ξ′′) · ∇(ξ′′ − ξ′)
+ α2‖∇(η − η′′)‖2+α2‖∇(η′′ − η′)‖2+2α2∇(η − η′′) · ∇(η′′ − η′)

= d2(C,C′′) + d2(C′′,C′) + 2m1(ξ − ξ′′)(ξ′′ − ξ′) + 2m2(η − η′′)(η′′ − η′)
+ 2α1∇(ξ − ξ′′) · ∇(ξ′′ − ξ′) + 2α2∇(η − η′′) · ∇(η′′ − η′) .

(B.2)

For vectors a = (a1, a2, a3, a4, a5, a6) and b = (b1, b2, b3, b4, b5, b6) in R6, it is straightforward to show that
〈a,b〉 = m1a1b1 + m2a2b2 + α1(a3b3 + a4b4) + α2(a5b5 + a6b6) is an inner product.11 The Cauchy-Schwarz
inequality states that 〈a,b〉2 ≤ 〈a,a〉〈b,b〉. Let us define a = (ξ−ξ′′, η−η′′, (ξ−ξ′′),1, (ξ−ξ′′),2, (η−η′′),1, (η−
η′′),2), and b = (ξ′′ − ξ′, η′′ − η′, (ξ′′ − ξ′),1, (ξ′′ − ξ′),2, (η′′ − η′),1, (η′′ − η′),2).12 Notice that

〈a,b〉 = m1(ξ − ξ′′)(ξ′′ − ξ′) +m2(η − η′′)(η′′ − η′) + α1∇(ξ − ξ′′) · ∇(ξ′′ − ξ′) + α2∇(η − η′′) · ∇(η′′ − η′) ,
〈a,a〉 = m1(ξ − ξ′′)2 +m2(η − η′′)2 + α1‖∇(ξ − ξ′′)‖2+α2‖∇(η − η′′)‖2 ,
〈b,b〉 = m1(ξ′′ − ξ′)2 +m2(η′′ − η′)2 + α1‖∇(ξ′′ − ξ′)‖2+α2‖∇(η′′ − η′)‖2 .

(B.3)

10As an orthogonal projection, P satisfies Pv · w = v · Pw. Moreover, it can be used to decompose dot products as v · w =
Pv ·w + vnwn = v ·Pw + vnwn. This extends to all contractions, e.g., A : B = AP : B + An̂ ·Bn̂ = A : BP + An̂ ·Bn̂.

11This is for 2D. In 3D, for vectors a = (a1, a2, a3, a4, a5, a6, a7, a8) and b = (b1, b2, b3, b4, b5, b6, b7, b8) in R8, 〈a,b〉 = m1a1b1 +
m2a2b2 + α1(a3b3 + a4b4 + a5b5) + α2(a6b6 + a7b7 + a8b8) is the inner product.

12In 3D, a = (ξ − ξ′′, η − η′′, (ξ − ξ′′),1, (ξ − ξ′′),2, (ξ − ξ′′),3, (η − η′′),1, (η − η′′),2, (η − η′′),3), and b = (ξ′′ − ξ′, η′′ − η′, (ξ′′ −
ξ′),1, (ξ′′ − ξ′),2, (ξ′′ − ξ′),3, (η′′ − η′),1, (η′′ − η′),2, (η′′ − η′),3).
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The Cauchy-Schwarz inequality implies that

[m1(ξ − ξ′′)(ξ′′ − ξ′) +m2(η − η′′)(η′′ − η′) + α1∇(ξ − ξ′′) · ∇(ξ′′ − ξ′) + α2∇(η − η′′) · ∇(η′′ − η′)]2

≤
[
m1(ξ − ξ′′)2 +m2(η − η′′)2 + α1‖∇(ξ − ξ′′)‖2+α2‖∇(η − η′′)‖2

]
×
[
m1(ξ′′ − ξ′)2 +m2(η′′ − η′)2 + α1‖∇(ξ′′ − ξ′)‖2+α2‖∇(η′′ − η′)‖2

]
= d2(C,C′′)d2(C′′,C′) .

(B.4)

Thus

m1(ξ − ξ′′)(ξ′′ − ξ′) +m2(η − η′′)(η′′ − η′) + α1∇(ξ − ξ′′) · ∇(ξ′′ − ξ′) + α2∇(η − η′′) · ∇(η′′ − η′)
≤ d(C,C′′)d(C′′,C′) .

(B.5)

Therefore
d2(C,C′) = d2(C,C′′) + d2(C′′,C′) + 2m1(ξ − ξ′′)(ξ′′ − ξ′) + 2m2(η − η′′)(η′′ − η′)

+ 2α1∇(ξ − ξ′′) · ∇(ξ′′ − ξ′) + 2α2∇(η − η′′) · ∇(η′′ − η′)
≤ d2(C,C′′) + d2(C′′,C′) + 2d(C,C′′)d(C′′,C′) .

(B.6)

This implies that d(C,C′) ≤ d(C,C′′) + d(C′′,C′), and hence d(., .) defines a metric for a fixed x. From (3.10),
notice that

d2
C(C,C′) =

∫
C
d2(C(x),C′(x)) dv

≤
∫
C
d2(C(x),C′′(x)) dv +

∫
C
d2(C′′(x),C′(x)) dv + 2

∫
C
d(C(x),C′′(x)) d(C′′(x),C′(x)) dv .

(B.7)

Using the Cauchy-Schwarz inequality(∫
C
d(C(x),C′′(x)) d(C′′(x),C′(x)) dv

)2

≤
∫
C
d2(C(x),C′′(x)) dv

∫
C
d2(C′′(x),C′(x)) dv

= d2
C(C,C′′) d2

C(C′,C′) .

(B.8)

Thus,
∫
C d(C(x),C′′(x)) d(C′′(x),C′(x)) dv ≤ dC(C,C′′) dC(C′,C′). Substituting this back into (B.7), one con-

cludes that dC(C,C′) ≤ dC(C,C′′) + dC(C′′,C′), and hence dC(., .) is a metric.
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