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The El Haddad equation permits to deal simply with both short and long cracks, and we
have recently suggested a generalization for finite life, defining a “finite life intrinsic crack
size”, as a power law of number of cycles to failure. Here, we derive the corresponding
crack propagation law, finding that it shows features similar to Paris’ law in the limit of
long cracks, but shows some dependence of the “equivalent” C, m Paris’ material’s “con-
stants” with applied stress range. The increase of crack propagation speed is obtained
for short cracks, but additional size effects are derived, which may require quantitative
validation, and correspond to the intrinsic difference with respect to the standard Paris’
law.
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Nomenclature

a0= El Haddad intrinsic crack size

a0 (N)= “finite life” El Haddad intrinsic crack size

C, m= Paris’ “material constants”

Kf = fatigue strength reduction factor

Kf (N)= “finite life” fatigue strength reduction factor

∆Kth = fatigue threshold

a = notch or crack size

∆σ = range of the gross nominal stress

∆σ∞ = threshold value of the gross nominal stress range according to El Haddad

equation

∆σL = plain specimen fatigue limit (in terms of stress range)

∆σEH (N)= the new “El Haddad” stress range finite life equation

R = σmin/σmax= stress ratio

α = geometric shape factor
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1. Introduction

Fatigue is due to different processes occurring at different scales. When dealing with

plain specimen, fatigue occurs at mesoscopic level at the borders between grains,

and in many cases we observe simple power-law equations as in the Basquin law,

NS (∆σS)
k

= N∞ [∆σL]
k

= N [∆σ (N)]
k

= CW (1)

which defines the SN curve of the uncracked material under stress control. Here,

both N∞ and NS are in general “conventional” values, particularly in case there is

no real “infinite life” in the SN curve. N∞ is generally about 107, whereas NS is

generally taken around 103 cycles, in which case ∆σS should be typically taken as

about 0.9σR (1 − R).

Another limit case is that of a distinctly cracked specimen, where geometrical

self-similarity induces more naturally power-law behaviour of Paris’ law [Paris and

Erdogan 1963], which relates the crack advancement per cycle to the range of Irwin’s

stress intensity factors as

da

dN
= C∆Km (2)

where C, m are Paris’ “material constants”. Deviations near threshold or near

the critical condition of static failure have been observed quite early. Then, with

improvements of measuring techniques, and interest in long lives, a different

behaviour for short cracks emerged, showing not only they can propagate, but actu-

ally quite fast, below the threshold. This behaviour received significant attention but

a simple type of modelling was only possible for infinite-life. Indeed, some authors

[Kitagawa and Takahashi, 1976] plotted data for non-propagating short cracks in a

∆σ − a diagram which showed the transition from the two limits in a simple way.

The transition from short crack (fatigue-limit dominated) to long-cracks (fatigue-

threshold dominated), can be shown to occur at crack sizes of the order of the El

Haddad intrinsic crack size [El Haddad et al. 1979]

a0 =
1

π

(

∆Kth

∆σL

)2

(3)

where ∆Kth is fatigue threshold and ∆σL fatigue limit (at a given load R−ratio),

which is of the order of 100µm for many metals (for typical values of R between 0,

−1). The reason for “intrinsic crack” denomination for a0 comes from the simple

interpolating formulae for the infinite life strenght ∆σ∞which adds to the real crack

size

∆σ∞ = ∆Kth/
√

π (αa + a0) (4)

where α is a geometrical factor. Perhaps no “direct approach” for modelling short

cracks has become equally successful in engineering terms as this, which essen-

tially belongs to the class of “critical distance” heuristic methods starting from the
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early suggestions by Neuber and Peterson for the fatigue knock-down factor Kf

[Ciavarella and Meneghetti 2004].

Integration of a crack propagation law is the approach attempted in the damage

tolerance programs, and in principle could lead to generalized “finite life” Kita-

gawa diagram. These approaches practically do not employ SN curves and Basquin

type laws, but base their calculations upon various modifications of Paris law. This

approach becomes more complicated and less reliable in the case the initial crack

size is short, and is anyway quite sensitive to the Paris’ constants — inevitably for

high power coefficients m. A number of specialized models and software programs

exist (well known are the NASA and AIRFORCE ones, NASGROW and AFGROW,

respectively), which perhaps not surprisingly may give significantly differrent pre-

dictions. Alternatively, one could use the idea of splitting life into initiation and

propagation, in which case there is need to specify the length of “initiated” cracks.

In recent attempts, we looked at the possibility to deal with short cracks in sim-

plified ways, looking both at the SN plane, and in the ∆σ − a Kitagawa plane. In

other words, we suggested that the apparent bizzarre behaviour of “short cracks” is

nothing but a behaviour intermediate between the Wohler curve of the nominally

uncracked material and the Paris’ “integrated” curve or a cracked material, as an

extension of the idea that, for infinite life, there is a behaviour intermediate between

fatigue limit and fatigue threshold. The first two attempts interpolate between

Basquin’s law and Paris’ law [Pugno et al. 2006, Ciavarella and Monno, 2006].

Considering that Paris’ law constants are not true material constants [Ciavarella

et al. 2008]a, in a third attempt [Ciavarella 2011] we attempted to avoid Paris’ con-

stants, and directly moved to extending El Haddad using only Basquin’s law for the

uncracked material, and a free parameter r. The basic idea was to define a finite life

intrinsic crack, a0 (N) as a power law increasing from the known value at infinite

life (given by N∞)

a0 (N) =
1

π

(

∆Kth (N)

∆σ (N)

)2

= a0

(

(N∞/N)
1/r

(N∞/N)1/k

)2

≃ a0

(

N∞

N

)2(1/r−1/k)

(5)

where we have implicitely defined a “finite-life threshold” ∆Kth (N), also as a power

law. As discussed in our previous paper [8], r turns out of the same order of Paris’

plot slope, m, for which indeed [Fleck et al. 1994] estimate (see their Fig. 16),

log

(

∆Kth

KIc

)

≃ −
4

m
(6)

aIn particular, with larger sizes, we expect for metallic materials an increase of m and decrease of
C to move towards more “static” modes of failure.
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The generalized El Haddad formula was obtained therefore in the form (EHG,

in the following and in the caption)

∆σEH (N)

∆σL
=

(

N∞
N

)1/r

√

a
a0

+
(

N
N∞

)2/k−2/r
(7)

which can be considered an implicit SN(a) curve, ie. a SN curve which depends

on the initial crack size a. In the previous paper, plots are shown in the Kitagawa

diagram or as a SN curve for representative cases: a “metal” r = 3, k = 10 or

“ceramic material” r = 10, k = 10. In the former case the transition from the

Basquin power-law, to the “Paris-like” power law is clear in the SN curves, whereas

this is virtually not distinguishable in the ceramic material case.

Notice that (7) obviously returns to the well known original El Haddad equation

(4) when N
N∞

= 1. Also, for a → 0 we reobtain the expected SN Basquin law, and

this is also the asymptotic limit for N
N∞

→ 0, reflecting the fact that the effect of

a crack is less important at static failure than in fatigue. Finally, the asymptotic

limit for a → ∞, is instead

∆σEH (N)

∆σL
=

(

N∞

N

)1/r (
a

a0

)

−1/2

(8)

which gives a different size effect with respect to the more esthablished Paris’ regime.

We shall obtain from this equation an equivalent Paris’ law in the present note.

To do so, we have to generate the general derivation procedure, starting from the

classical Paris’ law.

2. Crack Propagation from SN(a) Curves

Integration of the standard Paris’ law (2), neglecting the change of geometric factors

α with crack size, gives for a constant stress range, the number of cycles to failure

as

Nf =
a
1−m/2
i − a

1−m/2
f

πm/2 (m/2 − 1)C (α∆σ)
m ≃

a
1−m/2
i

β (α∆σ)
m (9)

where ai, af , are initial and final length of the crack. In the second step, we have

neglected the final size of crack af , which is convenient for conditions not too close

to static failure (i.e. for a given sufficiently large number of cycles). Also, we have

used the notation β = πm/2 (m/2 − 1)C.

We can consider the obtained equation as a general function of three variables

F (ai, Nf , ∆σ) = a
1−m/2
i − β (α∆σ)

m
Nf = 0 (10)

To re-obtain Paris’ law, as a general method, we differentiate F , keeping constant

∆σ (Nf), obtaining for an increase of ai, a decrease of the number of cycles to failure
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Nf . Hence, we could write in general

da

dN
=

∂
∂N F
∂
∂aF

(11)

In fact, for the standard Paris’ law, we have ∂
∂aF = (1 − m/2)a−m/2, and ∂

∂N

F = −β (α∆σ)
m

. Hence, (2) follows easily.

In the EHG case, we can square (7) to obtain

F (ai, Nf , ∆σ) =
ai

a0
−

(

N∞

Nf

)2/r (
∆σL

∆σ

)2

+

(

Nf

N∞

)2/k−2/r

= 0 (12)

The differentiation of F according to (11) leads to

da

dN
=

a0

N∞

f

(

∆σL

∆σ
,
N∞

N
, r, k

)

(13)

=
a0

N∞

[

(

∆σL

∆σ

)2
2

r

(

N∞

Nf

)
2

r
+1

+ 2

(

1

k
−

1

r

)(

Nf

N∞

)
2

k
−

2

r
−1
]

which unfortunately we are not able to put in explicit standard form in terms of ai

a0

from inverting (7) or (12), except approximately or in special cases.

2.1. Special Case r = k

When r = k (what we can call “ceramic” material since in this case the constants

approach each other), the two equations (12) and (13) simplify and hence we can

combine them into

da

dN
=

2a0

N∞r

(

∆σ

∆σL

)r (
a

a0
+ 1

)1+r/2

(14)

In turn this, for small cracks, approaches a value independent on crack size

da

dN

∣

∣

∣

∣

a→0

→
2a0

N∞k

(

∆σ

∆σL

)k

(15)

which as obtained in similar approaches [5,6] gives an exponent related to Basquin’s

coefficient.

For large crack sizes (and large r as is indeed the case for ceramic materials),

the general equation approaches approximately a Paris’ like behaviour

da

dN
→

2a0

N∞r

(

∆K

∆Kth

)r

= C (∆K)r (16)

but other than in this limit, there are some deviations.
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2.2. Low ∆σ Limit

We start from writing the EHG law (7) or (12) in the form

ai

a0
=

(

N∞

Nf

)2/r
[

(

∆σL

∆σ

)2

−

(

Nf

N∞

)2/k
]

, (17)

The second term in the parenthesis can be neglected for low applied stress ranges

∆σ <<
(

N∞
Nf

)1/k

∆σL, where we expect no dependence on the original Basquin

regime. In fact, upon rearranging (17), we reobtain the original “assumed” ∆K−N

law
(

∆Ki

∆Kth

)r

≃
N∞

Nf
(18)

In the original Kitagawa plane, we are simply looking at the lines inclined by slope

-1/2 as the original threshold line. Moreover, when the first term dominate in (17),

we obtain the largest ai

a0

. Hence, we are looking, for a given ∆σ, to large crack

sizes and small Nf which in turn means moving to the right in the Kitagawa plane,

towards static failure.

Substituting (18) into the crack propagation law (13), we get

da

dN
=

a0

N∞

(

∆Ki

∆Kth

)r+2
[

2

r

(

∆σL

∆σ

)2

+ 2

(

1

k
−

1

r

)(

∆Ki

∆Kth

)

−
2r
k

]

(19)

whose term outside the parenthesys looks similar to a Paris’ law, but the dependence

is not exactly on a ∆Ki because of the ∆σ terms. Assuming the first term dominates,

the law can also be written as

da

dN
=

a0

N∞

2

r

ai

a0

(

∆Ki

∆Kth

)r

=
a0

N∞

2

r

(

∆σL

∆σ

)2(
∆Ki

∆Kth

)r+2

(20)

which is a Paris law with an additional dependence on crack size, or on ∆σ. In

particular, it would seem the crack propagation rate decrease with short cracks,

but it should be borne in mind this is a limit case for low ∆σ and hence cannot be

estrapolated for low ai

a0

. Instead, considering large sizes, the law is the correct limit of

our new equation, and it does predict an increase of propagation speed with size (or

equivalently, a decrease with ∆σ). Compared to the classical results of Barenblatt

and Botvina (recently reviewed in [7]), this is not entirely unreasonable, although

more often it is expected that both the exponent m of the law and the coefficient

C should change to move towards more “static” modes of failure. Practical ranges

of this effect will be seen in the example plots.

3. A Remark on Crack Lenght

Finally, we give a small remark on integrating Paris’ law to get a current evaluation

of the crack lenght, from equations like (10,12). These effectively return the number
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of cycles to failure Nf for a given initial crack size ai. Since instead we are looking

for the actual crack size as a number of cycles N , we effectively need to consider

that for every given remaining cycles to failure, we have consumed the number N

of cycles. Hence, in the case of the new EHG

F (a, Nf − N, ∆σ) =
a

a0
−

(

N∞

Nf − N

)2/r (
∆σL

∆σ

)2

+

(

Nf − N

N∞

)2/k−2/r

= 0 (21)

or else

a

a0
=

(

N∞

Nf − N

)2/r (
∆σL

∆σ

)2

−

(

Nf − N

N∞

)2/k−2/r

(22)

where the Nf has to be computed implicitely from the same function. Alternatively,

one can fix Nf and hence compute ai.

4. Example Plots

In order to plot the obtained equation da/dN, we suggest the following procedure

which avoids solving numerically non-linear equations

1) Fix
(

∆σL

∆σ , N∞
N , r, k

)

;

2) Compute independently the dimensionless quantities a
a0

from (12), and
da
dN / a0

N∞
= f from (13);

3) define pairs (∆σ, a) in the Kitagawa diagram between the curves for infinite

life, and static life or at least, above the El Haddad infinite life limit. The latter

implies for a given ∆σ, that a > aEH where aEH is from the original El Haddad

equation (4).

4) we can plot the crack propagation law as da
dN / a0

N∞
as a function of

∆K

∆Kth
=

α∆σ
√

πa

α∆σL
√

πa0
=

∆σ

∆σL

√

a

a0

Figure 1 shows a couple of examples where we plot for convenience,

f/108 = da
dN /

(

108 a0

N∞

)

since we expect a0

N∞
∼ 10−8mm/cycle in many cases

(a0 ∼ 100µm = 0.1mm and N∞ = 107). Hence,

da

dN
=

(

a0

N∞

108

)

f

108
(23)

This way, apart from small deviations, the scale is directly in mm/cycles.

In Fig. 1a we have a case of metallic material with r = 3 and k = 10. Instead,

in Fig. 1b we have a “ceramic”-like material, with r = k = 10. We have used three

values of ∆σ
∆σL

= 0.5, 1, 2 to span reasonably the range of interesting values. We

clearly see the following results:-

• for the low value of ∆σ
∆σL

= 0.5, the agreement between the approximate

eqt.(19) in dashed lines and the full new crack propagation law is perfect,

and the curve is anyway very close to a power law like Paris’, all the way
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(a) 

(b) 

Fig. 1. The generalized Paris’ law f/108 = da

dN
/

“

108 a0

N∞

”

for a case with r = 3, k = 10 (a), and

for another with r = k = 10. Dashed lines correspond to approx.eqt.(19)

down to the truncation at ∆K/∆Kth ∼ 1 (or, more precisely, in correspon-

dence to the El Haddad equation);

• for higher values of ∆σ
∆σL

, the curve tends to show a marked increase at low

∆K range, similarly to Pugno et al.[5] and qualitatively in agreement with

experiments. However, there is also a smaller but sensible decrease in the

high ∆K range, which is not equally expected. This decrease is of 1 order of

magnitude in crack propagation speed moving from ∆σ
∆σL

= 0.5 to ∆σ
∆σL

= 2

and is the core effect of assuming the generalized El Haddad law, instead

of a Paris curve.

• because of the normalization used, we see reasonable agreement with the

usual finding, reported for example in Fleck et al.[9], i.e. that the fatigue

thereshold corresponds to a propagation below 10−7 mm/cycles, and notice
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that our equation provides this approximately for both ranges of r, without

the need of changing any adjusting factor.

It is not expected that this form of crack propagation law could be sufficiently

accurate in general, since we can assume that in its range of validity, the “proper”

Paris’ law would describe more accurately the data. However, the present law is

obtained differently, and could be used in the range where the “proper” Paris law

would also show some uncertainties. This note is aimed at showing the type of crack

propagation law implicit in assuming the El Haddad generalized equation.

Notice in particular that the figures span a range of both x and y-axes too

large in practice, where typically we measure up to 5 orders of magnitude in crack

propagation speeds, and perhaps 1 or 2 orders between threshold and critical stress

intensity factor range. Hence the figures are only illustrative.

5. Conclusions

We have recently generalized the El Haddad equation to finite life, avoiding Paris’

law constants. The implication in terms of crack propagation law are examined here,

finding that the resulting crack propagation law is a power law of the ∆K, only in

the special case r = k and in the limit of large crack. For low ∆σ we also derived

a power law equation of ∆K, which however additionaly depends on the crack

size a, predicting an increase of propagation rate with scale, which is qualitatively

possible. At the other extreme, of high ∆σ load range, there is a large increase of

crack propagation rate for short cracks. These effects require further investigations,

and correspond to the ranges where deviation from Paris law is intrinsic in the

assumed law.
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