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Using concepts of hierarchical multi-scale modeling, we report development of a 
mesoscopic model for single wall carbon nanotubes with parameters completely 
derived from full atomistic simulations.  The parameters in the mesoscopic model 
are fit to reproduce elastic, fracture and adhesion properties of carbon nanotubes, 
in this article demonstrated for (5,5) carbon nanotubes. The mesoscale model 
enables to model the dynamics of systems with hundreds of ultra-long carbon 
nanotubes over time scales approaching microseconds.  We apply our mesoscopic 
model to study self-assembly processes, including self-folding, bundle formation, 
as well as the response of bundles of carbon nanotubes to severe mechanical 
stimulation under compression, bending and tension.  Our results with mesoscale 
modeling corroborate earlier results suggesting a novel self-folding mechanism, 
leading to creation of racket-shaped carbon nanotubes structures provided that the 
aspect ratio of the carbon nanotube is sufficiently large.  We find that the 
persistence length of the (5,5) carbon nanotube is on the order of a few µm in the 
temperature regime from 300K to 1000K.   

 
 

Keywords:  Carbon nanotubes, molecule, elasticity, fracture, folding, persistence 
length, plasticity, bundles, deformation 

 
 
This is a reprint of the article that appeared as: 
 
M.J. Buehler, “Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, 
self-folding and fracture”, Journal of Materials Research, Vol. 21 (11), pp. 2855-2869 
(2006). 
 



 
 

- 2 -

 
I.  INTRODUCTION 
 
Carbon nanotubes (CNTs) constitute a prominent example of nanomaterials, with many 
potential applications that could take advantage of their unique mechanical, electrical and 
optical properties [1-6].   A fundamental understanding of the properties of individual 
CNTs, or assemblies of CNTs in bundles or nanopillars [7], or in conjunction with 
biological molecules such as DNA [8] may be critical to enable new technologies and to 
engineer CNT based devices.   
 
In particular, the mechanical properties of CNTs are important in many applications.   
This includes cases in which the primary role of CNTs is not related to their mechanical 
properties. Nevertheless, a thorough understanding of the mechanical properties is 
essential to design manufacturing processes or to ensure reliability during operation of 
devices.   
 
The interactions of individual CNTs can play a critical role in application and during 
fabrication processes, and may pose significant challenges compared with macroscopic 
classical engineering applications.  This is because at nanoscale, weak dispersive van der 
Waals interactions (vdW) play a more prominent role, and often govern the mechanics or 
self-assembly dynamics of those materials.  The interplay of such adhesive forces with 
covalent bonding within CNTs is not well understood for many CNT systems.  
 
A.  Review:  Modeling of mechanical behavior of CNTs 
 
The mechanics of carbon nanotubes has been discussed in various articles published over 
the last decade, both from a continuum and atomistic perspective [9-13].   Most studies in 
the literature that focused on CNTs have considered only small aspect ratio CNTs, or a 
small number of interacting CNTs.   In contrast, experiments have shown that single wall 
carbon nanotubes (SWNTs) can grow to lengths above 700 nm with a diameter of 0.9 
nm, resulting in an aspect ratio as large as about 800 [2].  CNTs with ultra small 
diameters approaching 0.4 nm have been shown to be stable, both in experiment and by 
computation [14, 15].  
 
In a classical article by Yacobsen et al. (1996)  [16], the behavior of single, free-standing 
single wall carbon nanotubes (SWNTs) under compressive loading was investigated 
using classical, molecular-dynamics (MD) with empirical potentials.  The longest tube 
considered was 6 nm with a diameter of 1 nm. The authors developed a continuum shell 
model to describe the buckling modes of the CNTs.   
 
Ozaki and co-workers (2000) [17] investigated SWNTs under axial compression using 
tight binding (TB) MD methods and system sizes up to a few thousand atoms. In their 
studies, the length of the nanotubes was limited to about 14 nm with a diameter of 0.67 
nm. A ripple shell buckling was observed once the SWNT was put in compressive 
loading. The details of the ripple buckling (e.g. the ripple wavelength) were found to be 
strongly dependent on the temperature, and the stress under large strain and zero 



 
 

- 3 -

temperature depends on the helicity. SWNTs under tensile and compressive loading were 
studied by Dereli and Ozdogan (2003) [18] using a TB-MD scheme in an attempt to 
obtain the stress-strain curve, theoretical strength and Poisson’s ratio for SWNTs. The 
authors modeled CNTs with about 400 atoms, featuring a total length of 20 layers, 
corresponding to a few nanometers.   
 
Ru (2001) [19]  considered buckling of a double walled carbon nanotube embedded in an 
elastic medium under compressive loading using a double-shell continuum mechanics 
model. The main finding was that critical buckling strain for MWNTs may be reduced 
compared to SWNTs, indicating that MWNT could even be more susceptible to axial 
buckling than SWNTs. Other research focused on the mechanical properties of CNTs 
filled with small molecules. The authors in [20] investigated compression of CNTs filled 
with nano-particles and molecules (e.g. C60, NH4). The longest tube considered had a 
length around 20 nm.  
 
Research has also been carried out to investigate the elastic properties of CNTs. As 
recently shown by Hod and coworkers [21], SWNTs can be bent into closed-ring 
structures (“nano-rings”). The Tersoff-Brenner potential was used within a classical MD 
scheme to study the elastic properties of such CNT ring structures. There are also 
investigations focused on the interaction between different CNTs and their adhesive 
properties. It was shown that when SWNTs are formed into bundles due to vdW 
interaction [22], their cross-section shape can change significantly.  The change in shape 
can modify the flexural rigidity and promote bending or other forms of elastic 
deformation.  Interactions of CNTs with surfaces can also change their shape [23]. The 
shape change can also affect the electrical conductivity of CNTs, clearly indicating the 
immediate link of CNT mechanics and other non-mechanics applications.  Failure 
mechanisms such as fracture nucleation in SWNTs under tension have been discussed 
using combined continuum-atomistic approaches [9, 24-26].    
 
Several other studies using molecular dynamics have been carried out to develop a 
molecular level understanding of the failure processes, using a variety of atomistic 
modeling techniques [9, 10, 27-31].   
 
B.  Mechanics of assemblies of CNTs 
 
A rigorous understanding of the mechanical behavior of CNTs originating from the 
atomistic or molecular origin, and the properties of assemblies of a large number of 
CNTs has not been established up to date.  However, this scale is critical to enable 
technological applications and usage of CNTs as basis for new materials.   
 
Full atomistic models have proven to be a quite useful approach in understanding the 
mechanical behavior of CNTs [9, 10, 27-31].  However, such models are limited to very 
short time- and length-scales, so that a direct comparison with experimental scales is 
often not possible or extremely difficult.   
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To overcome those limitations, we propose to develop a mesoscale model of CNTs by 
reducing some of the atomistic degrees of freedom, representing CNTs as a collection of 
beads connected by spring-like molecular interatomic potentials.  These interaction 
potentials describe the resistance to tensile load, bending and the interaction between 
different CNTs.  Our mesoscale model is capable of treating the deformation physics of 
large assemblies of carbon nanotubes corresponding to systems with millions of atoms, 
while incorporating nonlinear elasticity, fracture behavior and adhesion properties 
between different CNTs, ranging through time scales of several microseconds.  With 
parameters rigorously derived from full atomistic simulations, our mesoscale model 
provides a first principles based description of CNTs.  Due to the accessible time- and 
length-scales, such models may significantly contribute to develop a fundamental 
understanding of cross-scale interactions.   
 
Bead-type models have been implemented for several other molecular systems and 
applications [32-35].  Mesoscale models, with information about chemistry of bond 
rupture, enables modeling the complex interaction of chemical bonds of different 
strength.  Mesoscale models may also enable studies of CNTs interacting with matrix 
materials, which is so far mainly addressed using experimental techniques [36].   
 
C.  Motivation and outline 
 
The focal point of this paper are self-assembly processes of CNTs, as well as properties 
and response of self-assembled structures under mechanical stimulation [37].  Self-
assembly processes of CNTs play critical role in manufacturing nano-devices, as has 
been demonstrated in several experimental studies.   
 
For example, growth of nano-pillars of CNTs has recently been reported, involving 
MWCNTs of lengths up to 500 nm and more [7].  Similar mechanisms have been 
reported in other works discussing self-assembly processes of MWCNTs creating 
structures with lengths of several micrometers to meters [38].  In several recent studies, 
self-assembly of nanostructures has been discussed in the light of combination with 
biological mechanisms and concepts [39].  Several other self-assembly processes 
involving CNTs have been reported [40, 41].   Our modeling is further motivated by 
recent MD results that suggested existence of self-folded racket-like CNT structures [42, 
43], as shown in Figure 1.  So far, only full atomistic studies have been carried out that 
have been somewhat limited by the accessible time scale, in particular to describe the 
slow motions of the ultra long CNTs.  
 
Computer models that allow straightforward access to the properties and mechanisms of 
large-scale assembles of CNTs could provide immediate help to engineer those structures 
and materials.   
 
The outline of this paper is as follows.  In Section II, we discuss a series of full atomistic 
calculations to determine fundamental mechanical parameters of a (5,5) single wall CNT, 
including tensile stiffness, bending stiffness, persistence length and adhesion properties.  
In Section III, we discuss a simple mesoscopic model and derivation of parameters for 
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this model from full atomistic studies.  Section IV is dedicated to application of the 
mesoscale model to demonstrate its usefulness.  Examples include studies of self-folding 
mechanics, self-assembly of two CNTs into conglomerated structures, and self-assembly 
and properties of bundles of CNTs.  The results and implications of this model are 
discussed in Section V.    
 
II.  ELASTIC AND FRACTURE PROPERTIES:  ATOMISTIC MODELING  
 
In this Section, we describe a series of mechanical loading cases to determine parameters 
for our mesoscopic model.  These studies consist of the following three loading cases:  (i) 
tensile loading, to determine Young’s modulus, change of Young’s modulus as a function 
of deformation and fracture stress and strain, (ii) bending to determine the bending 
stiffness of CNTs, and (iii) an assembly of two CNTs to determine their adhesion energy.   
The different loading cases are summarized in Figure 2, subplots (a) and (b).  
 
All studies are carried out using (5,5) armchair single wall CNTs (SWCNTs).  This 
particular CNT is chosen based on earlier full atomistic studies of tubes with this 
geometry [42, 43] (see Figure 1).  
 
A.  Classical molecular dynamics simulation method 
 
The atomistic studies are carried out using classical molecular dynamics (MD) [44].  MD 
predicts the motion of a large number of atoms by numerically integrating the equations 
of motion governed by interatomic interaction. Normally, it is necessary to rely on 
classical MD to simulate system sizes above a few thousand atoms and time-scales on the 
order of nanoseconds, as such system sizes and time scales are still far beyond the 
capabilities of quantum mechanics based methods.   
 
Interatomic potentials are the core of classical MD methods. During the last decades, 
numerous potentials describing atomic interaction in various materials with different 
levels of accuracy have been proposed, each having unique problems and strengths. For 
covalently-bonded materials like carbon or silicon, bond-order multi-body potentials have 
been developed (e.g. Tersoff potential or Stillinger-Weber potential [45, 46]). These 
multi-body potentials capture not only pair wise interactions, but also additional 
contributions from the local geometric configuration of the neighboring atoms.  Here we 
use the Tersoff potential [45] to describe the interatomic bonding of C-C atoms. The 
Tersoff potential has proven to be a reliable empirical potential to describe the bonding 
inside carbon nanotubes, in particular around the equilibrium position. For the van der 
Waals interaction between non-bonding atoms, we use Lennard-Jones 12:6 potential [15] 
with parameters ε =3.851 Å, and =σ 0.0040 eV.  
 
The time step is chosen to be on the order of 10-15 seconds. Whereas the vdW interaction 
features a larger cutoff of 15 Å, the Tersoff potential has a cutoff of 2.1 Å.   The MD 
calculations are preformed using the ITAP IMD code [47, 48]. 
 
B.  Tensile loading 
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B.1  Elastic properties   
 
The computational experiments to model a tensile of a CNT is implanted by keeping one 
end of the CNT fixed, while slowly displacing the other end in the axial direction of the 
tube.   The loading case is shown in Figure 2(a).   
 
As the tube is stretched, we calculate the virial stress [49] averaged over the complete 
tube volume.  We assume a circular cross-sectional area 2RAC ⋅= π , assuming that 

5.3≈R  Å.  The stress tensor component in loading direction is used to extract 
information about the stress as a function of applied uniaxial strain.  The stress-strain 
curve is then used to determine Young’s modulus E , defined as 
 

  
ε
σ

ε
σε

∆
∆

≈
∂
∂

=)(E .        (1) 

 
Note that Young’s modulus is typically dependent on the strain ε , showing a decrease 
with increasing strain due to softening of chemical bonds as their breaking point is 
reached.  This phenomenon is referred to as hyperelasticity. Young’s modulus is 
independent of the length of the molecule.   
 
For small deformation, we estimate Young’s modulus of the (5,5) CNT to be around 
≈E 2 TPa.  Figure 3 depicts the stress-strain plot (subplot (a)) and an analysis of the 

Young’s modulus as a function of strain (subplot (b)).  The stress-strain plot shown in 
Figure 3(a) contains results of calculations carried out with three different displacement 
loading rates, 1.6 km/sec, 0.4 km/sec and 0.2 km/sec (corresponding to strain rates of 

111028.1 × 1/sec, 10102.3 ×  1/sec and 10106.1 × 1/sec). Whereas the result differs 
significantly for the largest loading rate, the results for the slower rates are similar, 
indicating convergence of the fracture properties.  Figure 3(b) depicts the result only for 
the loading rate 0.2 km/sec.   
 
B.2 Fracture properties   
 
Deformation of the CNTs is elastic only for small deformation.  When extremely large 
strains are applied to the carbon nanotube, we observe formation of defects that 
eventually lead to fracture of the carbon nanotube.  The fracture strain of the CNT to be 

≈Fε 32 %, as can be verified in Figure 3.  Fracture of the CNT is accompanied by a zero 
slope in the stress-strain plot, a behavior also found in atomic crystals.   
 
Fracture of the CNT initiates by generation of localized shear defects in the hexagonal 
lattice of the CNT, somewhat reminiscent of Stone-Wales defects [28, 50, 51].  These 
mechanisms occur within a fraction of a percent strain away from the peak in tensile 
stress in the stress-strain plot (Figure 3(a)). These localized defects quickly lead to 
formation of micro-cracks that lead to macroscopic failure of the carbon nanotube.  The 
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hexagonal lattice remains intact up to strains very close to macroscopic failure.  Several 
snapshots of the atomistic fracture mechanics are shown in Figure 4.   
 
The change in slope in the stress-strain plot (Figure 3(a), deviation from linear elastic 
regime starting at around 5% tensile strain) is due to homogeneous deformation of the 
entire lattice in the CNT, not due to development of local defects.     
 
C.  Bending modulus and persistence length 
 
C.1  Cantilever bending test 
 
Similar to the tensile test, we perform a simple computational experiment to describe the 
bending of a CNT by clamping it at the outermost left boundary and applying a force at 
the right end of the CNT, as shown in Figure 2(b).   
 
Atoms within a region of 5 Å in the outermost, left part of the CNT are held fixed in all 
directions, resembling the clamped boundary condition used in continuum theory. By 
measuring the bending displacement d , the bending stiffness EI  is then given by 
 

d
LF

EI app

3

3

= .         (2) 

 
From the clamped bending test, we find that =EI 6.65 2610−×  Nm2 for the (5,5) CNT.    
 
C.2  Persistence length  
 
Since we are interested in the molecular dynamics of ultra-long CNTs at elevated 
temperature, entropic effects may begin to play an important role.  The persistence length 
describes the molecular length at which the thermal energy becomes sufficient to induce 
significant bending in the CNT, even without application of external forces.  
 
The persistence length is defined as  
 

Tk
EI

B

=ξ ,         (3) 

 
where Bk is the Boltzmann constant, and T  is the temperature.  At =T 300 K, we find the 
persistence length ≈ξ 1.61 510−×  m, reducing to a few micrometers at temperature 
around 1000 K.   
 
This result suggests that most CNTs produced by experimental techniques are below the 
persistence length.  CNTs with larger diameter, or multi wall CNTs typically have an 
even larger bending stiffness, leading to larger persistence length.   
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We note that the CNT is a few orders of magnitude stiffer than many biological 
molecules (for example, the bending stiffness of a tropocollagen molecule is 

29109.71 −×=EI  Nm2  [52]).   
 
D.  Interaction of multiple CNTs:  Adhesion properties 
 
Since we are interested in the self-assembly of CNTs, we investigate the interaction of 
multiple CNTs.  Primary interaction forces are weak dispersive interactions, such as van 
der Waals forces.  We assume that no covalent bonds may form between different CNTs.  
 
D.1  Equilibrium distance between two CNTs 
 
The equilibrium distance of the CNTs is denoted by D∆ .  The parameter D∆  is 
determined from full atomistic simulations and is found to be 5.10≈∆D  Å.  We have 
also confirmed that assemblies of several CNTs form triangular lattices.  Our molecular 
dynamics simulation results suggest that pair-wise interaction between different CNTs 
represent a reasonable model.  
 
D.2  Adhesion energy 
 
The adhesion energy of two (5,5) tubes is determined to be =LE 2.31E-10 J/m. 
 
III.  MESOSCALE MODEL DEVELOPMENT 
 
Here we discuss our method in deriving parameters for a mesoscale bead-type model of 
CNTs from full atomistic calculations (schematic see Figure 5).  This derivation is based 
completely on the results reported in Section II, without additional empirical or fitting 
parameters.  
 
A.  Model development:  Training from pure atomistic results using energy 
and force matching 
 
Our goal is to develop a simple mesoscopic model to perform large-scale studies of the 
mechanics of CNTs.  We express the total energy of the system as  
 

weakBT EEEE ++= ,        (4) 
 
where TE  is the energy stored in chemical bonds due to stretching along the axial 
direction, BE  is the energy due to bending of the CNT, and weakE  constitute weak (vdW) 
interactions.   The total energy contribution of each part is given by the sum over all pair-
wise and triple (angular) interactions in the system, thus 

 
∑=
pairs

IweakT rE )(, φ          (5) 
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for the tensile and weak interactions (both summed pair-wise), and   
 

∑=
angles

BBE )(ϕφ ,        (6) 

 
summed over all triples of particles in the systems.  The bending energy is given by 

 

( )2
02

1)( ϕϕϕφ −= BB k ,       (7) 

 
with Bk  as the spring constant relating to the bending stiffness, and ϕ  as the bending 
angle between three particles.  Calculation of the angle thus requires consideration of the 
position of three atoms.  The molecular potential is thus a three-body potential.   
 
We approximate the nonlinear stress-strain behavior under tensile loading with a bilinear 
model that has been used successfully in earlier studies of fracture [53, 54] (the function 

TE  is given by integrating )(rFT  along the radial distance).  The force between two 
particles is rrrF TT ∂∂= /)()( φ , where 
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 if
 ifφ .    (8) 

 
In eq. (8), )( breakrrH −  is the Heaviside function )(aH , which is defined to be zero for 

0<a , and one for 0≥a , and  )0(
Tk  as well as )1(

Tk  for the small and large-deformation 
spring constants.  The parameter )(/~

01
)1()0(

11 rrkkrr TT −−=  is obtained from force 
continuity conditions.  
 
This model is chosen to reproduce the nonlinear elastic and fracture behavior of carbon 
nanotubes.  The availability of two spring constants enables modeling changes in the 
elastic properties due to increasing deformation.  The Heaviside function allows to 
describe the drop of forces to zero at the initiation of fracture of the carbon nanotube.   
 
In addition, we assume weak, dispersive interactions between either different parts of 
each molecule or different molecules, defined by a Lennard-Jones 12:6 (LJ) function  
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
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⎤
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⎡=

612

4)(
rr

rweak
σσεφ .      (9) 

 
with σ  as the distance parameter, and ε  describing the energy well depth at equilibrium.   
The LJ potential has been shown to be a good model for such dispersive interactions (see, 
e.g. [55]).  
 
A.1  Equilibrium distances of beads and corresponding masses  
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The mass of each bead is determined by assuming a homogeneous distribution of mass in 
the molecular model. Given the homogeneous structure of CNTs, this is a reasonable 
approximation.   We assume an equilibrium distance of two particles of 100 =r  Å.   The 
mass per unit length in a (5,5) CNT is given by  
 

323.195)5,5( =ρ  amu/Å.       (10) 
 
Based on this mass density and the equilibrium distance between particle, the mass of a 
single particle is given by Å10

)5,5(
0 =rM = 1953.23 amu.  

 
A.2  Dispersive and nonbonding interactions  
 
The LJ parameters are chosen to reproduce the adhesion energy determined from full 
atomistic simulations.  In all these considerations, we assume that a pair-wise interaction 
between different particles is sufficient, and that there are no multi-body contributions.   
 
Based on these assumptions, we model the interactions between different molecules using 
a LJ 12:6 potential.   
 
The equilibrium bond distance is related to the distance D∆  between two CNTs in 
contact by vdW interactions.  With 
 

 ⎟
⎠
⎞

⎜
⎝
⎛
∆

= −

D
r

2
tan 01φ ,        (11) 

 
we arrive at a relationship between D∆  and the angle φ  that depends on the geometry of 
the mesoscopic system, 
 

φcos
DD ∆

= .         (12) 

 
The distance parameter σ  is then given by 

 

63.11
26
≈=

Dσ  Å,        (13) 

 
where D  is the equilibrium bond distance.   
 
The potential minimum is at Dr =  and is given by ε− .  Per unit cell of bonds in this 
setup, the energy per unit length is given by  
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where 
 

εφ −=)(Dweak          (15) 
 
The distance to second nearest neighbors is: 
 

)~cos(
~

φ
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where 
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2
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Similar calculations can be done for the third, fourth etc. nearest neighbors.   
 
The numerical value for adhesive strength of two (5,5) CNTs from MD simulation is 

=LE 2.31E-10 J/m.  The parameter ε  in the mesoscopic model is chosen so that the 
atomistic and mesoscopic model feature the same adhesion energy per unit length.  For 
nearest neighbors only, we find 
 

2
0rEL=ε .         (18) 

 
For more than one nearest neighbors in the case of larger cutoff radius,  

 

( )[ ]1)3()2(0 ...1
2

−
+++= ππε

rEL .      (19) 

 
where )(/)~( DD weakweak φφπ = .  We define term ( ) )()()3()2( ...1 NN βπππ =++++ , and 
find that 0988.1)6( ≈β , leading to 1.15≈ε  kcal/mol, with a cutoff distance at 60=cutr  
Å.     
 
The maximum force to break a “weak” dispersive bond between two CNTs is given by 
 

σ
ε⋅∆

=LJFmax, .        (20) 
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where 394.2≈∆  is a numerical constant.  From eq. (20) we estimate 866.3max, ≈LJF  
kcal/mol/Å, corresponding to approximately 268.62 pN.  This leads to an adhesion shear 
strength per unit length  
 

86.26max,
max ≈=

L
F LJ

δ
τ  pN/Å.       (21) 

 
A.3  Tensile spring parameter 
 
The tensile spring constant is determined from various calculations of stretch versus 
deformation, while being constrained to the regime of small loads and consequently small 
displacements.   
 
The nonlinear elastic effects observed in MD calculations are included by defining the 
parameter Tk  dependent on deformation state.  We note that material nonlinearities may 
be essential to capture the essential fracture and deformation physics, representing the 
chemical effects as atomic bonds are stretched and broken [53, 54, 56].   
 
To develop the atomic interactions, we fit the force-stretch response to the stress-strain 
response obtained in full atomistic calculations (see eq. 8(b)).  The spring constant )0(

Tk  
for small deformation is calculated from Young’s modulus for small deformation is 

 

E
L
A

k c
T

0

)0( = .         (23) 

 
We find that 1000)0( ≈Tk  kcal/mol/Å2.  For large deformation, the parameter  700)1( ≈Tk  
kcal/mol/Å2, and is determined by fitting the mesoscopic stress-strain results to the MD 
stress-strain curve.   
 
The goal is to reproduce the small-strain elastic response up to approximately 5 % tensile 
strain, as well as the fracture strength and fracture strain.  This simple meoscopic bilinear 
model using )0(

Tk and )1(
Tk  enables to capture some of the hyperelastic effects and  the 

fracture behavior.  We note that the choice of )1(
Tk  is large dictated by the quantitative 

values of the fracture strain and fracture stress.  
 
The model enables to transport information about breaking of chemical bonds into the 
mesoscopic molecular scale model.   
 
A.4  Bending spring parameter 
 
Using an argument of energy conservation between the atomistic and the mesoscale 
model, we arrive at an expression for the bending stiffness parameter  
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dEIkB ,         (24) 

 
where )/(tan2 0

1 rd−=θ , and ( )EIrFd appl ⋅= 48/8 3
0 . Note that θ  is the angle 

corresponding to the displacement d  resulting from an applied force applF .  We find that 
14300≈Bk  kcal/mol/rad2.  These expressions are valid for small deformation.   

 
B.  Summary of the mesoscopic model and its numerical implementation 
 
Table 1 summarizes all parameters used in the mesoscopic model.     
 
The models are implemented in the massively parallelized modeling code LAMMPS [57] 
(http://www.cs.sandia.gov/~sjplimp/lammps.html), capable of running on large 
computing clusters.  The example calculations reported here are carried out on single 
CPU LINUX workstations.   The LAMMPS code was extended to enable treatment of the 
molecular interactions discussed in Section B.3 and other loading conditions as described 
later. 
 
IV.  Applications and numerical results 
 
Here we report applications of the mesoscale model to describe the mechanics and self-
assembly of CNTs.  We focus on three cases, (i) a simple validation calculation to 
compare the mesoscale model to the full atomistic results, (ii) a study of self-folding of 
CNTs, the stability of self-folded CNTs and self-assembly of two CNTs, and (iii) a study 
of bundles of CNTs subject to compressive and tensile loading, as well as the response to 
nanoindentation. 
 
A.  Validation:  Tensile test of a long CNT 
 
The first calculation is a validation of the mesoscale model.  We implement the loading 
case shown in Figure 2(a) (tensile loading of a single CNT).  The stress versus strain as 
obtained using the mesoscopic model is shown in Figure 3 (blue line).  The fracture strain 
and fracture stress agree well with the full atomistic result.  
 
B.  Self-folding of CNTs and self-assembly processes 
 
B.1  Self-assembly of a single tube:  Self-folding into racket-structures 
 
Large-aspect ratio CNTs are extremely flexible, and can be deformed into almost 
arbitrary shapes with relatively small energetical effort. Different CNTs attract each other 
via vdW forces.  If different parts of the tube come sufficiently close, these attractive 
forces should also be present and can form self-folded structures of CNTs.  Such self-
folded structures of CNTs with extremely large aspect ratio were first observed in MD 
simulations of (5,5) CNTs using a hybrid Tersoff/LJ model [42].   It was suggested that 
different parts of highly flexible CNTs can be brought into contact by either thermal 
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fluctuations that lead to bending of the tube, or by bending resulting from application of 
external forces. 
 
Here we use the mesoscopic model to investigate the stability and self-assembly 
properties of such racket-like self-folded CNTs.  To induce self-folding we apply an 
external force to the ends of the CNT, following the procedure decsribed in [42].  Once 
two regions of the CNT are in contact, the long-range vdW interactions lead to an 
attractive force that causes the parts of the tube to align.  As a result, self-folded racket-
like structures are formed.   Results of mesoscale simulations are shown in Figure 6, for 
two different CNT lengths.  Our mesoscopic model is capable of reproducing the results 
of full MD simulations, at a fraction of the computational cost.   
 
At the intersection of the straight aligned part and the bent region, we observe a 
characteristic crossover of the lower and upper part of the tube, forming an angle close to 
90°.  This feature was also observed in full atomistic studies of the same system (see 
Figure 1).   
 
The stability of the folded structure is governed by the balance of energy required to bend 
the CNT, and energy gained by formation of weak vdW “bonds”.   The bending energy is 
proportional to EI ,  and the adhesion energy  proportional to γ .  In the following, 0γ  
denotes the adhesion energy of two CNTs in vacuum (see calculation presented in 
Section C).  To asses, the stability of the self-folded CNT, it is essential to understand 
how changes in the adhesion energy influence the structure. 
 
The mesocale model is used to investigate the stability of the folded structure when the 
adhesion strength is varied.  Such variations may be induced by putting the folded CNT 
into solution, which effectively changes the value of γ .  The contact length is defined as 

cL , the free length is defined as cf LLL 2−=  with the total length L  (see schematic 
shown in Figure 7).   Figure 8 shows the contact length and free length of CNT adhesion 
in a racket-like structure, as a function of varying γ .  The results are shown normalized 
with respect to 0γ , the original adhesion strength for (5,5) CNTs in vacuum.  The results 
suggest that for 01 265.0 γγ = , the critical length for stability of the racket-like CNT is 

≈χL 300 nm.   
 
As a first order approximation, we assume that 
 

γχ
EIL ~ .         (25) 

 
The physical motivation is based on the fact that the critical length is given by a 
competition of bending energy (proportional to EI ) and adhesion energy (proportional to 
γ ).   Note that the scaling law used in eq. (15) can also be obtained from a beam 
elasticity analysis.   For CNTs with identical bending stiffness, the simple scaling law 
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given by eq. (25) can be used to estimate the critical CNT length for the original adhesion 
strength for different conditions.  For example, for variations in length,  
 

1,
0

1
0, ~ χχ γ

γ LL  .        (26) 

 
For the present case, we estimate ≈χL  78.75 nm.  Similarly, for fixed adhesion strength 
but variations in the bending stiffness (for example due to changes in radius, or under 
consideration of multi-wall CNTs),  
 

1,
1

0
0, ~ χχ L

EI
EI

L .        (27) 

 
The scaling laws given in eqs. (25-27) provide some insight into the stability of racket-
type structures for different bond lengths.    
 
We have also investigated the stability of racket-like CNT structures with respect to 
temperature changes.   We focus on changes of the adhesion length cL  as a function of 
temperature.  From the mesoscale simulations, we find that the average adhesion length 
can be expressed as a combination of a median value )(, TL mc  and fluctuations in the 
adhesion length, denoted by )(TLcδ : 
 

)()(, TLTLL cmcc δ±= ,       (28) 
 
providing a simple description of the opening-closing breathing mode found in the 
simulations (see Figure 9).   
 
From simulations with slowly increasing temperature (temperature control using a Nosé-
Hoover algorithm), we observe that fluctuations of the adhesion length )(TLcδ increase 
with temperature, along with an increase in the average adhesion length )(, TL mc . These 
results are shown in Figure 9.       
 
We note that the quantity )()(,max, TLTLL cmcc δ+=  may be critical for unfolding due to 
thermal motion of the CNT.   For example, for 04.0 γγ = ,  we find a 20% increase over a 
2000 K temperature interval.  Additional results are shown in the inlay in Figure 9.  This 
suggests that temperature increase could induce unfolding of the racket-like structure, 
only if the adhesion length is close to the critical CNT length so that the decrease in 
adhesion length can lead to the instability.   This result further confirms earlier claims 
that self-folded structures can be extremely stable, with evaporation occurring before 
unfolding if the CNT is long enough thus providing significant contact length [42].   
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We have also carried out calculations of CNTs in vacuum where no external forces or 
velocity pushes applied, to investigate if the CNT would self-fold without mechanical 
stimulation.  In this case, we did not observe self-folding of the CNT, even for lengths up 
to 1500 nm, and over simulation times of 0.37 µsec.  Since this CNT length is already 
larger than the longest types typically found in experiment, we expect that the self-
folding process requires external stimulation.  This behavior can be explained by the fact 
that the CNT is still below around one order of magnitude below its persistence length 
( ≈ξ 1.61 510−×  m versus 1500 nm).   
 
We note that such parametric and systematic studies would not have been possible with 
pure atomistic studies, due to constraints in both length and time scale.   Additional 
investigations will be left to future studies. 
 
B.2  Self-assembly of two CNTs 
 
Our mesoscale model can also be used to study the dynamical interaction of two CNTs 
approaching each other at a constant velocity.  Figure 10 shows the simulation results of 
two CNTs oriented rotated at 90° with respect to each other.  The two CNTs approach 
each other at a constant speed.   We find that the two CNTs eventually assemble into a 
structure composed of two racket-like structures, as shown in Figure 10(e).   
 
Such folding and assembly mechanisms may occur in systems comprising of a large 
number of CNTs.   
 
C.   Behavior of CNT bundles under mechanical stimulation 
 
C.1  Compressive and tensile deformation of a CNT bundle 
 
In this Section we focus on the assembly and mechanics of bundles of CNTs.   Figure 11 
depicts a cross-sectional view of a CNT bundle, indicating that the tubes assemble into a 
triangular lattice.  This agrees with earlier results obtained by full atomistic simulation 
[42].   
 
After equilibration of the structure, we apply a compressive loading as indicated in Figure 
3(d).  The results of this simulation are shown in Figure 12.  Figure 13 shows a detailed 
view of the deformed structure.  
 
Similar computational experiments have also been carried our to model the deformation 
of CNT bundles under tensile loading (results not shown).  We find that the maximum 
tensile strain of the CNT bundle is 29%, which is close to that of a single CNT.  
Poisson’s ratio is ≈ν 0.38 for small strain, reducing at larger strains, approaching 
≈ν 0.29 close to the breaking point.   

 
C.2  Bending and fracture of a CNT bundle 
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Results of deforming a CNT bundle that consists of 9 (5,5) CNTs of 80 nm length each 
under loading of a spherical indenter are shown in Figure 14.  The loading case presented 
in Figure 2(c).    
 
The bundle quickly goes into a bending mode, leading to fracture of individual CNTs 
(subplot (e)), followed by rupture of the entire bundle (subplot (f)).  After rupture of the 
entire bundle and after the indenter has passed, the structure re-assembles into a 
permanently (plastically) deformed shape (subplot (i)).  Note that in this case, all CNTs in 
the bundle have been fractured but are hold together by dispersive interactions.   
 
Figure 15 shows a load-displacement curve for this deformation case.  After the indenter 
approaches the bundle, we observe significant flattening of the cylindrically shaped 
bundle (between points a and b).  In this regime, we find increased displacement without 
significantly increased force.  After point b the bundle is completely flattened, leading to 
continuous force increase when the indenter moves further into the bundle.  At point c, 
the maximum load is reached, leading to rupture of individual CNTs in the bundle.  As a 
consequence, the force decreases with increasing indenter displacement between points c 
and d.  We observe an approximately constant load between points d and e due to shear 
disentanglement of the bundle.  At point e, the indenter has completely passed the bundle, 
leaving a zero net force.  The maximum indentation force is approximately 5 410×  pN. 
 
These studies allow detailed understanding of the molecular mechanisms leading to 
failure of bundles and assemblies of CNTs.  Clearly, atomistic models of these cases are 
computationally much more expensive and limited in terms of the accessible time scales.  
Additional investigations are left to future work.  
  
V.  DISCUSSION, CONCLUSION AND OUTLOOK 
 
We have reported atomistic modeling to calculate the elastic, plastic and fracture 
properties of individual CNTs, using a hierarchy of atomistic and mesoscale modeling 
approaches.   
 
We summarize the main contributions of this paper. 
 

• We have developed a simple mesoscopic model to describe the mechanical 
properties and self-assembly mechanisms of CNTs with ultra large aspect ratio.  
The parameters of the mesoscopic model have been derived completely from the 
results of full atomistic modeling.   

• Our mesoscopic model is capable of reproducing the full atomistic results of 
single tube tensile load cases (see comparison shown in Figure 3).  The 
mesoscopic model can reach time- and length scales not accessible to the full 
atomistic model, but still includes information about the fracture mechanics of 
individual CNTs.  

• We have reported an analysis of the stability of self-folded racket-like CNTs (see 
Figure 6), in particular focusing on the stability due to variations of the adhesion 
strength.  We find that even if the adhesion strength is reduced, for example due 
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to solvents, the self-folded structure is remarkably stable.  Additional 
investigations shed light on structural changes due to increased temperature 
(Figures 8 and 9).   By systematically varying the adhesion strength, it is possible 
to control the dynamical equilibrium radius or adhesion length of the self-folded 
CNT.  Such variations could be induced by choosing different solvents.  This 
could lead to an application of the self-folded CNT as a sensor for different 
chemical environments.  

• We have shown that two CNTs moving towards each other may assemble into a 
racket-like shape, forming conglomerated structures (see Figure 10).   

• Studies of bundles of CNTs enable investigations of the response to compressive, 
tensile and bending loading.  We find that bundles of CNTs start to buckle once 
the compressive strain reaches a critical value.  The fracture properties govern the 
response of a CNT bundle under bending deformation, induced by an indenter.  
We could link microscopic events with the overall shape of the force-
displacement curve (see Figures 14 and 15).   

 
We note that the mesoscopic model can be straightforwardly implemented for other 
CNTs than those studied here, including multi wall CNTs.   
 
We believe that reactive modeling that takes into account the complexity of chemical 
bonding may be critical to understand the fracture and deformation behavior of other 
nanoscale materials.  Indeed, our results suggest that it is critical to include a correct 
description of the bond behavior and breaking processes at large bond stretch, 
information stemming from the quantum chemical details of bonding.  In our current 
model this information is included in the Tersoff force field parameters [45], which in 
turn influence the parameter of the mesoscopic model within a hierarchical multi-scale 
scheme.  Without correct description of fracture processes, the large-deformation regime 
of CNTs that induces fracture – as shown in studies of nanoindentation of CNT bundles – 
can not be described correctly.   
 
We note that new reactive force fields represent an alternative to Tersoff-type potentials 
as used in this study.  These force fields provide a more accurate description of the bond 
breaking and formation processes in predominantly covalently bonded materials [58-60].  
We emphasize that our method can immediately be applied to include atomistic results 
based on more accurate potentials or even first principles based calculations.  We leave 
such studies to future work.    
 
The agreement between atomistic and mesoscale model could be improved by using a 
more elaborate Ansatz for the stretching potential than the bilinear technique, possibly 
using spline functions.  This could improve the agreement between mesoscale model and 
atomistic model in particular at strain levels between 15 % and 30 % tensile strain.  This 
may be particularly useful when more accurate atomistic data, for example obtained 
using reactive force fields, is used for the training of the mesoscale parameters.  
 
Compared to the full atomistic model, the mesoscopic descriptions is not capable to 
reproduce certain atomistic-scale aspects of fracture and deformation.  This includes 
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formation of 5-7 Stone-Wales-type defects, or chemical reactions that may occur during 
the deformation processes.   
 
The simple mesoscale model reported here opens up several possibilities for future 
studies, particularly at the scale of CNT bundles, as well as applications that focus on 
integrated composite structures.  Results from mesoscopic modeling could be used in 
development of new constitutive equations that can be used in continuum or finite 
element studies. For example, the mesoscopic model can be used to describe tensile 
experiments of pulling and deformation of CNTs with extremely large aspect ratios, 
naturally including the effects of entropy on their elastic behavior.   
 
We have demonstrated that it is unlikely that the self-folding of CNTs into racket-
structures will occur only due to entropic fluctuations, since the most experimentally 
synthesized CNTs are well below the persistence length.  Thus, thermal fluctuations are 
not sufficiently large to induce contact of different areas of a single tube.  Our modeling 
clearly shows that such contact is a critical condition to induce self-folding.  We believe 
there exist two length scales that characterize the entropic properties of ultra long tubes.  
First, the persistence length ξ  describes the amount of thermal fluctuations into bending 
modes, at a given temperature.  Secondly, there exists a critical length χL  of CNTs to 
allow stable self-folded structures.  This length scale is proportional to the bending 
stiffness and inversely proportional to the adhesion energy, as discussed in Section 
IV.B.1.  We find that typically ξχ <L , suggesting that self-folding is possible at CNT 
lengths much below the persistence length.  
 
It remains an open question what are the effect of the folded structure on optical or 
electronic properties.  The head-radius is typically on the order of a few tens of 
nanometers, thus interesting optical properties may be induced by these new materials.  
Other self-assembly processes – as demonstrated in Figure 10 – may lead to interesting 
new materials.  Techniques to functionalize the CNT surface and induce covalent cross-
links, preferred adhesion domains or other methods could help building complex nano-
scale structures and materials.  
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Figures and captions 
 
 

 
 

Figure 1:  Full atomistic calculations of the properties of ultra long CNTs as reported in 
[42, 43].   Above a critical aspect ratio, CNTs self-fold into racket-like structures.  It can 

be observed that the self-aligned part connects to the free length of the CNT in a 
characteristic way by crossing over in an angle of around 90°.  We believe that this 

phenomena could be explained due to the reduced energy by increasing the contact length 
in this characteristic manner.  
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Figure 2:  Subplots (a) and (b) show the mechanical lading cases of the CNT to derive 
parameters for the mesoscopic model.  Subplot (c) shows the setup for the indentation 
bending test carried out with the mesoscopic model.  Subplot (d) shows the setup for 

compression experiments of bundles of CNTs.  
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Figure 3:  Stress versus strain (a) and local Young’s modulus (b) for stretching a (5,5) 
CNT, using the Tersoff potential.  Young’s modulus decreases with increasing strain, but 
shows a small and shallow peak close to the breaking point.  The green line is the result 
of full atomistic calculation, the blue line is the result using the mesoscopic model, and 
the red line is the tangent stress-strain law for small deformation. The stress-strain plot 

contains results with three different loading rates, 1.6 km/sec, 0.4 km/sec and 0.2 km/sec. 
While the result differs significantly for the largest loading rate, the results for the slower 

rates are similar.  Subplot (b) depicts the result for the loading rate 0.2 km/sec. 
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Figure 4:  Fracture mechanics of a (5,5) CNT, modeled using the Tersoff potential 
(subplots (a)-(d) show the atomistic mechanics as the lateral tensile strain is increased).   
Fracture initiates by generation of localized shear defects in the hexagonal lattice of the 

CNT, somewhat reminiscent of 5-7 Stone-Wales defects [28, 50, 51] (indicated in subplot 
(c) by the red lines, showing the 7-membered ring next to the 5-membered ring).  These 

localized defects quickly lead to formation of micro-cracks that lead to macroscopic 
disintegration of the carbon nanotube. We observe formation of a linear C-atom chain at 
the final stages of fracture (subplot (d)). Failure initiates close to the boundaries of the 

CNT, possibly due to the clamped boundary conditions.
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Figure 5:  Atomistic and corresponding mesoscopic model of a CNT (schematic).  The 
atomistic representation of the CNT (subplot (a)) is replaced by a collection of beads 

interacting with various molecular potentials (subplot (b)). 
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Figure 6: Snapshots of folded CNTs, for different molecular lengths (subplot (a), 200 
nm, subplot (b), 300 nm).  The self-folded structure obtained by mesoscale modeling is 

quite similar to the results obtained from full atomistic studies (see Figure 1).     
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Figure 7:  Geometry of the racket-like CNT structure (schematic drawing).   The contact 
length is defined as cL , the free length is defined as cf LLL 2−=  with the total CNT 

length L .    
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Figure 8:  Contact length and free length of a racket CNT, as a function of adhesive 
strength.  This result suggests that even if the adhesion strength is reduced (e.g. due to 
solvents), the folded structure remains stable.  If the adhesion strength is increased, the 
contact length increases, approach half the CNT length for extremely large values.  The 

CNT unfolds for 0265.0 γγ ≈ . 
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Figure 9:  Adhesion length as a function of temperature, for three different values of the 
adhesion strength.  The higher the temperature, the more fluctuations are observed in the 
adhesion length.  The inlay plot depicts the fluctuation width as a function of adhesion 

strength, as well as the derivative of the adhesion length with respect to changes in 
temperature.   
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Figure 10:  Dynamical assembly of two CNTs.  In this model, two carbon nanotubes 
oriented as indicated in subplot (a) are moving towards each other at constant speed.  
Once they approach each other, interactions between the two tubes set in, leading to 

formation of two racket-like structures.  Eventually this assembly forms a rather stable 
conglomerated in which the two radial heads of the racket-like structures assemble and 

align due to the dispersive interactions. 
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Figure 11:   Bundles of CNTs.  Cross-sectional view of a bundle of CNTs forming a 

nanowire, with 81 CNTs.  This material forms a two-dimensional hexagonal structure.  
We note some crystal defects in this case.  This also shows the cross-sectional shape of 
the CNT nanowire. The equilibrium shape features straight surface structures.   Some 

crystal-type defects such as a twin GB exist in the equilibrated structure.  Similar 
structural features have been observed in all-atomistic studies of bundles of CNTs [42].   
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Figure 12:  Response of a CNT bundle to mechanical compressive loading (cross-
sectional view of this bundle see Figure 10). Even for relatively small strains, the 

structure starts to buckle, eventually leading to significantly deformed and buckled 
shapes. 
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Figure 13:  Detailed view of a highly deformed CNT bundle under compressive load.    
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Figure 14:  Bending of a CNT bundle due to an indenter leading to fracture.  The CNT 
bundle consists of nine (5,5) CNTs of 80 nm length each (loading case as shown in 
Figure 1 (c)).   The bundle quickly goes into a bending mode, leading to fracture of 

individual CNTs (subplot (e)), followed by rupture of the entire bundle (subplot (f)).  
After rupture of the entire bundle and after the indenter has passed, the structure re-

assembles into a permanently (plastically) deformed shape (subplot (i)).  Note that in this 
case, the CNTs have been fracture but are hold together by dispersive interactions. 
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Figure 15:  Force versus displacement during indentation by a cylindrical indenter.  
Flattening of the cylindrically shaped bundle occurs between points a and b, leading to 

increased displacement without significantly increased force.  After point b the bundle is 
completely flattened, leading to continuous force increase afterwards.  At point c, the 
maximum load is reached, leading to rupture of individual CNTs in the bundle.  As a 

consequence, the force decreases with increasing indenter displacement between points c 
and d.  We observe an approximately constant load between points d and e due to shear 

disentanglement of the bundle.  At point e, the indenter has completely passed the bundle, 
leaving a zero force.  The maximum indentation force is approximately 5 1010×  pN (point 

c). 



 
 

- 35 -

Tables 
 
Equilibrium bead distance 0r  (in Å) 10.00 

Tensile stiffness parameter )0(
Tk  (in kcal/mol/Å2) 1000.00 

Tensile stiffness parameter )1(
Tk  (in kcal/mol/Å2) 700.00 

Hyperelastic parameter 1r  (in Å) 10.50 
Fracture parameter breakr  (in Å) 13.20 
Equilibrium angle 0ϕ  (in degrees) 180.00 
Bending stiffness parameter Bk  (in kcal/mol/Å2) 14300.00 
Dispersive parameter ε  (in kcal/mol) 15.10 
Dispersive parameter σ  (in Å) 9.35 
 

Table 1:  Summary of mesoscopic parameters derived from atomistic modeling, 
corresponding to eqns. (10), (13), (14) and (15), as well as the discussion 

presented throughout Section IV. 
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