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Abstract

A subdomain collocation reproducing kernel approximation method is proposed. Subdomains are constructed by nonoverlapping
Voronoi cells and a local weak form is defined over these subdomains. The standard RKPM shape functions are used directly for approx-
imation, while weighting functions of the subdomain collocation method hold a constant value of unit only over a specific Voronoi cell. The
body integration of the local weak form is now converted into much cheaper and efficient contour integration along the boundaries of
Voronoi cells. It does not need to impose traction free boundary conditions explicitly in contrast to point collocation method. Furthermore,
the method provides a natural background structure for performing h-adaptivity analysis straightforwardly. All these features constitute
the subdomain collocation method a promising alternative to standard Galerkin method and point collocation method. Some elastostatics
examples are presented to demonstrate the effectiveness, the convergence property, and the adaptivity performance of present method.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Meshless methods can be classified collectively as Galer-
kin meshless method, Petrov–Galerkin meshless method
and collocation meshless method. Most of meshless meth-
ods like EFG [1], RKPM [2], PU [3] and so on fall into the
first group and these Galerkin meshless methods are dom-
inant in published literature. The MLPG [4] can be divided
into the second group. Besides these two groups of mesh-
less methods, SPH [5], HP-cloud [6], the point collocation
RKPM [7] and the collocation meshless method with radial
basis functions [8] are considered as the third group of
meshless method, the collocation meshless method. More
specifically, the above-mentioned collocation meshless
methods are point collocation methods. The MLPG starts
from a local weak form over a set of overlapping subdo-
mains rather than from a global weak form which is the

starting point of most of conventional Galerkin meshless
method or finite element method. In the sense of satisfying
governing equations in a locally way of making weighted
residual zero over a subdomain, MLPG can be viewed as
a subdomain collocation method. But the weighting func-
tions used in MLPG are some kind of partition of unity
interpolation functions such as MLS, Shepard and PU
functions, and these functions do not hold constant over
each subdomain and the method, therefore, is not the stan-
dard subdomain collocation method defined in [9]. The
most prominent feature of MLPG is that it is a truly mesh-
less method, but there are some difficulties in the numerical
integration of weak form in MLPG especially when the
integration region intersecting with the global boundaries
[4]. A mapping is needed to transfer irregularly shaped sub-
domain into regularly shaped subdomain. This adds the
cost of numerical integration and the difficulty of imple-
mentation of MLPG. For the situations with local concave
boundaries, the mapping or the transformation would be
very difficult.
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Point collocation methods are the simplest meshless
methods featuring straightforward implementation, direct
and straightforward imposition of boundary conditions
and particularly truly meshless. The point collocation
methods, however, require the calculation of higher-order
derivatives that would be a burden and typically not be
required in a Galerkin method. In addition, in collocation
methods, even the zero prescribed traction conditions need
to be explicitly enforced, which constitutes a big contrast to
standard Galerkin methods. From the available point col-
location literature, it is noted that the accuracy of the col-
location method is less than that of the Galerkin method
[7,8].

In this paper, a subdomain collocation method using
reproducing kernel approximation and a domain partition
technique based on Voronoi diagram is presented. The
method lays its basis on the reliable and high quality con-
struction of a Voronoi diagram for even a multiply con-
nected domain with complicated boundaries. We use a
divide-and-conquer and incremental Delaunay algorithm
to construct a Voronoi diagram [10,11]. Actually, there
are some other researchers who use Voronoi diagrams in
meshless methods for various purposes. Dolbow and Bely-
tschko [12] used Voronoi cells to integrate the dilatational
part of the weak form by a nodal quadrature technique
when a mixed variational principle and a selective reduced
integration were used to eliminate the volumetric locking of
EFG. The nodal quadrature weights are determined from
the corresponding Voronoi cell Volumes. The hydrostatic
pressure variable is approximated via another set of shape
functions constructed purposely to represent a constant
field over each Voronoi cell. This additional set of shape
functions are the same as the weighting functions used in
this paper. Chen et al. [13] introduced Voronoi diagram
into Galerkin meshless method and proposed a Stabilized
Conforming Nodal Integration (SCNI) method and later
developed it into a nonlinear version [14]. The meshless
method using SCNI can stabilize spurious modes arising
from nodal integration and can enhance the numerical per-
formance of the direct nodal integration. Numerical results
show that SCNI is rather efficient and more accurate than
Gaussian integration. Zhou et al. [15] also used Voronoi
diagrams to compute nodal volumes accurately for nodal
integration of Galerkin meshless method and ultimately
to improve the accuracy of nodal integration.

In present method, the trial function is approximated
via standard RKPM shape functions, while the test func-
tion is evaluated by a set of constant valued weighting
functions defined over a specific Voronoi cell. Therefore,
the proposed method maintains the property of standard
subdomain collocation. By employing the divergence theo-
rem, the body integration which is a key issue in Galerkin
meshless method is converted into a boundary integration,
which is much cheaper and more computationally efficient.
Meanwhile, the proposed method offers the following two
features as compared with point collocation method: it is
not required to calculate higher-order derivatives of shape

functions; free boundaries are not necessitated to be treated
explicitly as in a point collocation method.

The outline of the paper is as follows. The reproducing
kernel approximation is briefly reviewed in Section 2. The
formulations of subdomain collocation method for the
Laplace equation and the linear elasticity problem are
derived in Section 3. A detailed numerical investigation is
performed and the results are presented in Section 4.
Conclusions and future work are discussed in Section 5.

2. Reproducing kernel approximation

The reproducing kernel approximation starts from the
corrected kernel approximation and can be written as

uaðx; yÞ ¼
Z

X
-dðx� s; y � tÞuðs; tÞdsdt: ð1Þ

In above and what follows, we use only two-dimensional
expressions but this does not imply a loss of generality.
-d(x � s,y � t) is the corrected kernel function which can
be expressed as

-dðx� s; y � tÞ ¼ Cðx; y; s; tÞxdðx� s; y � tÞ; ð2Þ

where xd(x � s,y � t) is the conventional kernel function.
The correction function C(x,y, s, t) can be expressed as a
linear polynomial function and the coefficients and their
derivatives of basis function can be obtained analytically
in terms of kernel function moments [16,17]. For the C0

problems in which only a linear consistency requirement
is needed, the correction function has the following form:

Cðx; y; s; tÞ ¼ c0ðx; yÞ þ c1ðx; yÞðx� sÞ þ c2ðx; yÞðy � tÞ; ð3Þ

and the explicit expressions of correction coefficients are as
follows [16]:

c0 ¼ ðm02m20 � m2
11Þ=D; ð4Þ

c1 ¼ ðm01m11 � m02m10Þ=D; ð5Þ
c2 ¼ ðm10m11 � m01m20Þ=D; ð6Þ

where

mijðx; yÞ ¼
Z

X
ðx� sÞiðy � tÞjwdðx� s; y � tÞdsdt ð7Þ

are kernel function moments, D is the determinant of a
3 · 3 moment matrix M and is given as

D ¼ m00m20m02 þ m10m11m01 þ m01m10m11 � m2
01m20

� m2
10m02 � m2

11m00: ð8Þ

The derivatives of correction coefficients can also be ex-
pressed analytically and details can be found in [16] for
two-dimensional and [17] for three-dimensional problems.
The goal of these explicit manipulations of reproducing
kernel approximation is to speed up the evaluation of
RKPM shape functions.

If a trapezoidal ruler is applied to Eq. (1), one yields
the discretized form of Eq. (1) which is referred to as the
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Reproducing Kernel Particle Method (RKPM) in the fol-
lowing form:

uaðx; yÞ ¼
XNP

I¼1

NIðx; yÞuI ; ð9Þ

where NI(x,y) = C(x � xI,y � yI)wd(x � xI,y � yI)DVI is
defined as the RKPM shape function for node I, uI is the
nodal parameter associated with node I, DVI is the nodal
volume (area for two dimensions) of node I, and NP is
the total node number to discretize the problem domain.

3. Subdomain collocation method

In order to illustrate the main idea of the present
method, we start with derivation of subdomain method
for the Laplace equation and then develop the formula-
tions into linear elasticity problems.

3.1. Subdomain collocation method for Laplace equation

with Dirichlet and Neumann boundary conditions

For the Laplace equation with Dirichlet and Neumann
boundary conditions, the governing equation is

o2u
ox2
þ o2u

oy2
¼ 0; 0 < x < 1; 0 < y < 1: ð10Þ

The cubic exact solution is given by

uðx; yÞ ¼ �x3 � y3 þ 3xy2 þ 3x2y: ð11Þ
The Dirichlet and Neumann boundary conditions are

summarized as

�uðx ¼ 0Þ ¼ �y3; ð12Þ
�uðx ¼ 1Þ ¼ �1� y3 þ 3y2 þ 3y; ð13Þ
o�u
oy
ðy ¼ 0Þ ¼ 3x2; ð14Þ

o�u
oy
ðy ¼ 1Þ ¼ �3þ 6xþ 3x2: ð15Þ

Applying weighted residual approach for the Ith sub-
domain XI

s and using penalty method to impose Dirichlet
boundaries on CI

su gives the following augmented local
weak form:Z

XI
s

o2u
ox2
þ o2u

oy2

� �
dudXþ a

Z
CI

su

ðu� �uÞdudC ¼ 0; ð16Þ

where a is the penalty parameter, du is a variation and �u is
the prescribed value on CI

su, the intersection of the local
boundary and the global Dirichlet boundary. Employing
divergence theorem to the first part of the integration in
Eq. (16), one obtainsZ

CI
s

ou
ox

nx þ
ou
oy

ny

� �
dudC�

Z
XI

s

ou
ox

odu
ox
þ ou

oy
odu
oy

� �
dX

þ a
Z

CI
su

ðu� �uÞdu dC ¼ 0 ð17Þ

in which nx and ny are the outward unit normal to the local
boundary CI

s which is subordinate to subdomain XI
s and

CI
s ¼ CI

si [ CI
su [ CI

st. Here CI
st denotes the intersection of lo-

cal boundary and the global Neumann boundary and CI
si is

the remaining local boundary of CI
s except CI

su and CI
st.

Dividing the first integral of Eq. (17) into several parts
according to different boundary conditions producesZ

CI
siþCI

su

ou
ox

nx þ
ou
oy

ny

� �
dudCþ

Z
CI

st

o�u
ox

nx þ
o�u
oy

ny

� �
dudC

�
Z

XI
s

ou
ox

odu
ox
þ ou

oy
odu
oy

� �
dXþ a

Z
CI

su

ðu� �uÞdudC ¼ 0:

ð18Þ

The unknown function u and its variation can be approxi-
mated respectively by two different sets of basis functions
as follows:

uðx; yÞ ¼
XNP

J¼1

NJ ðx; yÞuJ ; ð19Þ

duðx; yÞ ¼
XNP

I¼1

eN Iðx; yÞvI ; ð20Þ

where NJ(x,y) is the above-mentioned RKPM shape func-
tion and ~NIðx; yÞ is the weighting function subordinate to
Ith subdomain XI

s:eN Iðx; yÞ ¼ 1 ðx; yÞ 2 XI
s;eN Iðx; yÞ ¼ 0 ðx; yÞ 62 XI
s:

(
ð21Þ

Substituting Eqs. (19) and (20) into Eq. (18) and invoking
Eq. (21), the third integral in Eq. (18) vanishes directly and
Eq. (18) can be shortened and remanipulated as follows:Z

CI
su

auþ ou
ox

nx þ
ou
oy

ny

� �
dCþ

Z
CI

si

ou
ox

nx þ
ou
oy

ny

� �
dC

¼
Z

CI
su

a�udC�
Z

CI
st

o�u
ox

nx þ
o�u
oy

ny

� �
dC: ð22Þ

From Eq. (22) the following discrete equations are ob-
tained straightforwardly:

Kd ¼ R; ð23Þ

where d = {u1,u2, . . . ,uNP}T is the generalized nodal
parameter vector, K is the NP · NP stiffness matrix and
R is the known righthand. K and R can be assembled from
the following submatrices or subvectors:

K ¼ ½KIJ �;

and

R ¼ ½RI �

in which

KIJ ¼
Z

CI
su

aN J þ
oN J

ox
nx þ

oNJ

oy
ny

� �
dCþ

Z
CI

si

oNJ

ox
nx þ

oN J

oy
ny

� �
dC;

ð24Þ
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RI ¼
Z

CI
su

a�udC�
Z

CI
st

o�u
ox

nx þ
o�u
oy

ny

� �
dC: ð25Þ

3.2. Subdomain collocation method for linear elasticity

problems

The two-dimensional linear elasticity problems can be
mathematically posed as

rij;j þ bi ¼ 0; ð26Þ
ui ¼ �ui on Cu; ð27Þ
ti ¼ rijnj ¼ �ti on Ct; ð28Þ
where rij is the Cauchy stress tensor, bi is the ith component of
body force, ti is the ith component of traction and �ui and�ti are
prescribed displacement and prescribed traction on bound-
aries Cu and Ct, respectively. Following the same procedure
as for Laplace equation, we start with the local weak formZ

XI
s

ðrij;j þ biÞdui dXþ a
Z

CI
su

ðui � �uiÞdui dC ¼ 0: ð29Þ

By applying the divergence theorem and calling
Cauchy’s stress law to mind, we obtain the counterpart
of Eq. (18) which can be written asZ

CI
siþCI

su

ti dui dCþ
Z

CI
st

�ti dui dC�
Z

XI
s

rij
odui

oxj
dX

þ
Z

XI
s

bi dui dXþ a
Z

CI
su

ðui � �uiÞdui dC ¼ 0: ð30Þ

It is obvious that the third integral appearing Eq. (30) dis-
appear if one uses the same approximation of dui as given
in Eq. (20) and utilizes the standard definition of weighting
function given in Eq. (21). If ui is approximated by Eq.
(19) and introducing the following linear relationship for
elasticity

ftg ¼ nfrg ¼ nDBfdg: ð31Þ
Discrete equations can be derived from Eq. (30) asZ
CI

su

ðauþ nDBÞdCþ
Z

CI
si

nDBdC

 !
d

¼
Z

CI
su

a�u dC�
Z

CI
st

�tdC�
Z

XI
s

bdX I ¼ 1; 2; . . . ;NP;

ð32Þ
where

n ¼
nx 0 ny

0 ny nx

� �
; ð33Þ

B ¼ ½B1;B2; . . . ;BNP�: ð34Þ

The entries of matrix B are given as

BJ ¼

oNJ

ox
0

0
oNJ

oy
oNJ

oy
oNJ

ox

26666664

37777775: ð35Þ

{d} = {d1,d2, . . . ,dNP} is the generalized nodal displace-
ment vector and D is the elasticity matrix consisting of
isotropic elastic material properties. Eq. (32) can be
assembled further as the compact matrix form as given
by Eq. (23) but with the following submatrices and
subvectors:

KIJ ¼
Z

CI
su

ðaNJ þ nDBJ ÞdCþ
Z

CI
si

nDBJ dC; ð36Þ

RI ¼
Z

CI
su

a�udC�
Z

CI
st

�tdC�
Z

XI
s

bdX ð37Þ

in which

NJ ¼
NJ 0

0 NJ

� �
: ð38Þ

3.3. Numerical integration based on Voronoi domain

partition

One key issue left is how to construct subdomains and
how to perform numerical integrations which appear in
Eqs. (24) and (25) and (36) and (37) to evaluate stiffness
matrix as well as righthand vector. For two-dimensional
problems concerned in this paper, the whole domain of
interest is decomposed by a Voronoi diagram. A Voronoi
cell then can naturally be chosen as the subdomain over
which the weighting function is defined. The Voronoi cells
do not over-lap and the contour of each Voronoi cell serves
as the integration path for the aforementioned boundary
integration. This is illustrated in Fig. 1 which shows a
representative Voronoi cell corresponding to node I and
its associated boundary segments and outward normal. If
a node is sprinkled in the interior of the domain, any
boundary integration like

R
CI

s
f ðxÞdC along the closed

boundary CI
s surrounding the node can be performed

I

I

M
Γ

•

•

•

•
•

•

I

sΩ

I

I

MΓ

I

Mn
I

Ml

I

Mx

I

M 1+xI

NSΓ

I

1Γ

Fig. 1. A representative Voronoi cell for subdomain collocation and
integration.
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straightforwardly by using the simple two-point trapezoi-
dal rule as [13]:Z

CI
s

f ðxÞdC ¼
XNS

M¼1

1

2
lI

M þ lI
Mþ1

� �
f xI

Mþ1

� �� �
; ð39Þ

where as shown in Fig. 1, NS is the total number of seg-
ments of CI

s, CI
M are the boundary segments of CI

s, xI
M

and xI
Mþ1 are two end points of segment CI

M , lI
M is the length

of the segment CI
M , and nI

M is the outward normal of seg-
ment CI

M . Note that vertex numbers M are defined recur-
sively as in [13], i.e., M = NS + 1!M = 1.

Once the construction of a Voronoi diagram is com-
pleted, the body integration of body force in Eq. (37) can
be evaluated directly and accurately by the simplest nodal
integration asZ

XI
s

bdX ¼ AI
sbðxIÞ; ð40Þ

where AI
s is the area of the Voronoi cell with node I as the

centroid of the Voronoi cell. In this case, accurately assign-
ing the nodal volume in nodal integration would not
remain an issue and Eq. (40) can give rather accurate
evaluation of the body integration [15].

4. Numerical examples

4.1. Solution of Laplace equation with Dirichlet and

Neumann boundary conditions

The first example considered here is the Laplace equa-
tion with Dirichlet and Neumann boundary conditions as
given in Eqs. (10)–(15). The problem is solved by a random
distribution of 61 nodes to discretize a unit square and the
associated Voronoi diagram is shown in Fig. 2. Table 1
shows some of the coordinates and numerical results of
part of nodes. Exact solutions given by Eq. (11) are also
presented for the purpose of comparison. From Table 1
it is observed that the proposed method can solve Laplace
equation with both Dirichlet and Neumann boundary con-
ditions with reasonable accuracy even for randomly dis-
tributed nodes.

4.2. Patch test for linear elasticity problems

Two patch tests are performed to check the consistency
of the present method, and the details of these two patch
tests are referred to [1]. The first patch test is the standard
patch test. The displacements were prescribed on all out-
side of a unit square by a linear function of x and y,
u = v = x + y in this paper. The unit square was also dis-
cretized by the same set of 61 nodes as shown in Fig. 2.
The standard patch test requires that the displacements
at any point inside the patch satisfy

u ¼ v ¼ xþ y: ð41Þ

The subdomain collocation method presented in this paper
satisfies this patch test exactly and some of the results are
shown in Table 2. With material properties Young’s mod-
ulus E = 1 and Poisson’s ratio c = 0.25 assumed, constant
stresses were produced at the point inside the domain, i.e.,
rx = ry = 1.3333 and sxy = 0.8.

The second patch test is the so-called high order
patch test in [1]. Also the unit square shown in Fig. 2
was used for study. The right side was enforced by a uni-
form tension of unit intensity, the left side and the bottom
side of the square were imposed by symmetry boundary
conditions, and the top side of the square was free. The
exact solution for this problem with E = 1 and c = 0.25 is
u = x and v = �y/4. The proposed subdomain method sat-
isfies this patch test exactly and the results are omitted
herein.

4.3. Convergence study of two elasticity problems

Two benchmark elasticity problems are chosen here
for the purpose of convergence study of the proposed
subdomain collocation method. The first benchmark
problem is the cantilever beam problem as shown schemat-
ically in Fig. 3. This problem has been studied in many
meshless literatures [1,4,7,9,12] and the exact solutionsFig. 2. A 61 nodes Voronoi diagram for a unit square.

Table 1
Exact and numerical results of Laplace equation

Node number Coordinates Exact solution Numerical solution

x y

1 0.0 0.0 0.0 �0.0002
2 1.0 0.0 �1.0 �1.002
3 1.0 1.0 4.0 3.9979
4 0.0 1.0 �1.0 �0.9977
5 0.1667 0.0 �0.0046 �0.0043
6 1.0 0.3333 0.2961 0.2964
7 0.6667 1.0 2.0372 2.0385
8 0.0 0.3333 �0.0370 �0.0371
9 0.6219 0.5299 0.7494 0.7504

10 0.2197 0.3818 0.0851 0.0853
11 0.6599 0.3571 0.3861 0.3870
12 0.3647 0.4468 0.2590 0.2592
13 0.7425 0.1717 �0.0648 �0.0644
14 0.4735 0.5491 0.5259 0.5279

1962 J.X. Zhou et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 1958–1967
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given by Timoshenko and Goodier [18] are summarized
as

u ¼ Py

6EI
ð6L� 3xÞxþ ð2þ �cÞðy2 � D2=4Þ
� 	

; ð42Þ

v ¼ �P

6EI
3�cy2ðL� xÞ þ ð4þ 5�cÞD2x=4þ ð3L� xÞx2
� 	

; ð43Þ

rx ¼
PðL� xÞy

I
; ð44Þ

ry ¼ 0; ð45Þ

rxy ¼
P
2I
ðy2 � D2=4Þ; ð46Þ

where P denotes the applied shear force and I = D3/12 de-
notes the moment of inertia of the beam. For plane stress
problems E and �c are replaced by E and c in Eqs. (42)
and (43), while for plane strain problems E ¼ E=ð1� c2Þ
and �c ¼ c=ð1� cÞ are substituted into these equations.
The problem was solved for the plane strain case with
P = 1000, E = 3.0 · 107, c = 0.3, D = 2 and L = 16.

Both regular and irregular node distribution strategies
were used to discretize the domain to carry out conver-
gence study. Two L2 errors of energy norm and displace-
ment are calculated in convergence study of the cantilever
beam problem and the results are presented in Fig. 4.
The L2 errors of energy norm and displacement are defined
as [1]

Error in energy in the L2 norm

¼ 1

2

Z
X

eNUM � eEXACT
� �T

D eNUM � eEXACT
� �

dX


 �1=2

;

ð47Þ
Error in displacement in the L2 norm

¼
Z

X
uNUM � uEXACT
� �T

uNUM � uEXACT
� �

dX


 �1=2

; ð48Þ

where the eNUM and uNUM are the strain and the displace-
ment obtained by numerical method and the eEXACT and
uEXACT are the exact solution of the strain and the displace-
ment. Different node distribution strategies were utilized to
perform convergence study. Fig. 5 illustrates four different
node distributions and the associated Voronoi diagrams
which correspond to 15 nodes, 55 nodes, 96 nodes and
215 nodes, respectively. It is noted that for regular node
distribution the corresponding Voronoi cells degenerate
into regular rectangles while for irregular node distribution
the resultant Voronoi diagrams are of the standard forms
given in Fig. 1.

Figs. 6 and 7 show the normal stress rx and shear stress
rxy at x = L/2 = 8 obtained by the present method. The
exact solutions are also included for comparison. It is
noted from Fig. 7 that the shear stress obtained by present
method satisfies the traction-free boundary conditions (i.e.
y = 1 and y = �1) very well. And both the normal stress
and shear stress given by present method have an excellent
agreement with the analytical solutions.

The second elastostatics problem chosen for conver-
gence study is the problem of a hole in an infinite plate.
It is a portion of an infinite plate with a central circular
hole subjected to a directional tensile load of 1.0 in the x

direction. Only the upper right quadrant of the plate was
modeled and shown in Fig. 8 with symmetry conditions
were imposed on the left and bottom edges. The prescribed
values of rx and ry along the right edge and the top edge
are given by analytical solutions and the details are referred
to [1]. The convergence study of this problem is carried out
in a similar way and the result is presented in Fig. 9.

4.4. Analysis of a connecting rod with multiple cavities

Analysis of a connecting rod with multiple cavities is
chosen deliberately to demonstrate the effectiveness of the
present method to treat problems with complicated bound-
aries. The dimensions and the loading conditions of the
connecting rod are illustrated in Fig. 10 with h1 = 25 mm,
h2 = 15 mm, r1 = 10 mm, r2 = 5 mm and uniform pressure
p = 30717 N/mm. The connecting rod is discretized by 215
nodes and the corresponding Voronoi diagram is presented

Table 2
The results of the standard patch test

Node number Coordinates u v

x y

1 0.6219 0.5299 1.1518 1.1518
2 0.2197 0.3818 0.6015 0.6015
3 0.6599 0.3571 1.0170 1.0170
4 0.3647 0.4468 0.8115 0.8115
5 0.7425 0.1717 0.9142 0.9142
6 0.4735 0.5491 1.0226 1.0226

p

x

y

D

L

Fig. 3. The cantilever beam problem.
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Fig. 4. Convergence rates of the cantilever beam problem.
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in Fig. 11. The problem was solved concerning the steel
material property, i.e., E = 2.1 · 1011 and c = 0.3. The
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Fig. 6. Comparison of normal stress at the center of the beam (x = 8).
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Fig. 7. Comparison of shear stress at the center of the beam (x = 8).

Fig. 8. A portion of an infinite plate with a central hole.

Fig. 5. Four different node distribution strategies and corresponding Voronoi diagrams. (a) Regular distribution of 15 nodes, (b) regular distribution of 55
nodes, (c) irregular distribution of 96 nodes, (d) irregular distribution of 215 nodes.
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Fig. 9. Convergence rates of the infinite plate with a hole.
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obtained normal stress rx and the Von-Mises stress are pre-
sented in Figs. 12 and 13, respectively.

4.5. h-adaptivity by the subdomain collocation method

A noteworthy feature of the present subdomain colloca-
tion method based on Voronoi domain partition is that it
provides a natural structure for performing h-adaptivity.
Once the high stress gradient regions are predicted in some
way, the background Voronoi diagram provides a natural
reference structure to insert additional nodes. For example,
if one node is recognized as a node within the high gradient
region, the vertices of the corresponding Voronoi cell
which surrounds this node can be chosen straightforwardly
as the additional nodes to be inserted. In this way, the
refinement of the high gradient can be realized readily.
Lu and Chen [19] carried out h-adaptivity analysis in a sim-
ilar way in the context of SCNI. A detailed discussion of
node refinement strategies of h-adaptivity of meshless
method is referred to [20].

The prediction of high stress gradient regions, which is
another key issue in adaptivity analysis, can be carried
out by making full use of the built-in multiresolution
feature of RKPM. In multi-scale RKPM, a set of scale
functions or shape functions N(2ma0,x � s) and wavelet
functions W(2ma0,x � s) are defined as follows:

Nð2ma0; x� sÞ ¼ Cð2ma0; x� sÞxdð2ma0; x� sÞ; ð49Þ
wð2mþ1a0; x� sÞ ¼ Nð2ma0; x� sÞ � Nð2mþ1a0; x� sÞ;

m ¼ 0; 1; 2; . . . ; ð50Þ
where a0 is the initial value of dilation parameter, xd

(2ma0,x � s) and C(2ma0,x � s) are the kernel function
and the correction function corresponding to dilation
parameter 2ma0. By defining two operators Pnu(x) and
Qmu(x), the multi-scale approximation of any function
u(x) can be performed as follows:

uaðxÞ ¼ P nuðxÞ þ
Xn

m¼1

QmuðxÞ ð51Þ

in which

P nuðxÞ ¼ unðxÞ ¼
XN

I¼1

Cð2na0; x� xIÞxdð2na0; x� xIÞuðxIÞ;

ð52Þ

QmuðxÞ ¼ wmðxÞ ¼
XN

I¼1

wð2ma0;x� xIÞuðxIÞ; m ¼ 0;1;2; . . .

ð53Þ
Note that the low scale solutions un(x) describe the overall
characteristics of the solution while the high scale wavelet
solutions wm(x) predict the local high gradient solution
and can be used as the indicator of h-adaptivity. In this
way, the displacement, the strain and the stress can also
be decomposed into different components corresponding
to different scales. For example, the stress can be decom-
posed as

rij ¼ P nrij þ
Xn

m¼1

Qmrij: ð54Þ

The high scale stress solution Qmrij can be used to indicate
the location of high stress gradient. Although a multi-scale
analysis can be performed in this manner, a two-scale
decomposition is enough for real adaptivity analysis as in
[20,21]. It should be noted that performing adaptivity in
this way does not need any posteriori estimation. This con-
stitutes an advantage over the FEM, in which an extra pos-
teriori evaluation process is always needed in adaptivity
analysis.

To show the feasibility of h-adaptivity of present
method, a L-shaped plate with a uniform tensile load
applied on one edge is analyzed. The dimensions, the

Fig. 12. Distribution of normal stress rx.

Fig. 13. Distribution of Von-Mises stress.
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Fig. 14. The computational model of a L-shaped plate.
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Fig. 10. The dimensions and loading conditions of a connecting rod.

Fig. 11. The Voronoi diagram of a rod discretized by 215 nodes.
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loading condition, and the boundary conditions are shown
in Fig. 14. An initial node distribution of 96 regularly scat-
tered nodes to discretize the domain of interest. A refined
147 nodes distribution is obtained after one step of adap-
tivity analysis, and finally after four steps of adaptivity
analysis a 222 nodes distribution is obtained. These three
node distributions are shown in Fig. 15, in which
Fig. 15(a)–(c) correspond to the initial, the intermediate
and the finial node distribution, respectively. Fig. 16(a)
and (b) gives the stress contour of normal stress rx corre-
sponding to initial and finial refined node distribution.
The material properties used in this analysis is E = 1.0 ·
107 and c = 0.3. It is clearly that the adaptivity of the pres-
ent method is feasible and effective. The refinement of anal-
ysis in this way can locate stress concentration regions
more accurately and present a rather clear ‘‘edge detection’’
of high gradient regions.

5. Concluding remarks

A subdomain collocation method based on Voronoi dia-
gram is proposed. The trial function is approximated by the
reproducing kernel approximation in a meshless manner,
while the test function is interpolated via another set of con-
stant valued weighting functions defined over each of Voro-
noi cell. In this regard, the present method is in some sense a
Petrov–Galerkin method and shape functions and weight-
ing functions are defined over different spaces as in MLPG.
The weighting functions, however, are defined over non-
overlapping subdomains, which constitutes a principal dif-

ference between the two methods. In contrast to point
collocation meshless method, the weak form rather than
the strong form is solved in subdomain collocation method
and the cost of construction of higher order derivatives of
shape functions is saved. Furthermore, it is no need to treat
traction free boundaries as in a standard Galerkin method,
while in all point collocation methods all boundaries includ-
ing the traction free boundaries must be imposed explicitly.
As compared with other Galerkin meshless methods, the
need for a quadrature structure is eliminated and the high
CPU cost required in Gaussian quadrature of Galerkin
meshless methods is avoided. The body integration is con-
verted into contour integration along the boundary of a
Voronoi cell. Since all boundary segments of Voronoi cells
are located either inside the domain or on the global bound-
aries, the numerical integration in this method can, wher-
ever the nodes are located inside the domain or on the
boundaries, be realized by a much cheaper two-point or
three-point trapezoidal rule. Another prominent feature of
the present method is that the background Voronoi cells
provide a natural structure and h-adaptivity analysis can
be performed in a more natural and straightforward way.
The Laplace equation and some benchmark linear elasticity
problems are chosen as examples to demonstrate the cor-
rectness of the proposed method and investigate the conver-
gence property of the method. A multiply connected
connecting rod is analyzed to show its performance to deal
with complicated problems. Finally, a L-shaped structure is
adopted to verify the effectiveness of present method to per-
form h-adaptivity analysis.

At a cost of construction of background Voronoi cells,
to tell the truth, the proposed method is not truly meshless.
However, we believe the proposed method provides a new
alternative from a standpoint of efficiency, easiness of per-
forming h-adaptivity and other features. Future researches
including further development of present method for large
deformation and treatment of volume locking are under
consideration.
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Fig. 15. Three adaptivity analysis procedure of a L-shaped plate: (a) 96 nodes, (b) 147 nodes, (c) 222 nodes.

Fig. 16. The initial and the final refined distribution of the normal stress.
(a) Initial distribution of normal stress rx, (b) final refined distribution of
normal stress rx.
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