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A B S T R A C T Various analogies have recently been proposed for comparing the stress fields induced in
fretting fatigue contact situations, with those of a crack and a sharp or a rounded notch,
resulting in a degree of uncertainty over which model is most appropriate in a given
situation. However, a simple recent approach of Atzori–Lazzarin for infinite-life fatigue
design in the presence of a geometrical notch suggests a corresponding unified model
also for fretting fatigue (called Crack-Like Notch Analogue model) considering only two
possible behaviours: either ‘crack-like’ or ‘large blunt notch.’ In a general fretting fatigue
situation, the former condition is treated with a single contact problem corresponding to
a Crack Analogue model; the latter, with a simple peak stress condition (as in previous Notch
Analogue models), simply stating that below the fatigue limit, infinite life is predicted for
any size of contact. In the typical situation of constant normal load and in phase oscillating
tangential and bulk loads, both limiting conditions can be readily stated. Not only is the
model asymptotically correct if friction is infinitely high or the contact area is very small,
but also remarkably accurate in realistic conditions, as shown by excellent agreement with
Hertzian experimental results on Al and Ti alloys. The model is useful for preliminary
design or planning of experiments reducing spurious dependences on an otherwise too
large number of parameters. In fact, for not too large contact areas (‘crack-like’ contact)
no dependence at all on geometry is predicted, but only on three load factors (bulk stress,
tangential load and average pressure) and size of the contact. Only in the ‘large blunt
notch’ region occurring typically only at very large sizes of contact, does the size-effect
disappear, but the dependence is on all other factors including geometry.

Keywords fretting fatigue; HCF fatigue; safe-life design.

N O M E N C L A T U R E a = notch or crack half-width (i.e., contact half-width)
a0 = El Haddad intrinsic crack size
K f = fatigue strength reduction factor
K ff = K f in the region of crack-like fretting fatigue notch behaviour
K ft = K f in the region of blunt fretting fatigue notch behaviour
K t = elastic stress concentration factor

�K th = threshold value of the stress intensity factor range
Y = geometric or fretting fatigue shape factor

�σ = range of the gross nominal stress
�σ l = plain specimen fatigue limit (in terms of stress range)

I N T R O D U C T I O N

Fretting was originally considered as the process of rub-
bing two surfaces together producing various surface
modifications and damage but, without a mechanical fa-
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tigue load applied to the contacting bodies, limited to
the very superficial layers of the material.1 Fretting fa-
tigue (FF) was first recognized in specimens fractured
in the grips of fatigue machines,2,3 but has been studied
for a long time as a ‘separate’ area of fatigue, where the
mechanical damage over the surface was considered
to have a dominant role in decreasing the fatigue
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performance of the material. Various attempts to intro-
duce empirical parameters such as microslip amplitude
and surface energy dissipated by friction4–8 have emerged
from this background, but have, in the best of the au-
thor’s knowledge, failed to demonstrate any significant ef-
fect not predicted by standard fatigue from a stress-raising
feature. Actually, it was recognized that only a small de-
crease of fatigue performance (13–17%) was obtained in
previously fretted specimens,9 suggesting only the com-
bined effect of fretting and fatigue was causing a significant
strength reduction. Finally, experiments in inert gas atmo-
sphere showed that, although fretting decreased, the fret-
ting strength was not significantly increased, confirming
that the two processes are independent, and the damaging
process is only of minor effect.10

Probably, microslip parameters have had some success
because they were also an indirect means to measure tan-
gential load in most fretting fixtures, such as bridge-type
rigs holding pads or feet of nearly flat geometry. Under
such conditions, the effects are intrinsically connected and
therefore not always distinct and clear; the number of pa-
rameters is too high anyway for a convenient empirical
theory to emerge. Damage-related empirical parameters
seem now in disuse.11

The role of the contact stress field in provoking sim-
ply fatigue from a stress concentration had been recognized
as the most significant feature of the problem in remark-
able early papers.12,13 But only recently have a number
of attempts been made,14 sometimes with methodologies
of considerable effort to include multiaxial effects,15,16 or
both multiaxial and size effects.17,18 Despite the sophisti-
cation, only partial success was achieved, either accurate
predictions were obtained only for a subset of experiments
or empirical fitting constants were used. We shall call this
class Notch Analogue (NA) models where we intend that the
calculation of the actual stress field in the contact prob-
lem is computed with accuracy for the given geometry, as
a function of friction coefficient inducing partial slip.

Another important attempt to model FF was fracture
mechanics based, which probably started in the late
1970s.19,20 They recognized an initial propagation phase
(obviously faster than in plain fatigue) mainly due to shear
with a small propagation depth inclined with respect to
the surface and the principal stress. After this, a knee point
formed where cracks turned to propagate perpendicular
to the surface. The first phase depended on the decaying
contact field and the second mostly on the more uniform
bulk stress field, although this distinction is not rigorous as
the combined stress field is the driving force of the cracks.
Most of these attempts, as well as later ones,21 included an
initial crack of arbitrary size and orientation, which had
to be assumed. Collecting most of these findings, a fur-
ther step forward was made by Giannakopoulos et al.,22

with the so-called Crack Analogue (CA) model, for the case

where the contact is complete (singular pressure and fric-
tional shear tractions), introducing an implicit length scale
to the problem, directly justifying the size effect. This was
a remarkably simple and attractive model as it removed
the dependence on the arbitrary initial flaw size. Despite
the idea of using fracture mechanics for contact-induced
singular stress fields appears entirely reasonable and al-
most obvious, it had not been attempted before, perhaps
because the negative mode I stress intensity factor was
considered an obstacle, or because no perfectly sharp ge-
ometry or no exact square root singularity is achieved in
practical FF conditions.22 It is also worth remarking that
a further motivation for the use of a Crack Analogue (CA)
is adhesion which may also induce singularity in the stress
field even for a non-sharp geometry.24 In particular, for the
condition defined as strong adhesion, the mode II stress
intensity is practically the same as in the case of infinite
friction—leading back to the CA model for a general ge-
ometry. Whether adhesion is another way of looking at
the experimental fact that friction coefficient seems to rise
significantly in the micro-slip areas during fretting, is ir-
relevant as, in either case, we have strong reasons to hope
for success from a CA model.

Many features of the CA model will be reconsidered here,
but a few improvements will be made first. In particular,
bulk stress was neglected in the computation of stress in-
tensity factors for initiation purposes, whereas self-arrest
was given as a condition on the bulk stress only affecting
the calculation of the kinked crack stress intensity factors,
and so the contact stress field was neglected in this phase.
These assumptions will be removed and the condition of
initiation will be computed more precisely.

The CA and NA models remain somewhere distinct and
not fully integrated. Also, the case when the contact area
is so small that short crack effects become important was
not addressed. In the limit when the contact is vanishing
small, the only condition to write is that the bulk stress
is smaller than fatigue limit, independently from fretting
loads. It will appear in the course of the present paper
that a unified treatment not only makes more accurate
and clear the resulting predictions, but turns out even
simpler than both the original CA and the NA models,
permitting simple reasoning over the influence of various
factors. The key starting point is that, up to a certain lim-
iting size, notches of all shapes behave very similarly to
cracks of the same size (‘crack-like’ notches, a description
first suggested by Smith and Miller25), irrespective of mi-
nor differences of the form of the stress distribution, and
it is only above this size that the peak stress criterion is
appropriate. Moreover, in fretting the friction coefficient
rapidly grows in the microslip regions of the contact areas.
If this does not happen, such as when using anti-friction
coatings, it is likely that FF is not a problem. There-
fore, given that in the limit of infinite friction any contact
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geometry would restore the mode II stress intensity fac-
tor of the CA model, it is likely that most fretting contact
behaves according to the CA model (at least up to a cer-
tain size of contact). When the corresponding problem is
correctly solved, we could write very simply the general
threshold condition.

The Smith and Miller classification of notches has been
best exploited recently by Atzori and Lazzarin26 using the
El Haddad law27 for the correction at small sizes. Accord-
ingly, the knock-down factor in fatigue, K f, has been de-
rived in a unified way, together with the K t criterion for
larger sizes, and extended to include geometrical effects
by Atzori et al.28

Kf =




√
1 + Y 2 a

a0
, for a < a∗

Kt, for a > a∗


 or

Kf = Min
(√

1 + Y 2 a
a0

, Kt

)
,

(1)

where a∗ is the transitional size where the ‘crack-like
notch’ behaviour meets the ‘large blunt notch’ behaviour
(Y here is the geometrical factor correcting with respect
to the ideal case of central crack in a infinite plate)

a∗ = a0

(
Kt

Y

)2

, (2)

where the material constant a0 is defined for a given
threshold stress intensity range �K th and a fatigue limit
�σ l as

a0 = 1
π

(
�Kth

�σl

)2

, (3)

which has often the, perhaps misleading, interpretation of
‘intrinsic crack’ in El Haddad et al.27

Therefore, by identifying the sharp contact geometry
and solving for the given loading condition, we can esti-
mate the factor K f, defined as the ratio between fatigue
limit and bulk stress load. The contact loadings will be
taken care of via the geometrical factor Y of Eq. (1). Fi-
nally, for contact sizes larger than a∗, the peak stress will
be computed. Therefore, improved versions of both CA
and NA models will be included in the more comprehen-
sive crack-like notch analogue (CLNA) model using the
Atzori and Lazzarin criterion.

A C A M O D E L W I T H I M P R O V E M E N T S

Consider a square-ended foot pressing a fatigue specimen,
according to the geometry in Fig. 1. For a constant mode
I normal load P, and a varying mode II load Q, we have
(for a 2D geometry and an R = −1 loading ratio)

Fig. 1 The CA model a flat punch under normal load.

KI = −
(

P√
πa

)
= −

(
2
π

p̄
√

a
)

,

�KII = 2
(

Q√
πa

)
= 2

(
2
π

q̄
√

a
)

,

(4)

where � is the range in the cycle, p̄ = P
2a and q̄ = Q

2a .
Recently, we have improved the analysis of the contact

problem in Fig. 1 considered in Ref. [22] by looking di-
rectly at the governing integral equations.29 We assume
Dundurs’ mismatch constant is zero, β = 0, and that the
half-plane elasticity can be used for both materials, which
is only rigorous in the case of a rigid punch indenting
an incompressible material. The latter condition requires
E1 → ∞ and ν1 → 1/2, i.e., the constant γ → 1, where

γ =
(

E∗
2

E∗
1

+ 1
)

=
(

1 − ν2
1

E1

/
1 − ν2

2

E2

)
+ 1. (5)

Otherwise, the solution will deviate from the square-root
singular one.23 We shall leave the general case of γ because
these deviations would not affect the fatigue strength for
an actual contact case except in a restricted range of large
contact sizes, yet not enough for the K t condition to pre-
vail. In the comparison for Hertzian experiments, for ex-
ample, we will successfully use the model with identical
materials (γ = 2).

Turning back to the contact problem, in the case of tan-
gential and bulk load applied simultaneously and in phase,
three conditions (stick, one slip zone and two slip zones)
are found,29 as indicated in Fig. 2. As we are only inter-
ested in the trailing edge stress intensity factors, for which
there are only two cases, which should be used instead of
the second of Eq. (4) (see Ciavarella and Macina29)

(KII)stick =
(

Q√
πa

)
+ 1

2γ
σb

√
πa,

σb ≤ 4
π

γ f p̄
(

1 − Q
f P

)

(KII)stick = f KI, σb >
4
π

γ f p̄
(

1 − Q
f P

)
.

(6)
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Fig. 2 Partial slip condition in the CA model contact problem,
according to the load conditions Q/fP, and (πσ b)/(4γ fp).

Fig. 3 Correction (in percentage) in the mode II SIF with respect
to the original CA model, for (πσ b)/(4γ fp) = 0.1, 0.25, 0.5, 1.

The new factors are compared with the original CA
model,22 where only the contribution due to the tangential
load was taken into account K Q

II = Q/
√

(πa). The differ-
ence is reported in Fig. 3. Clearly, the error is larger for
large bulk loads and low Q/fP, i.e., away from the fric-
tion limit, when the effect of bulk load dominates over
the tangential load.

T H E N A M O D E L

For the ‘large blunt notch’ equivalence, we simply need
a good estimate of the peak stress. A number of exact
results are known from detailed analyses.30,31 A simple yet

Fig. 4 Hertzian contact with bulk stress only: Difference between
σ xx(a, 0) and σ b as a function of σ b.

accurate formula for Hertzian, or rounded flat geometry,
subject to constant pressure and oscillating tangential load
is given by Ciavarella et al.32,33 neglecting the effect of bulk
stress on shear tractions,

σcont = 8
π

p̄k
√

f Q/P , (7)

where k is a contact geometrical factor equal to 1 in the
Hertz contact case, and increasingly greater for rounded
flat geometries towards the flat indenter case (d is the half-
width of the flat part of the punch and a the half-width of
contact)

k =
√√√√√ 1 − 2

π
arcsin

( d
a

)
1 − 2

π
arcsin

( d
a

) − 2
π

( d
a

) √
1 − ( d

a

)2
. (8)

The above formula is only valid when no bulk stress is
considered, and a simple linear superposition is the sim-
plest correction as done, for example, by Giannakopoulos
et al.,14 and using (7)

σmax = σb + σcont = σb + 8
π

p̄k
√

f Q/P . (9)

The exact solution for an arbitrary combination of bulk
stress and tangential load requires either more sophis-
ticated analytical solutions or numerical methods.32,33

Figure 4 shows an example of the stress concentration
induced under bulk stress only loading conditions for
Hertzian contact.

T H E N E W C L N A M O D E L

The original CA model22 was a remarkably innovative
and simple model for FF finding a clear explanation of
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the size effect found experimentally. However, it may be
questioned that in most contact problems, the corners of
the indenters are not perfectly sharp, or even if they are,
the singularity is not square root. Indeed, it had been no-
ticed that in many practical fretting conditions, a realistic
geometry (e.g., in dovetail or firtree attachments of aero-
nautical turbine engines) could be obtained by rounding
the corners of the indenter instead of having a sharp end,34

showing also that a detailed analytical solution for the con-
tact problem was still possible. In a subsequent paper,14 it
was suggested that the stress field for this finite stress con-
centration is a perturbation of the limiting case of sharp
punch in the CA model, like the Creager-Paris solution
for a rounded crack is a perturbation of the crack solu-
tion. This notch-analogue (NA) model, however, was not
pursued further than suggesting simply the peak stress as
a criterion for initiation, although it is well known that
in fatigue in the presence of a geometrical notch, the use
of the stress concentration factor is a largely conserva-
tive condition, valid only asymptotically at large sizes of
notches.

In fretting, there are various independent loading condi-
tions, and if only one is changed while the others are kept
constant, the peak-stress condition may never be reached,
irrespective of how large the contact area is. For example,
if the contact stress is kept constant and higher than fa-
tigue limit, the only possible regime is crack-like notch.
Similarly, if the bulk stress, or more generally if the sum
of the two, is maintained constant and higher than fatigue
limit. This will be discussed later in more detail. Clas-
sical theories on peak stress and gradient of stress field
(like Peterson, Neuber, etc.) do not lead to significantly
better prediction than a simple criterion assuming either
‘crack-like’ or ‘large blunt notch’ behaviour as recently
suggested by Atzori and Lazzarin.26 The opposite is true
since the original Peterson’s and Neuber’s constants are
only based on ultimate strength and do not take into ac-
count the fatigue threshold. The most significant contri-
bution to the classical knock-down factor in fatigue, K f,
is due to the crack-like behaviour, so that a detailed anal-
ysis of the stress field around each single case of notch,
clearly depending upon the specific geometry, is avoided.
The simplicity of the Atzori–Lazzarin criterion turns out
particularly helpful in fretting, where there are a number
of parameters at play for which other criteria would not
permit simple handling of the results.

A generic FF problem is a much more complex situation
than the standard geometric notch or crack subject to a
remote uniaxial tensile fatigue loading. For the ‘remote
stress’ condition in principle we could consider the bulk
stress σ b, or the pressure p, or the shear traction q ≤ fp, and
similarly in general there may be various mode singulari-
ties (possibly all modes I, II, III), under non-proportional
conditions. Non-proportionality may depend on the paths

followed by normal tangential and bulk loads, and/or from
the contact area variations associated with change of nor-
mal load. These factors cannot necessarily be all consid-
ered with present models and some degree of simplifica-
tion is needed. However, by limiting the attention to cases
where the normal load is constant and the tangential load
is oscillating (the Cattaneo-Mindlin conditions), we real-
ize that the most significant contribution to fatigue life
corresponds to oscillating tensile stresses induced by tan-
gential and bulk loads. Therefore, we suggest to take into
account only two limiting conditions, combining CA and
NA model, in what we define a CLNA model. In partic-
ular, for small to intermediate size of contact areas, the
bulk stress is the nominal stress, and the stress intensity
factor giving rise to fatigue is mode II due to both shear
and bulk stress. Notice that the reasons why non-sharp
fretting configurations (up to a certain limiting size) can
use a crack-like model are somehow stronger than in the
corresponding notch problem considered in the original
Atzori and Lazzarin26 criterion (which has been neverthe-
less experimentally validated for most notch geometries in
Atzori et al.28), as there are two additional considerations:

(1) if friction is very high, an actual mode II stress intensity is
introduced by friction, independent of the actual contact
geometry;

(2) if adhesion is high, a singularity in mode I (positive) is
induced by adhesion and friction, in principle also if finite,
gives rise to an actual mode II singularity, as considered
in the paper by Giannakopoulos et al.24

For larger contact areas, we shall skip to a NA model, as a
truncation to the CA-model prediction. It should be noted
however that, while for a true notch this condition always
occurs at sufficiently large sizes, in FF the peak stress con-
dition is not necessarily reached irrespective of how arbi-
trarily the contact area is increased. In fact in the FF case,
if we consider bulk stress as the nominal stress, there will
be a K t truncation only if all other conditions are such that
bulk plus contact stress equals the fatigue limit. For ex-
ample we may suppose to increase the contact area, while
decreasing the peak pressure proportionally to bulk stress,
with the loading ratio Q/fP kept constant. In this case, also
the peak stress will decrease proportionally to bulk nomi-
nal stress, as it happens in a geometrical notch. Hence, the
truncation will eventually occur as the peak stress at one
point will have to be lower than fatigue limit. However, if
we consider the case of decreasing the bulk stress in the
diagram while peak pressure is maintained constant, then
the crack-like condition may always be more severe, and
indeed also impose a limit of the contact area dimension
which cannot be exceeded for that given peak (or average)
pressure. We shall return to this problem later.
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Implementation of the CLNA model: crack-like
notch behaviour

Let us start from the condition of small to intermediate
size of contact area. The mode II stress intensity factor
depends, according to Eq. (6), on tangential load and bulk
stress only (for sticking conditions), or on average pressure
and friction coefficient (for sliding conditions). In order
to use the El Haddad equation for the transition small
crack/small notch, we need to combine the effect of the
bulk stress. In the case of moderate bulk, the first part of
Eq. (6) needs to be used, i.e., for σ b ≤ (4/π )γ fp(1 − Q/fP),
suggesting that at the maximum load (here we consider
only the case of bulk stress and tangential load applied
simultaneously and in phase, while keeping normal load
constant)

KII = (KII)stick =
(

2
π

q̄ + 1
2γ

σb

) √
πa = Yσb

√
πa, (10)

where Y is here a fictitious geometrical factor as it is nor-
mally used to include geometrical effects with respect to
the classical central crack in the infinite plate solution,
K = σ

√
(πa). In this manner, the mode II SIF has been

written in terms of the bulk stress instead of the mean
shear traction. The factor Y , differently from a true ge-
ometrical factor in standard fracture mechanics, is here a
factor depending on loading condition. Specifically, from
the equation above,

Ystick

(
σb, p̄,

Q
P

)
= 2

π

p̄
σb

Q/P + 1
2γ

, (11)

whereas for larger bulk, the second part of Eq. (6) should
be used, and so

Yslip(σb, p̄, f ) = 2
π

f p̄
σb

. (12)

We are now in a position to write down the El Haddad
equation in the form suggested by Atzori–Lazzarin26 and
Atzori et al.28 taking into account the geometrical factor
asymptotics and by defining K ff as the ratio

Kff = �σ

�σb
=

√
1 + Y2 a

a0
. (13)

This expression clearly considers the two threshold con-
ditions: fatigue limit for the nominal bulk stress σ b, in the
limit as a = 0, and long-crack fatigue threshold condition,
when a → ∞. In contrast to standard fatigue cases then,
this equation contains a factor Y , which depends on loads
and on the fatigue stress itself, specifically on σ b. There-
fore, this dependency means that the equation above is
in fact an implicit equation for K ff, in general. However,
supposing the two ratios

Rp = p̄
σb

, Rq = Q
P

(14)

and f are maintained constants, we rewrite Eqs (11) and
(12) as

Ystick(Rp, Rq) = 2
π

Rp Rq + 1
2γ

;

Yslip(Rp, f ) = 2
π

Rp f.
(15)

In practise, the two Y ’s can be both computed, but only
the smallest used in the calculations. Rewriting Eq. (13)
with emphasis on explicit dependences on the various fac-
tors,

Kff

(
Rp, Rq; f,

a
a0

)

=
√

1 +
〈

2
π

Rp Rq + 1
2γ

;
2
π

Rp f
〉2 a

a0
, (16)

where 〈a; b〉 indicates the minimum between a, b. Notice
that K ff in the final form of Eq. (16) depends on three
non-dimensional factors only: the pressure ratio Rp and
either the tractive ratio Rq or the friction coefficient f, and
the crack ratio, a/a0.

Implementation of the CLNA model: blunt notch
behaviour

Turning back to the peak stress condition, a simple esti-
mate of the tensile stress at the trailing edge of contact
can be given for Hertzian or rounded flat contact without
considering the nonlinear effect of bulk stress affecting
the traction distribution, as (Ciavarella et al.32,33)

Kft = σmax

σb
= σcont

σb
+ 1 = 1 + 8

π

p̄
σb

k
√

f Q/P , (17)

where k is a contact geometrical factor equal to 1 in the
Hertz contact case, and increasingly greater for rounded
flat geometries towards the flat indenter case. Notice that,
again, as a result of the independent bulk and contact load-
ing factors, the latter equation is implicit on K ft. But again,
by reasoning in terms of the non-dimensional ratios Rp,
Rq and f and rearranging, we get

Kft
(
Rp, Rq, f, k

) = 1 + 8
π

Rpk
√

f Rq, (18)

and K ft does depend on all three non-dimensional factors,
plus a geometrical factor, but obviously does not depend
on the size of the contact. Finally, for full sliding, Rq = f ,
and the stress concentration reaches the maximum value.

Implementation of the CLNA model: discussion

By equating K ft with the K ff predictions we get an es-
timate of the size separating the ‘crack-like’ from the
‘blunt notch’ behaviours. Accordingly, we define size aD

by equating (Eqs (16) and (18)).
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Obviously, anything that makes the K ft lower, and the
fictitious geometrical factor Y higher, renders the tran-
sitional size aD smaller. For example, Rp tends to have
similar effects, as it increases both (although not in exact
proportion), while k only increases the numerator (this is
because a sharper geometry increases the K t but does not
make any difference to Y .

Clearly, the new CLNA model suggests to use the min-
imum of the two K ft, K ff, hence we define the resulting
global knock down factor in FF, simply K f, according to
the Atzori–Lazzarin criterion (1), as

Kf =
〈
Kff

(
Rp , Rq; f,

a
a0

)
; Kft(Rp, Rq, f, k)

〉
, (19)

where again 〈a; b〉 indicates the minimum between a, b.
Alternatively, it could be written as K ff for a < aD, and K ft

for a > aD. In the latter form, it permits some conclusions
on the general effect of FF. Perhaps the most problematic
aspect of FF has been the too high number of parameters
involved to manage to separate the effects. Given a cer-
tain range of conditions in terms of geometry and the five
parameters (bulk stress, pressure, tangential load, friction
coefficient and contact area size), the maximum number of
parameters effectively affecting the infinite life behaviour
of the FF contact is four, and it is when the peak stress
condition is acting. Otherwise in the crack-like range, the
number of independent parameters is three, given by Rp,
Rq or f , a/a0. There are interesting aspects of this when
varying one or other of the parameters. For example, when
Rq is increased, then K ft certainly increases, whereas K ff

only increases if we have not reached the limiting value
given by f , and therefore aD will generally tend to increase.
More details on aD will be given when the full CLNA di-
agram will be displayed in the following paragraphs.

Validation of the CLNA model: comparison with
Hertzian experiments

Hertzian experiments on Al-alloy originally contained and
discussed in Nowell’s thesis35 and on a typical aeronautical
Ti-6Al-4V alloy are reported in details in Araùjo,36 and
Araùjo and Nowell,17,18 where either short-crack or aver-
aging techniques were proposed. Previously, the Nowell
Al-alloy data have been used in comparison with other
attempts of predictive methods, and in particular Fellows
et al.,21 Szolwinski and Farris16 and Nowell and Hills.6

They are very convenient therefore to discuss the capa-
bilities of the method, with respect to previous attempts.
In particular, Hertzian geometry gives a condition suf-
ficiently remote from the sharp flat geometry for most
practical realistic conditions permitting a significant val-
idation of the present method. Also, they are obtained in
well-controlled conditions, with friction coefficient mea-
sured as an average value in the contact area and inferred

Fig. 5 Prediction of the CLNA model for the Szolwinski et al.16

experiments (�σL = 308 MPa, and �K th = 4.2 MN m−3/2, giving
a0 = 59 µm). The data fall all in the finite life region, as confirmed
by the CLNA prediction, which also shows they are remote from
the stress concentration factor regime.

in the microslip area. In these experiments, infinite life is
obtained by progressively reducing the size of the contact,
following an idea originally proposed by Bramhall,37 i.e.,
maintaining all other average stress field values constant.
Most other data in the literature are either presented as
SN data for relatively short lives, or other conditions are
not reported. For example, Szolwinski et al.16 report 37 ex-
periments with a similar Al-alloy, Al2024-T351,† all failed
well before 106 cycles, and the CLNA correctly predicts
failure (finite life) for all of them (see Fig. 5).

It is worth spending a few more words on Fig. 5, as it
is the first example of the K f ‘diagram’ using the CLNA
model, and a few general remarks are not misplaced. Given
we are about to compare with experimental data points,
which are likely to have various Y factors, the factor Y 2a/a0

is used on the abcissae, so that the El Haddad Eq. (16)
for the crack-like behaviour is simply a single line clearly
marking the region of infinite life irrespective of the peak
stress condition. A second region of infinite life is obtained
above the El Haddad line, for those conditions giving a
peak stress lower than the fatigue limit—this second re-
gion is therefore enclosed between the El Haddad line
and the particular horizontal line corresponding to the
K f = K ft condition. In particular, in the case of Szolwinski
et al.16 data, each data has a slightly different peak stress,
so that a number of data points are represented in the di-
agram for the K f = K ft condition. However, they all give
a peak stress corresponding to a K ft factor around 2.5–3,
and two horizontal lines mark upper and lower limits. The
experimental data anyway all fall well within the finite life
region.

†A fatigue limit range of 308 MPa, and long crack threshold range of 4.2 MN
m−3/2 were considered, giving an a0 = 59 µm.
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Table 1 Nowell’s fretting fatigue tests with Al-4%Cu and Ti-6Al-4V (taken from Refs [17, 18, 36])

p0 Q/P σ b σ cont σmax a
Mat and series exp f (MPa) (MPa) (MPa) (MPa) N f (×106) (mm) Rp Y

Al 1 0.8 157 0.45 92.7 188 281 1.29 0.38 1.694 0.631
“ “ “ “ 0.67 0.57 “ “

0.85 0.76
0.73 0.95
0.67 1.14
>10 0.1
>10 0.19
>10 0.28

Al 3 0.8 143 0.45 92.7 172 264 >10 0.09 1.543 0.597
“ “ “ “ “ “ >10 0.18 “ “

4.04 0.27
1.5 0.36
0.8 0.54
0.61 0.72
1.24 0.9
0.69 1.08

Al 4 0.8 143 0.45 77.2 172 249 >10 0.09 1.852 0.667
“ “ “ “ “ “ >10 0.18 “ “

1.2 0.36
1.42 0.54
0.61 0.72
1.24 0.9

Al 5 0.75 120 0.45 61.8 139 201 >10 0.14 1.942 0.687
“ “ “ “ >10 0.21 “ “

>10 0.28
>10 0.42
>10 0.57
1.57 0.71
1.23 0.85

Ti 6 - 4 0.5 650 0.16 280 368 648 >1.4 0.25 2.321 0.436
“ “ “ “ “ “ 0.521 0.76 “ “

0.374 1.01
0.196 1.22
0.173 1.42

The CLNA model will then be applied to the data of
Araùjo and Nowell,4,17,18,‡ briefly summarized in Table 1.
We notice that in Nowell’s experiment, for each series, the
bulk stress as well as the pressure are kept constant, but the
ratio between the two is not, i.e., Rp is not constant (how-
ever, only moderately varying, as Rp = 1.69, 1.54, 1.85,
1.94, for Al series 1, 3, 4, 5, respectively, and Rp = 2.32,
for the Ti single series). Regarding Rq, it is constant for
the Al-series experiment (Rq = 0.45) and, independently,
for the Ti experiments (Rq = 0.16). This is taken care of
in the calculation of the factor Y , which permits the single

‡From which a fatigue limit range of 248 MPa, and long crack threshold range
of 4.2 MN m−3/2 were considered, giving an a0 = 91 µm.

diagram of Fig. 6, by using the abscissa Y 2a/a0, to repre-
sent all the limiting behaviour as a single El Haddad line.
The K t lines, are various and depend on each combination
of (Rp, Rq, f , k). Notice that all points fall well above the
K t lines and failures and runout are correctly separated by
the El Haddad line with the exception of a single point
at the highest level of bulk stress, where the experimen-
tal results are also ambiguous. The agreement with the
CLNA model therefore appears excellent. Notice that as
material properties, we have only used two most widely
available data, i.e., the fatigue limit in alternate tension
and the fatigue threshold for long cracks in mode I. The
excellent agreement with the experiments suggests there-
fore that, at least within these ranges of conditions, the
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Fig. 6 Comparison of Nowell’s experiments (Nowell 1988; Araùjo
and Nowell 1999, 2002, giving a0 = 91 µm, 25 µm for Al and Ti
alloys, respectively) with predictions of the CLNA model. Notice
only 1 (dubious) experimental point fails the comparison out of 33.
The 1/K t lines are obtained for the given ratios Rp of the various
series of experiments. All the data fall in the crack-like region.

multiaxiality of fretting is only of negligible importance,
and that the constant normal load does not significantly al-
ter the threshold condition either. Multiaxial parameters,
as used by Szolwinski et al.16 and Araùjo and Nowell,17,18

do not seem necessary at this stage, within the limits of
the experiments under consideration. Also, having writ-
ten the initiation condition very simply in terms of contact
sizes and loads permits interesting examination of various
effects, as considered in the next section.

T H E C L N A - M O D E L ‘F F D I A G R A M ’

In contrast to the standard fatigue case where the nominal
stress is clearly defined and there is no other loading con-
dition, in our CLNA model for FF, we have been able to
represent a single diagram by using the non-dimensional
ratios (Rp, Rq, f , k). The corresponding diagram shows
how the FF performance is expected to decrease with in-
creasing size of the contact, but maintaining the ratios
(Rp, Rq, f ) constant. More often, one is interested to know
what is the effect of changing only one or the other of the
ratios. For example, what is expected to happen when only
tangential load is increased, or friction, or pressure, or bulk
stress. For example, if we keep the pressure constant, and
assuming we are in the region of partial slip for the CA
model, we would have from Eq. (13)

K 2
ff = 1 +

(
2
π

f p̄
σb

)2 a
a0

= 1 +
(

2
π

f p̄
σL

Kff

)2 a
a0

, (20)

where we have the notation in terms of amplitude for fa-
tigue limit, σ L, instead of the range. This is an implicit
equation for the factor K ff, and rearranging gives

Kff = 1

/√
1 −

(
2
π

f p̄
σL

)2 a
a0

. (21)

Notice that K ff depends now on three non-dimensional
factors only: the ratio p/σ L, where with respect to the
previous pressure ratio, we have divided the pressure by
the fatigue limit instead of the bulk stress; the friction
coefficient f ; and the crack size ratio, a/a0, and does not
depend on Q/P. Also, notice that this solution is valid for

a
a0

< 1
/ (

2
π

f p̄
σL

)2

. (22)

This condition is simply the counterpart of reasoning for
a fixed average pressure p. The total load, upon an in-
crease of the contact area, becomes larger, and this renders
the condition increasingly more severe. In fact, simply
when condition (22) is met, the threshold fracture me-
chanics condition is met, with zero bulk stress, just because
of �KII = (2/π )�q

√
(πa) = �Kth. Similarly, for the K ft

factor, we rewrite Eq. (17) as

Kft = 1 + 8
π

p̄
σb

Kftk
√

f Q/P , (23)

and again, the equation is implicit on K ft. By rearranging,
we get

1/Kft = 1 − 8
π

p̄
σL

k
√

f Q/P , (24)

and as K ft > 1, and 1/K ft > 0, follows that this solution is
valid for

1 <
8
π

p̄
σL

k
√

f Q/P . (25)

A limiting condition occurs this time because when condi-
tion (25) is met, K ft → ∞, just because of contact loads and
there is no truncation to use to the previous ‘crack-like’
condition.

Other such curves may be obtained by fixing, say, total
load P, i.e., imposing the average pressure to be inversely
proportional to contact area size, and so on. However,
rather than using a different plot for each condition, it
may be easier to visualize the possible variations by us-
ing the original plot, with Y removed from the abscissae
axis, and various curves for the various combinations of
ratios (Rp, Rq, f , k) plotted at once. Figure 7 shows a few
examples of the resulting behaviour. The case of incip-
ient full slip is chosen for simplicity, varying Rq = f =
0.1, 0.2, . . . , 1 and having Hertzian geometry and Fig. 8
shows the same cases for a flatter geometry (namely k = 5,
i.e., having five times higher contact stress concentration),
and within each series of three, the pressure ratio is varied
Rp = 1, 5, 10. Clearly the only difference between the two
series of three plots is in the K t lines, which truncate the El
Haddad crack-like behaviour lines for larger contact sizes
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Fig. 7 Theoretical predictions of the CLNA model for the case of
incipient full slip Rq = f = 0.1, 0.2, . . . , 1 for Hertzian geometry
(k = 1), with Rp = 1, 5, 10 in cases (a), (b) and (c), respectively.

if the stress concentration is higher. In particular, it is no-
ticed that the crack-like behaviour continues up to at least
a/a0 = 20 for the cases represented in the Hertzian case,
and up to an even much larger value (a/a0 = 200 or so)
for the flatter geometry. This would make the blunt notch
behaviour quite difficult to achieve in practise (meaning
the pure stress concentration criterion would be extremely
conservative in most cases), particularly for many practi-

Fig. 8 Same as Fig. 7 for a flatter geometry (namely k = 5, i.e.,
having five times higher contact stress concentration).

cal cases, like dovetail attachments in turbine blade joints,
where the geometry is considerably flatter than Hertzian.
For Al- or Ferrous alloys, having a0 of the order of 100 µm
or so, this would mean contact areas half-widths of the or-
der 2 and 20 mm, respectively, whereas for Ti-alloys, sizes
four times smaller.

Within each of the three pressure ratios, the variation
is very significant, particularly moving from Rp = 1 to
Rp = 5.
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C O N C L U S I O N S

A new CLNA model has been derived for FF safe life de-
sign, using the Atzori–Lazzarin criterion26,28 for fatigue in
the presence of geometrical notches and cracks. Since the
Atzori–Lazzarin criterion has proved very simple but also
more accurate than a number of standard criteria such as
Neuber, Peterson, Lukas-Klesnil as confirmed by direct
comparisons with a wide range of data from the litera-
ture (see Atzori et al.28 and Ciavarella and Meneghetti38),
its application to fretting becomes particularly helpful, as
it improves and combines features of previous crack and
notch analogue models developed at MIT.

In particular, for small to intermediate contact area sizes,
a corrected and generalized version of the CA model is
proposed; the infinite-life threshold for FF does not de-
pend on geometrical features of the contact, but depends
only on three non-dimensional quantities: first, on the ra-
tio a/a0 size of the contact to intrinsic material constant;
then, on Rp (the ratio average pressure to bulk stress), and
either Rq (the ratio tangential to normal load) or f , the
friction coefficient. Only for large enough contact areas
(a > aD), is the fretting life expected to depend on stress
concentration (basically like in a NA model based on pure
stress concentration) and in particular on all three ratios
(RpRq and f ), as well as the details of the geometry of the
contact.

The CLNA model is validated with classical Hertzian
experiments, showing it may be considered simpler but
not less accurate than previous attempts to predict ini-
tiation life, including recent averaging techniques. With
respect to the latter, the empirical fitting constants are
removed. Fretting fatigue seems to be, within the range
of experiments considered, simply fatigue from a stress
raiser feature, as such simply predicted by the fatigue limit
(in tension) and mode I fatigue threshold for long cracks,
which are generally available material properties.
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