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Abstract Cellular materials are used as impact energy absorbers

due to their large densification strain at the plateau stress during

the plastic compression. For a cellular rod struck by a rigid object,

the critical impact velocity is determined. If the impact velocity

is higher than the critical impact velocity, the elastic wave will be

followed by plastic shock waves. Plastic shock waves and shock

arrest are investigated analytically for longitudinal impacts. Shock

behaviors are characterized for material design purpose and will be

used for impact protection.

1 Introduction

Cellular materials, such as metal foams, are used as impact energy absorbers
in crash and blast protection due to their unique constitutive behavior, e.g.,
Ashby et al. (2000). Three stages can be identified in the stress-strain curve
of the uniaxial compression of cellular materials, as shown schematically by
the solid line in Fig. 1.

• Stage I: For a closed-cell cellular material, deformation is in the form
of bending of the cell walls and edges and is, in general, reversible. At
the end of this stage some cells suffer collapse. This may be due to
elastic buckling, plastic deformation or fracture.

• Stage II: The almost constant compressive stress appears in a wide
range of strain. Buckling and plastic collapse occurs successively until
all cells are collapsed. The deformation in this stage is unrecoverable.

• Stage III: Cell walls and edges contact each other and are crushed;
giving rise to a steeply rising stress.

For impact analysis, Reid and Peng (1997) firstly treated cellular materi-
als subject to uniaxial compression using a simplified rigid, perfectly-plastic,
locking (RPPL) model as shown by the dashed lines in Fig. 1. The constitu-
tive behavior in stage - I is simplified as rigid. Stage - II is treated as perfect
plastic with the yielding plateau stress σpl. The second stage ends with the
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Figure 1. Constitutive behavior of a typical cellular material. The solid line
shows schematically the relation between stress σ and strain ε. The dashed
line shows the idealization of the stress-strain curve in the rigid, perfect-
plastic, locking (RPPL) model. In stage - I, the material is treated as rigid.
In stage - II, the material is in perfect plasticity with yield stress σpl. In
stage - III, the material is again treated as rigid, with the densification
strain εD

locking (densification) strain εD. Stage - III is again idealized as rigid. Tan
et al. (2002, 2005a,b) used a RPPL idealization of foam materials to study
the inertia effects and shock enhancement in uniaxial dynamic compression.
Radford et al. (2005) used RPPL model to study the shock behavior in a
metal foam projectiles. Harrigan et al. (2009) compared RPPL with other
analytical approaches on shock wave based models.

Alporas aluminium foam developed by the Shinko Wire Company has a
plateau stress σpl in the range of 1.3 ∼ 1.7 MPa, the Young’s modulus E
in the rage of 0.4 ∼ 1.0 GPa, and densification strain εD in the range of 0.7
∼ 0.82 (Ashby et al., 2000). The strain at the end of first stage is of the
order σpl/E, which is around 0.2%; compared with the densification strain
εD it is reasonable to ignore this part of deformation and treat the material
in stage I as rigid, as shown in Fig. 1.

To keep the mathematics and models simple, let us only consider uniaxial
compressive stress and strain. In the following, impact of a one-dimensional
cellular material as shown in Fig. 2 will be studied. For simplicity, the
RPPL model with be adopted.
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Figure 2. Impact on a cellular rod. Planar shock wave will be generated
from the impact end, and propagates along the impact direction

2 Wave Propagation in a Cellular Rod

To design the crush and blast protection using cellular materials, we need
to understand the wave behaviors in those materials under different impact
velocities. Lopatnikov et al. (2004) considered in the general case of four
significantly different possibilities of high-velocity impact on a cellular ma-
terial that separated by three characteristic velocities: sound velocity of
the constituent material, sound velocity of the cellular material and sound
velocity during the plateau and up to the complete densification of the foam.

After impacted by a striking object, as shown in Fig. 2, there are two
kinds of waves generated in the cellular rod, first an elastic wave, then
followed by a plastic shock wave. However for the generation of the plastic
shock wave, there is a minimum requirement for the impact velocity vm to
be higher than a critical value vc

m. This section finds the critical impact
velocity for the generation of plastic shock waves.

The case of a rigid mass impacting a semi-infinite rod, as shown in Fig.
3, is studied. A one-dimensional coordinate system is set along the rod, with

Figure 3. One-dimensional coordinate system on a cellular rod, with im-
pact from a striking object of mass m and velocity vm
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the origin at the impact end. The general one-dimensional wave equation is

∂σ

∂x
= ρ

∂2u

∂t2
, (1)

where σ and u are the stress and displacement along the x-axis, ρ is the
density, and t is time with t = 0 corresponds to the moment of the impact
commencement.

When the impact level is low, the density of the cellular material is ρ0,
and the relation between the uniaxial stress σ and strain ε is elastic that
takes the form

σ = Eε (2)

where E is the Young’s modulus. The strain ε relates to the axial displace-
ment u through

ε =
∂u

∂x
(3)

Substituting the above relations between the stress, strain and displacement
into Eq. (1), the displacement wave equation can be rewritten as

∂2u

∂x2
=

1

c2
el

∂2u

∂t2
, (4)

where
c2
el = E/ρ0 (5)

The solution of the above wave equation can be expressed in a general form
as

u(x, t) = fforward(x − celt) + fbackward(x + celt) (6)

which gives the meaning of cel as the elastic wave speed, fforward(x − celt)
and fbackward(x + celt) are two arbitrary functions representing waves that
propagate in the forward and backward directions along the x-axis, respec-
tively. Detailed expressions of fforward(x− celt) and fbackward(x + celt) need
to be determined by detailed physical conditions.

The displacement waves generated from the impact end x = 0 propagate
in the positive x direction and are initially elastic, which entails the general
wave expression as

u(x, t) = H(celt − x)f(celt − x), (7)

where H(ξ) is the Heaviside function. For Alporas metal foam, the Young’s
modulus E and the density ρ0 are in the rage of 0.4 ∼ 1.0 GPa and 0.2 ∼
0.25 103 kg/m3, respectively (Ashby et al., 2000); the elastic wave speed is,
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calculated from Eq. (5), in the range 1.4 ∼ 2.2 km/s. The impact velocity
we consider, such as during the car crash accident, is normally on the order
of several tens of meters per second, much slower compared with the elastic
wave speed in typical cellular protection materials.

Detailed expression of the function f , for the case of a rod struck by a
rigid object of impact velocity vm as shown in Fig. 3, will be explored in
the following. The areal mass m of the striking body relates to the total
mass of the striking object Mimpact through the relation

m =
Mimpact

A
(8)

where A the cross section area of the rod. The impulse-momentum relation
applied to the striking mass gives

mdvm = σmdt, (9)

where σm is the stress in the striking object. Assuming that the striking
object is attached to the rod after impact, i.e., the striking object and the
impact end of the rod share the same velocity and stress so that

vm =
∂u(0, t)

∂t
, σm = E

∂u(0, t)

∂x
(10)

With the general expression of u(x, t) in Eq. (7), the velocity vm and stress
σm can be expressed using the function f as

vm = celf
′(celt), σm = −Ef ′(celt) (11)

Substitution of the expressions for vm and σm into Eq. (9) generates the
differential equation

mceldf ′(celt) + Ef ′(celt)dt = 0 (12)

The initial conditions

vm

∣

∣

t=0
= vm, u(0, 0) = 0 (13)

give the initial conditions of function f(ξ) as

f(0) = 0, f ′(0) =
vm

cel
(14)

The solution of the differential equation on f(ξ) with the above initial con-
ditions gives

f(ξ) =
mcelvm

E

[

1 − exp

(

− E

mc2
el

ξ

)]

, (15)
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Using Eq. (7), the general displacement field in the rod is given by

u(x, t) =
mvm

celρ0

[

1 − exp

(

− E

mc2
el

(celt − x)

)]

H(celt − x) (16)

Using

v(x, t) =
∂u(x, t)

∂t
, (17)

the evolution of velocity field is

v(x, t) = vm exp
[

−ρ0

m
(celt − x)

]

H(celt − x), (18)

Using

σ(x, t) = E
∂u(x, t)

∂t
, (19)

the evolution of velocity field is

σ(x, t) = −celρ0vm exp
[

−ρ0

m
(celt − x)

]

H(celt − x) (20)

The relation between the velocity and stress field is

v(x, t)

σ(x, t)
=

1

celρ0
(21)

Figure 4 shows the time evolution of the stress fields. The vertical axis is
the compressive stress nondimensionalized as −σ/celρ0vm. The horizontal
axis is the nondimensionalized position xρ0/m. Stress waves are drawn for
three moments of m/ρ0cel, 2m/ρ0cel and 3m/ρ0cel. The compressive stresses
at the wave front keep the same magnitude of celρ0vm, which is independent
of the mass of the striking object.

At the impact end x = 0, the time evolution of the displacement, velocity
and stress fields are

u(0, t) =
mvm

celρ0

[

1 − exp
(

−celρ0

m
t
)]

,

v(0, t) = vm exp
(

−celρ0

m
t
)

,

σ(0, t) = −celρ0
vm exp

(

−celρ0

m
t
)

,

(22)

respectively. At time t = 0, the compressive stress at the impact end of the
cellular rod is ρ0celvm. When

celρ0vm > σpl, (23)
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Figure 4. Impact induced compressive stress wave in an elastic rod. The
wave propagates along x (rod axis) direction. In the figure, the position
is nondimensionalized as xρ0/m, and the stress is nondimensionalized as
−σ/celρ0vm. The wave is shown at 3 different times: m/ρ0cel, 2m/ρ0cel and
3m/ρ0cel

the plastic shock wave will follow the elastic wave.
The response of materials and structures to suddenly applied loads, such

as shown in Fig. 3, can be quite different from their response when subjected
to loads which increases slowly. The critical impact velocity is

vc
im =

σpl

ρ0cel
(24)

If the impact velocity is slower than vc
im, only an elastic wave will be gen-

erated from the impact end. If the impact velocity is higher than vc
im, the

elastic wave will be followed by plastic shock waves. A plastic shock wave is
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made by a rapid, continuous push, and is characterized by an abrupt, nearly
discontinuous change in the mechanical properties of the cellular rod: stress,
mass density, particle velocity.

For Alporas metal foam the plateau stress σpl, density ρ0 and elastic
wave speed cel are in the ranges of 1.3 ∼ 1.7 MPa, 0.2 ∼ 0.25 103 kg/m3

and 1.4 ∼ 2.2 km/s, respectively. Therefore, the critical impact velocity vc
im

is in the range of 2.6 ∼ 6.0 m/s . According to Eq. (21), when the wave
stress reaches −σpl the particle velocity is σpl/(celρ0). This particle velocity
of the elastic wave is relatively small compared with the impact velocity vim

which can be around 30 m/s during cases such as a highway car crashing.
Shock-wave analysis is used in the following sections for high speed im-

pact. We study two cases on the impact of cellular materials: a rigid object
striking on a cellular rod with fixed end, and a rigid object striking on a
free cellular rod. The kinetic energy of the striking object is transmitted to
the rod and absorbed by deformation and damage in the cellular material.

3 Rigid Object Strikes on a Cellular Rod of Fixed

End

In crash protection the absorber must absorb the kinetic energy of the mov-
ing object without reaching complete densification, and the stress it trans-
mits never exceeds the plateau stress.

Consider the impact of one end of a stationary rod by a rigid striker
at a high velocity vm, as denoted in Fig. 5(a). The rod is homogeneous
and made from a RPPL material. After impact a shock wave moves from
the impacted end to the opposite fixed end of the rod, as shown in Fig
5(b). The stress ahead of the shock wave is compressive with magnitude σpl

brought up by the fast travelling elastic wave. According to the argument
in the previous section particle velocity of the elastic wave is relatively small
compared with the impact velocity vm, therefore, the material ahead of the
shock front can be treated as static with zero particle velocity. The material
behind the shock front has attained a strain εD, its particle velocity is vd, its
density has been raised from the initial value ρ0 to the densification value
ρD, and the compressive stress has been raised to σd.

3.1 Basic Assumptions

Assumptions are made for analytically investigating the shock behavior
in a one-dimensional cellular rod:

1. There is a sharp shock front separating the compressed and unde-
formed regions of the foam. The micrograph in Fig. 6 clearly shows a
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Figure 5. A fixed cellular rod struck by a rigid object. The object has an
areal mass m and impact velocity vm. The cellular rod is separated by the
shock front into two portions, the uncondensed portion is in white colour,
and the condensed portion is in gray colour. For the uncondensed portion
the particle velocity is 0 and the material density is ρ0. For the densified
portion the particle velocity is vd and the density is ρD. The velocity of
shock front is vs

sharp shock front separating the compressed and undeformed regions
of the foam.

2. After the densification, the particle velocities of the densified materials
are equal to each other and equal to the velocity of the striking body.

3. The densified layer has a density which is spatially constant.
4. The rate effects that affect the deformation and failure modes of cel-

lular materials (e.g., Calladine and English (1984)) are ignored.

3.2 Shock Wave Analysis

Here we consider the case where the impact speed is lower than the elastic
wave speed Therefore, in the undeformed region ahead of the shock wave,
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Figure 6. A scanning electron micrograph of the metal foam specimen
sectioned along its impact axis. The impact is acting from left to the right
(Radford et al., 2005)

the stress is equal to the plateau stress σpl, while the strain and particle
velocity can be ignored.

According to definition, the densification strain εD

εD =
u

xd + u
, (25)

where, as shown Fig. 5, u is the displacement of the rigid mass at time t,
and xd is the deformed length of the crushed cellular material.

Conservation of mass across the shock front gives

ρ0

ρD
= 1 − εD (26)

As shown in Fig. 1, the densification strain εD in the RPPL model cannot
be exactly defined from the measured stress-strain cure. Equation (26)
provides a method to determine εD experimentally, that is to measure the
material density before and after densification, the densification strain εD

can thus be determined through εD = 1 − ρ0/ρD.
The cellular material behind the shock front is idealized as rigid. The

instantaneous velocity (reducing) of the rigid mass with respect to a sta-
tionary frame is the same as the particle velocity of the condensed part, and
is denoted as

vd =
du

dt
(27)
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The shock velocity vs is faster than the particles velocity vd, and this
gives the increase of xd with respect of time,

dxd

dt
= vs − vd (28)

This provides the relation between the shock velocity vs and the condensed
part velocity vd as

vs =
vd

εD
, (29)

and
dxd

dt
=

1 − εD

εD
vd (30)

Considering the momentum change of the body consists of the striking
object and the cellular material behind the shock front, one has

d[(m + ρDxd)vd] = −σpldt, (31)

where m is the areal mass of the impact object. The above equation gives

vdd[(m + ρDxd)vd] + σpl
1 − εD

εD
dxd = 0,

which can be rewritten as

1 − εD

σplεD + ρ0v2
d

dv2
d +

2

m + ρ0xd
= 0

The above differential equation, together with the initial condition

vd = vm when xd = 0 (32)

provides
(ρ0v

2
d + σplεD)(m + ρ0xd)2 = (ρ0v

2
d + σplεD)m2 (33)

This further gives the particle velocity behind the shock as

vd = vC

√

√

√

√

[

1 +

(

vm

vC

)2
]

(

m

m + ρDxd

)2

− 1, (34)

where the characteristic velocity vC is defined as

vC =

√

εDσpl

ρ0
(35)
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The evolution of xd can be solved from the following differential equation

dxd

dt
=

1 − εD

εD
vC

√

√

√

√

1 + ṽ2

(

1 +
ρDxd

m

)2 − 1,

where

ṽ =
vm

vC
(36)

The solution of the above differential equation, together with the initial
condition

x = 0 at t = 0, (37)

gives

1 − εD

εD
vCt +

√

m2ṽ2

ρ2
D

− 2m

ρD
xd − x2

d =
mṽ

ρD

Solve the equation for xd, one has the time evolution of the length of the
crushed foam as

xd = − m

ρD
+

√

(

m

ρD

)2

−
(

1 − εD

εD
vCt

)2

+ 2
m

ρD

1 − εD

εD
vimt, (38)

which can be written in a nondimensionalized form as

xd

m/ρD
=

√

1 − t̃2 + 2ṽt̃ − 1, (39)

where the nondimensionalized time t̃ is defined as

t̃ =
t

mεD/ρ0vC
(40)

Figure 7 shows the time evolution of the crushed length xd affected by the
impact velocity.

Shock arrest, which means complete stopping of the shock wave, requires

dxd

dt
= 0, (41)

which gives the arrest distance xarrest
d , or the maximum length of the crushed

cellular material, as
xarrest

d

m/ρD
=

√

1 − ṽ2 − 1 (42)
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Figure 7. Nondimensionalized crushed-length, xd/(m/ρD), evolves as a
function of nondimensionalized time, t/(εDm/ρ0vC, for different impact ve-
locities vm at 0.5

√

εDσpl/ρ0,
√

εDσpl/ρ0 and 1.5
√

εDσpl/ρ0, respectively

Figure 8 shows the relation between the arrest distance and the impact
velocity.

According to Eq. (39), the time to reach shock arrest is

t̃ = ṽ, (43)

which means
t =

mvim

σpl
(44)

The above relation can also be derived from the momentum-impulse re-
lations during the time period from impact commencement to the shock
arrest.

According to Eq. (42), to crush a impact velocity of vim, the mass of
the cellular material for energy absorbing, Mcellular, should be at least

Mcellular

Mimpact
=

√

1 +

(

vm

vC

)2

− 1, (45)

where Mimpact is the mass of the impact object. For the case of vim = vC,
Mcellular/Mimpact =

√
2 − 1, i.e, for the complete protection (shock arrest)
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Figure 8. Nondimensionalized arrest distance, xarrest
d /(m/ρD), as a func-

tion of the nondimensionalized impact velocity ṽ = vm/vC

against a impact velocity of vC, the ratio of the mass of the cellular material
for energy absorbing and that of the impact object should be at least 1.4.
From Eq. (45), a fixed cellular rod can fully arrest a striking object of mass
Mimpact with impact velocity up to

vC

√

(

1 +
Mcellular

Mimpact

)2

− 1

For car crash, the impact velocity is about vm = 30 m/s. Table 1 gives the
material properties (density, densification strain and plateau stress) for sev-
eral typical cellular materials. The characteristic velocity is given through
Eq. (35).

Stress behind the shock front. For a shock wave passing a cellular
material, the shock enhancement effect under high speed impact (>100 m/s)
was originally proposed by Reid and Peng (1997). Afterwards, a number of
authors also reported this effect for various cellular materials at high impact
speeds (Lopatnikov et al., 2003, 2004; Tan et al., 2002, 2005a,b; Radford
et al., 2005). For relatively low impact speeds, there is the so-called critical
velocity under which shock enhancement is not significant (∼50m/s).
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Table 1. Material properties for some typical cellular materials

Foam Density Plateau Densification Characteristic
ρ0 stress σpl strain εD velocity vC

(kg/m3) (MPa) (m/s)
Polyurethane 34 0.25 0.55 64
Cork 164 1 0.55 58
Alporas metal 200 ∼ 250 1.3 ∼ 1.7 0.7 ∼ 0.82 60.3 ∼ 83.4

Stress behind the shock front is derived in the following. Conservation
of momentum across the shock front gives the compressive stress behind the
shock σd as

σd = −
(

σpl +
ρ0

εDv2
d

)

(46)

Using Eq. (33), the stress behind the shock can be written as a function of
the length of the crushed cellular rod xd

σd = −σpl

[

1 +

(

vm

vC

)2
]

(

m

m + ρDxd

)2

(47)

Using Eq. (38) for x as a function of time t, and the nondimensionalized
notation for impact velocity ṽ = vm/vC and time t̃ = t/(mεD/ρ0vC), Eq.
(47) provides

σd

σpl
= − 1 + ṽ2

1 + 2ṽt̃ − t̃2
(48)

Figure 9 shows the time evolution of the stress behind the shock front
affected by impact velocity. In a dimensional form

σd

σpl
= − σplεD + ρ0v

2
im

εDm2σpl + 2mvimρ0σplt − ρ0σplσplt2
m2 (49)

At time t = 0,

σd = −
(

σpl +
ρ0v

2
im

εD

)

, (50)

which shows that higher densification strain and lower material density of
the cellular rod can reduce the impact stress.

Stress on the striking object. Substitute the expression for xd as a
function of time into Eq. (25), one has

u =
mεD

ρ0

(

−1 +
√

1 + 2ṽt̃ − t̃2
)

(51)
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Figure 9. Nondimensionalized stress behind the shock front, σd/σpl,
evolves as a function of nondimensionalized, t/(εDm/ρ0vC), for different
impact velocities vm at 0.5

√

εDσpl/ρ0,
√

εDσpl/ρ0 and 1.5
√

εDσpl/ρ0, re-
spectively

The stress on the mass can be calculated from

σm = m
d2u

dt2
, (52)

which gives
σm

σpl
= − 1 + ṽ2

m

(1 + 2ṽmt̃ − t̃2)3/2
(53)

In a dimensional form,

σm

σpl
= −

1 +
ρ0v

2
im

εDσpl
(

1 + 2
ρ0

εDm
vimt − ρ0σpl

εDm2
t2

)3/2
(54)

Figure 10 shows the time evolution of the stress acted on the mass affected
by the impact velocity. At time t = 0,

σm = −
(

σpl +
ρ0v

2
im

εD

)

, (55)
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which shows that higher densification strain and lower material density of
the cellular rod can reduce the impact stress.

Figure 10. Nondimensionalized stress on the striking object, −σm/σpl,
evolves as a function of nondimensionalized, t/(εDm/ρ0vC, for different im-
pact velocities vm at 0.5

√

εDσpl/ρ0,
√

εDσpl/ρ0 and 1.5
√

εDσpl/ρ0, respec-
tively

4 Rigid Object Strikes on a Free Cellular Rod

This section investigates the behavior of a cellular rod struck by a rigid
object as shown in Fig. 11(a). The rod is homogeneous and made from a
RPPL cellular material. The original length of the rod is L. The striking
object has areal mass m and is at a high impact velocity vim. After impact
a shock wave is generated from the impacted end and moves to the opposite
free end of the rod, as shown in Fig. 11(b). The shock front moves at
velocity vs. The material ahead of the shock wave (uncondensed) is treated
as rigid that moves at velocity v0. The material behind the shock front has
attained a strain εD and a particle velocity vd; its density has been raised
from the initial value ρ0 to the densification value ρD, and the compressive
stress has been raised to σd. The length of the condensed cellular rod is
denoted as xd.
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Figure 11. A free stationary cellular-rod struck by a rigid object of areal
mass m and impact velocity vm. Shock wave is generated from the impact
end and propagates at a velocity vs. The shock front separate the rod into
two parts, denoted as state “0” (with initial density ρ0, zero stress and
strain, and particle velocity v0) and state “d” (with condensed strain εD,
density ρD, and particle velocity vd ). During the impact, the displacement
of the striker is u, and the length of the crushed rod is xd

The usage of the subscripts in this section is in consistent with that in
the last section. The capital letter “D” (such as that in ρD and εD) denotes
material constants during the densification, and the small letter “d” (such
as that in x + d, v + d and σd) denotes variables that change during the
densification. The subscript “0” includes both material constants (such as
ρ0) and variables (such asv0) before densification.

The displacement of the striking object is u. The relation between the
shock velocity vs, condensed particle velocity vd, and the increasing rate of
the condensed length dxd/dt can be written as

vs =
d(xd + u)

dt
=

dxd

dt
+ vd (56)
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Conservation of mass across the shock front gives the relation between
the material densities before and after densification as ρ0 = ρD(1 − εD).

A shock coordinate system that sits on the shock front can be established
as in Fig. 12. In this reference system particles enter into the shock front at

Figure 12. Local coordinate system at the shock front that travels with
the shock wave. Viewing in this reference coordinate system, the particles
move across the shock front at the speed of vs − v0 to the left, and comes
out of the shock wave front at the speed of vs − vd

velocity vs−v0, and come out at velocity vs−vd. During a short time period
∆t, an element of length ∆X = (vs − v0)∆t (shown as a white block in Fig.
12) and density ρD enters into the shock front. Meanwhile, an element of
length (vs − vd)∆t (shown as a gray block in Fig. 12) and density ρD moves
out of the shock front. The conservation of mass across the shock front
provides

ρD(vs − vd) = ρ0(vs − v0),

which gives

vs =
vd − v0

εD
+ vd (57)

The mass of the foam behind the shock is ρDx, and the mass of the foam
ahead the shock is ρ0L − ρDx. Conservation of momentum of the whole
system that includes both impact object and the cellular rod gives

(m + ρDxd)vd + (ρ0L − ρDxd)v0 = mvim (58)

For the region ahead of the shock wave front, we have

σpl = (ρ0L − ρDxd)
dv0

dt
(59)
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From Eq. (56) to (59), a non-dimensional equation system that contains
3 equations for 3 time-varying variables, x̃d, ṽd and ṽ0, can be derived as

(m̃ + x̃d)ṽd + (1 − x̃d))ṽ0 = m̃,

dx̃d

dt̃
= ṽd − ṽ0,

dṽd

dt̃
=

1

η(1 − x̃d
,

(60)

where the mass coefficient

m̃ =
1

ρ0L
m (61)

is the ratio of the impact mass versus the foam mass; and the impact coef-
ficient

η =
ρ0v

2
im

σplεD
=

(

vim

vC

)2

(62)

characterizes the impact strength, where the characteristic velocity of the
cellular material vC is defined in Eq. (35); the time is expressed in a non-
dimensional form that combines the impact velocity vim, the length of the
foam L L and densification strain εD as

t̃ =
vim

LεD
t; (63)

and the 3 nondimensionalized time-varying variables (x̃d, ṽd and ṽ0) are
defined as

x̃d =
xd

(1 − εD)L
, ṽd=

vd

vim
, ṽ0 =

ṽ0

vim
(64)

The range for x̃d is [0,1] where x̃d = 0 corresponds to the commencement
for impact, and x̃d = 1 corresponds to complete densification of the whole
foam rod.

As an example, we use Alporas metal foams for the protection from car
crashing. For this type of foams, the characteristic vC is in the range 60.3
∼ 83.4 m/s. The impact velocity during the highway car crash is around 30
m/s. For this impact velocity, the impact coefficient η is in the range 0.13
∼ 0.25.

The relation between ṽ0 and x̃d is derived in the following. Equations
(60) generate

η[m̃ − ṽ0(1 + m̃)]dṽ0 =

(

1 + m̃

1 − x̃d
− 1

)

dx̃d

The integration gives

m̃ṽ0 =
1

2
ṽ2
0(1 + m̃) +

1

η
[x̃d + (1 + m̃) ln(1 − x̃d)] = const

328



With the initial condition

ṽ0 = 0 when x̃d = 0,

the above equation generates

1

2
(1 + m̃)ṽ2

0 − m̃ṽ0 −
1

η
[x̃d + (1 + m̃) ln(1 − x̃d)] = 0

Solving the above equation for ṽ0 one has

ṽ0 =
1

1 + m̃

[

m̃ −
√

m̃2 +
2

η
(1 + m̃)[x̃d + (1 + m̃) ln(1 − x̃d)]

]

(65)

The relation between dx̃d/dt and x̃d is derived in the following. Eq. (60)
gives the relation

dx̃d

dt̃
=

m̃ − (1 − m̃)ṽ0

m̃ + x̃d
(66)

Substitution of the expression for ṽ0 into the above equation generates

dx̃d

dt̃
=

1

m̃ + x̃d

√

m̃2 +
2

η
(1 + m̃)[x̃d + (1 + m̃) ln(1 − x̃d)] (67)

The above equation gives the time evolution of the length of the crushed
cellular rod.

Figure 13 shows the time evolution of x̃d for several impact coefficients
at η = 0.5, 1, 2 and 4. When both condensed part and uncondensed part
of the cellular rod reach the same particle velocity, i.e.,

ṽd = ṽ0, (68)

shock wave disappears. This is termed as shock arrest. The arrest dis-
tance (nondimensionalized) to the shock wave, which is the non-dimensional
length of crushed foam at this moment, is denoted as x̃arrest

d . Using Eq. (60),
the nondimensionalized arrest distance x̃arrest

d can be determined from

dx̃d

dt̃
= 0 (69)

Further using Eq. (67), x̃arrest
d can be determined as the root of the following

equation

F (x̃d) = x̃d + (1 + m̃) ln(1 − x̃d) +
ηm̃2

2(1 + m̃)
= 0 (70)
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Figure 13. Nondimensionalized length of the crushed cellular rod, x̃d =
x/(1 − εD)L, as a function of nondimensionalized time, t̃ = vmt/LεD, for
several impact coefficients η at 0.5,1, 2 and 4, respectively. The mass coef-
ficients is set at m̃ = 1

For the function F (x̃d), the derivative is dF/dx̃d = −(x̃d + m̃)/(1− x̃d). In
the range (0,1), F (0) > 0, F (1) < 1 and dF/dx̃d < 0. So there exists a root
x̃arrest

d for the equation F (x̃d) = 0, which corresponds to the dx̃d/dt̃ = 0,
i.e., the end for the shock wave. Figure 14 shows the relation between the
nondimensionalized arrest distance x̃arrest

d and the impact coefficient η for
several mass coefficients at m̃ = 0.5, 1 and 2.

Stress on the striking object. The stress on the striking object σm can
be calculated from

σm = m
dvd

dt
(71)

The non-dimensional form can be written as

σm

σpl
= ηm̃

dṽd

dt̃
(72)
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Figure 14. Relation between the nondimensionalized arrest distance x̃arrest
d

and the impact coefficient η for several mass coefficients m̃: 0.5, 1 and 2,
respectively

Since ṽd = (dx̃d/dt̃) + ṽ0, substitution of the expression for dx̃d/dt̃ and ṽ0

gives

ṽd =

(

1

m̃ + x̃d
+

1

1 + m̃

)
√

m̃2 +
2

η
(1 + m̃)[x̃d + (1 + m̃) ln(1 − x̃d)]

+
m̃

1 + m̃
(73)

The derivative of ṽd over time t gives

dṽd

dt̃
= − 1

(m̃ + x̃d)2

√

m̃2 +
2

η
(1 + m̃)[x̃d + (1 + m̃) ln(1 − x̃d)] − 1

η

1

m̃ + x̃d

(74)
Therefore,

−σm

σpl
=

m̃

m̃ + x̃d
+

m̃

(m̃ + x̃d)2

√

η2m̃2 + 2η(1 + m̃)[x̃d + (1 + m̃) ln(1 − x̃d)]

(75)
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At the commencement of the impact, x̃d = 0, the stress on the striking ob-
ject is σm = −(1−η)σpl. Substitute the expression of the impact coefficient
η, the stress on the striking object is

σm = −
(

σpl +
ρ0v

2
im

εD

)

Higher densification strain and lower material density of the cellular rod
reduce impact stress.

Stress behind the shock front. Shock wave brings an abrupt raise of
the stress at the shock front. During the time period ∆t the impulse acting
on the mass element ∆X in Fig. 12 is (−σd − σpl), which changes the
velocity of the mass element ρ0∆x from v0 to vd. The impulse-momentum
equation gives

(−σd − σpl)∆t = ρ0∆x(vd − v0)

Remove ∆t from the two sides of the equation, one has

−σd − σpl = ρ0(vs − v0)(vd − v0),

which can be further written as

−σpl = σd + ρ0
(vd − v0)

2

εD
(76)

The stress behind the shock front is compressive, hence the negative sign of
σd. The nondimensionalization of the above equation gives

− σd

σpl
= 1 + η(ṽd − ṽ0)

2, (77)

which relates to the length change rate of crushed cellular rod as

− σd

σpl
= 1 + η

(

dx̃d

dt̃

)2

(78)

Substituting the expression for dx̃d/dt̃ gives

− σd

σpl
= 1 +

1

(m̃ + x̃d)2
{ηm̃2 + 2(1 + m̃)[x̃d + (1 + m̃) ln(1 − x̃d)]} (79)

At the commencement of the impact, x̃d = 0, the stress behind the shock
front is σd = −(1 + η)σpl. This is the same as the stress on the striking
object. After impact the two stresses becomes different.

332



5 Concluding Remarks

Cellular materials are used as impact energy absorbers due to their large
densification strain εD at the plateau stress σpl during the plastic compres-
sion.

For a cellular rod struck by a object of areal mass m, the critical impact
velocity is determined as

vc
im =

σpl

ρ0cel
,

where ρ0 is the density of the cellular material before. If the impact velocity
is slower than the critical impact velocity vc

im, only elastic wave will be
generated from the impact end. If the impact velocity is higher than vc

im,
the elastic wave will be followed by plastic shock waves.

To fully absorb the kinetic energy of a striking object with mass Mimpact

and impact velocity vim, the mass of the protecting rod should be higher
than

Mimpact





√

1 +

(

vim

vc

)2

− 1



 ,

where vc =
√

εDσpl/ρ0 is the characteristic velocity of the cellular material.
A fix-ended cellular rod can fully arrest a striking object of mass Mimpact

with impact velocity up to

vc

√

1 +

(

Mcellular

Mimpact

)2

− 1,

At the commencement of the impact the stress on the striking object is

−
(

σpl +
ρ0v

2
im

εD

)

Higher densification strain and lower material density of the cellular rod
can reduce the impact stress.

Bibliography

M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and
H.N.G. Wadley. Metal Foams: A Design Guide, volume 1. Butterworth-
Heinemann, Oxford, 2000.

C.R. Calladine and R.W English. Strain-rate and inertia effects in the
collapse of two types of energy-absorbing structure. Int. J. Mech. Sci.,
26:689–701, 1984.

333



J.J. Harrigan, S.R. Reid, and A.S. Yaghoubi. The correct analysis of shocks
in a cellular material. Int. J. Impact Eng., in press, 2009.

S.L. Lopatnikov, B.A. Gama, C. Haque, M.J.and Krauthauser, M. Guden,
I.W. Hall, and J.W. Gillespie Jr. Dynamics of metal foam deformation
during taylor cylinder - hopkinson rod impact experiment. Compos.

Struct., 61:61–71, 2003.
S.L. Lopatnikov, B.A. Gama, M.J. Haque, C. Krauthauser, and J.W. Gille-

spie Jr. High-velocity plate impact of metal foams. Int. J. Impact Eng.,
30:421–445, 2004.

D.D. Radford, V.S. Deshpande, and N.A. Fleck. The use of metal foam
projectiles to simulate shock loading. Int. J. Impact Eng., 31:1152–1171,
2005.

S.R. Reid and C. Peng. Dynamic uniaxial crushing of wood. Int. J. Impact

Eng., 19:531–570, 1997.
P.J. Tan, J.J. Harrigan, and S.R. Reid. Inertia effects in uniaxial dynamic

compression of a closed cell aluminum alloy foam. Mater. Sci. Technol.,
18:480–488, 2002.

P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li. Dynamic compressive
strength properties of aluminium foams. part i - experimental data and
observations. J. Mech. Phys. Solids, 53:2147–2205, 2005a.

P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li. Dynamic compressive
strength properties of aluminium foams. part ii - shock theory and com-
parison with experimental data. J. Mech. Phys. Solids, 53:2206–2230,
2005b.

334


