
1

Computational Analytical Micromechanics (CAM).
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The sketch of micromechanics of random structures can be subdivided on computational micromechanics
(CM) and analytical micromechanics (AM). CM contains both the analytical and numerical solutions for
deterministic fields of heterogeneities in the infinite homogeneous matrix. CM reflects the explosive character of
the progress in modern nano- and micromechanics caused by the development of improved materials processing,
image analyses and computer-simulation methods. AM presents, first of all, a set of both the hypotheses and
tools for interactions of these hypotheses with the numerical results of the CM. However, explosive character of
the progress in the CM (especially in front of nanotechnology challenges) has led to the conflict with successively
increasing gap between the high level of presented possibilities of the CM and poor consumer’s opportunities
of AM rigidly restricted by its background proposed by Mossotti (1850) and others (see for references [15]).

The most popular methods of AM are based just on a few basic concepts. The effective field hypothesis
(EFH, also called the H1a hypothesis, p. 253 in [1]) is apparently the most fundamental, most prospective,
and most exploited concept of micromechanics (see [1] where other references can be found). The idea of
this concept dates back to Mossotti (1850) who pioneered the introduction of the effective field concept as a
local homogeneous field acting on the inclusions and differing from the applied macroscopic one. Among a few
hypotheses used by Mossotti (1850), one of the most important ones was the quasi-crystalline approximation
(closing hypothesis H2a, p. 264 in [1], see also its multiparticle generalization, hypothesis H2b, p. 255 in
[1]) proposed 100 years later by Lax (1952) in a modern concise form. The idea of the effective field and
quasi-crystalline approximation was added by the hypothesis H3 of “ellipsoidal symmetry” (p. 265 in [1]) for
the distribution of inclusions just for providing the applicability of EFH. As a tool for concrete applications of
the concepts mentioned, Eshelby (1957) solution was used although the Eshelby’s theorem has a fundamental
conceptual sense rather than only an analytical solution of some particular problem for the ellipsoidal homoge-
neous inclusion. The concept of the EFH (even if this term is not mentioned) in combination with subsequent
assumptions totally dominates (and creates the fundamental limitations) in all four groups of AM in physics
and mechanics of heterogeneous media: model methods, perturbation methods, self-consistent methods [e.g.,
Mori-Tanaka method (MTM), and the Method of Effective Field, MEF], and variational ones (see for refs. [1]).

However, one shows that the EFH is a central one and other concepts play a satellite role providing
the conditions for application of the EFH. Moreover, one shows that all mentioned hypotheses are not really
necessary and can be relaxed. The first attack on a citadel called EFH was produced by creation in [3]-[5] the
exact general integral equation

ε(x) = ⟨ε⟩(x) +
∫
[U(x− y)τ (y)−⟨U(x− y)τ(y)⟩(y)]dy. (1)

where τ (x) ≡ L1(x)ε(x) (see [1, 4] for complete notations). Equation (1) was obtained without any auxil-
iary assumptions such as, e.g., the version of the EFH ⟨U(x − y)τ(y)⟩(y) = U(x − y)⟨τ(y)⟩(y) (hypothesis
H1b, p. 253 in [1]) implicitly exploited in the known centering methods and reducing Eq. (1) for statistically
homogeneous media subjected to the homogeneous boundary conditions to the known one

ε(x) = ⟨ε⟩+
∫

U(x− y)[τ (y)− ⟨τ⟩]dy, (2)

which goes back to Lord Reyleigh (1892). One demonstrates (see [4] and [5]) that Eq. (2), erroneously recognized
as an exact one after the proofs by Shermergor (1977) and by O’Brien (1979), is correct only after the
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additional asymptotic assumption H1b. The mentioned conflict between CM and AM is presently overcome in
a conceptual sense very effectively by the new general integral Eq. (1) and their generalizations [15,16] forming
a new background of micromechanicsthat that allows one to completely abandon the hypotheses H1 and H3
while the hypothesis H2 can be used for multiparticle generality.

A fundamental deficiency of Eq. (2) is a dependence of the renormalizing term U(x− y)⟨τ ⟩(y) [obtained
in the framework of the asymptotic approximation of the hypothesis H1b] only on the statistical average
⟨τ ⟩(y) while the renormalizing term ⟨U(x − y)τ ⟩(y) in Eq. (1) explicitly depends on on details distribution
⟨τ |vi,xi⟩(y) (y ∈ vi). What seems to be only a formal trick is in reality a new background of micromechanics
defining a new field of micromechanics called computational analytical micromechanics (CAM). CAM makes
it possible to abandon basic concepts of AM H1a, H1b, H3 (either completely [5] or partially [6]) in the
framework of hypotheses either H2a [5] or H2b [7-9] at the solutions of truncated hierarchies of averaged Eq.
(1) by the use of any available numerical method (VIE [5], BEM, FEM [6, 13], hybrid FEM-BEM, multipole
expansion method, complex potential method, and other, see for refs. [1]). So, the final classical representations
of the effective properties obtained by both the MEF and MTM (see for details [1]) depend only on the average
strain concentrator factor Ai, with ⟨ε⟩i = Ai⟨ε⟩i, while the effective properties estimated by the new approach
(1) implicitly depend on the inhomogeneous tensor Ai(x). The detected dependence allows us to abandon
the hypothesis H1b whose accuracy is questionable for inclusions of noncanonical shape. We obtained a
fundamental conclusion that effective moduli in general depend not only on the strain distribution inside the
considered heterogeneity (describing by the tensor Ai(x), x ∈ vi) but also on the strains in the vicinity of
heterogeneity i.e. extension of Ai(x), x ̸∈ vi is necessary. Then the size of the excluded volume as well as the
binary correlation function will impact on the effective field even in the framework of hypothesis H2a.

It is expected to get a larger difference (which can reach infinity with the change of the sign of predicted
local stresses) between the results obtaining the use of either Eqs. (1) and (2) for composites reinforced
by heterogeneities demonstrating greater inhomogeneity of stress distributions inside heterogeneities. This
inhomogeneity can be produced by the different contributors: a) peculiarities of heterogeneities manifested even
in the framework of the hypothesis H1a, b) multiparticle interaction of heterogeneities (even homogeneous
ellipsoidal ones), c) special feature of both the microstructure and applied loading. The next problems were
solved (partialy, of course, see for refs. [1]) in the framework of the EFH and can be recast in the framework
of the CAM with detection of significant improvement of predicted accuracy by the use of Eq. (1) instead of
Eq. (2):

a). Composites with nonellipsoidal [6, 10, 11, 13], coated, continuously inhomogeneous [5] heterogeneities with
either nonideal interface (including sliding, debonding, cohesive phenomena, as well as surface stress and
surface tension ones [14]), nonlocal constitutive law (p. 581 in [1]), or wave propagation phenomena [15]
(including metamaterials).

b) Inhomogeneity of statistical moments of stresses for homogeneous ellipsoidal heterogeneities detected for
binary interacting heterogeneities [7].

c) Any nonlocal problem (inhomogeneous remote loading, functionally graded materials, clustered materials,
bounded media, nanocomposides, nonlocal constitutive law [8, 9, 15] either inside or outside the hetero-
geneities).

d) Variational methods currently postulated homogeneity of polarization tensors inside the heterogeneities (this
assumption is even more restrictive then EFH) can be renewed by using (1) instead of (2). e) Multi-physics
coupled problems (e.g., electromagnetic, piezoelectric) [15, 16].

f) Wave motion phenomena in composites (including metamaterials) with electromagnetic, optic, and mechan-
ical responses [15, 16].

g) Infiltration in porous media [20].
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i) Peridynamic composites [17-19] [especially in the light that the definition of effective properties of peridy-
namic composites is unknown and any counterpart of GIE (neither (1) nor (2)) was recently absent].

j) Micromechanics of contact of randomly rough surfaces.

The solutions of mentioned problems obtained in the framework of the EFH were used as the basic elements
in analyses of wide classes of dynamic, nonlinear, and coupled problems (see for refs. [1]). The generalisation
of these schemes can be also performed in the framework of the CAM.

The researches can now forget about the restrictions of AM (such as, e.g., Eshelby tensor and the hypothesis
H1 and H3) and use the numerical solutions for one and a few (perhaps) heterogeneities obtained by any
available method of CM (e.g., FEM, BEM, hybrid FEM-BEM, multipole expansion method, complex potential
method, and other). The use of the hypothesis H2 (and their generalizations, see [1]) is a technical problem
rather than fundamental one. In a few years, it is expected the renewal of a lot of results (with discovery of
fundamentally new effects) in the mentioned directions at a higher level of generality without the classical
assumptions. New background of micromechanics proposed is just a second one (the first one was proposed by
Mossotti, 1850). CAM offers the opportunities for a fundamental jump in multiscale research of composites
and nanocomposites. However, these opportunities can be realized only in the case of joint efforts of both
computational micromechanic’s society and the analytical one, and the societies of material science and physics.

Acknowledgments

The author acknowledges the support of the US Office of Naval Research.

References

[1] Buryachenko V. (2007) Micromechanics of Heterogeneous Materials. Springer, NY.
[2] Buryachenko V. A. (2009) Welcome to new background of micromechanics. ttp://imechanica.org/node/7290. 4,900 visitors
[3] Buryachenko V. A. (2010) On some background of random structure matrix composite materials Int. J. Pure Appl. Math., 59,

2, 163–179.
[4] Buryachenko V. A. (2010) On the thermo-elastostatics of heterogeneous materials. I. General integral equation. Acta Mechanica

213, 359–374
[5] Buryachenko V. (2010) On the thermo-elastostatics of heterogeneous materials. II. Analyze and generalization of some basic

hypotheses and propositions. Acta Mechanica 213, 375–398
[6] Buryachenko V. A., Brun M. (2011) FEA in elasticity of random structure composites reinforced by heterogeneities of non-

canonical shape. Int. J. Solids and Structures. 48, 719-728
[7] Buryachenko V. A. (2011) Inhomogeneity of the first and second statistical moments of stresses inside the heterogeneities of

random structure matrix composites. Int. J. Solids and Structures. 48, 1665-1687.
[8] Buryachenko V. A. (2011) On thermoelastostatics of composites with nonlocal properties of constituents. I. General represen-

tations for effective material and field parameters. Int. J. Solids and Structures 48, 1818-1828.
[9] Buryachenko V. A. (2011) On thermoelastostatics of composites with nonlocal properties of constituents. II. Estimation of

effective material and field parameters. Int. J. Solids and Structures 48, 1829-1845.
[10] Buryachenko V. A., Brun M. (2012) Random residual stresses in elasticity homogeneous mediumwith inclusions of noncanonical

shape. Int. J. Multiscale Comput. Enging. 10, 261–279.
[11] Buryachenko V. A., Brun M. (2012) Thermoelastic effective properties and stress concentrator factors of composites reinforced

by heterogeneities of noncanonical shape. Mechanics of Materials, 53, 91–110
[12] Buryachenko V. (2012) Modeling of random bimodal structures of composites (application to solid propellant): II. Estimation

of effective elastic moduli. Comput. Model. Engng & Sciences (CMES), 85(5), 417–446. See also Arxiv preprint:
http://arxiv.org/abs/1207.7271 (101 refs.)

[13] Buryachenko V. A., Brun M. (2013) Iteration method in linear elasticity of random structure composites containing hetero-
geneities of noncanonical shape. Int. J. Solids and Structures 50, 1130-1140

[14] Buryachenko V. A. (2013) General integral equations of micromechanics of composite materials with imperfectly bonded
interfaces. Int. J. Solids and Structures 50, 3190-3206

[15] Buryachenko V. A. (2014) General integral equations of micromechanics of heterogeneous materials. Int. J. Multiscale Comput.
Enging. (In press).

[16] Buryachenko V. (2014) Solution of general integral equations of micromechanics of heterogeneous materials. Int. J. Solids and
Structures 51, 3823-3843.

[17] Buryachenko V. (2014) Effective elastic modulus of heterogeneous peristatic bar of random structure. Int. J. Solids and Structures
51, 2940-2948.

[18] Buryachenko V. A. (2014) Some general representations in termoperistatics of random structure composites. Int. J. Multiscale
Comput. Enging. 12, 331-350.

[19] Buryachenko V. A. (2014) Thermoperistatics of random structure composites: micromechanical background. (Submitted).
[20] Buryachenko V. A. (2014) General integral equations of Stokes flow through the random structure composites. (Submitted).


