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Abstract

In the theory of dislocations, the Burgers vector is usually defined by referring to a crystal structure.
Using the notion of affine development of curves on a differential manifold with a connection, we give a
differential geometric definition of the Burgers vector directly in the continuum setting, without making use
of an underlying crystal structure. As opposed to some other approaches to the continuum definition of the
Burgers vector, our definition is completely geometric, in the sense that it involves no ambiguous operations
like the integration of a vector field—when we integrate a vector field, it is a vector field living in the tangent
space at a given point in the manifold. For a body with distributed dislocations, the material manifold,
which describes the geometry of the stress-free state of the body, is commonly taken to be a Weitzenbock
manifold, i.e. a manifold with a metric-compatible, flat connection with torsion. We show that for such a
manifold, the density of the Burgers vector calculated according to our definition reproduces the commonly
stated relations between the density of dislocations and the torsion tensor.

1 Introduction

In much of the literature, the Burgers vector, a central object in the theory of dislocations, is defined by referring
to an underlying crystal structure. One traverses a closed path in a material with a dislocation by taking steps
on the crystal structure. The “same” steps, when taken in a “corresponding” perfect crystal, fail to form a
closed path, and the amount of failure is then defined as the Burgers vector of the dislocation. While this
classical definition is certainly useful, it seems to use the crystal structure in an essential way. Many of the
fundamental concepts of the continuum theory of solids can be formulated directly, without reference to an
underlying crystal structure.! One hopes to be able to define a fundamental concept like the Burgers vector
directly in the continuum case, as well.

Volterra [19] gave a classification of line defects, where dislocations are presented in terms of a cut-and-
paste operation, analogous to the common crystal description, see Fig. 1.1. Starting from Volterra’s picture
as a continuum version of screw dislocations in crystals, one may attempt to define the Burgers vector in a
continuous medium with analogy to the definition in the crystal case: Take a closed path in the continous
material, and look at the “same” path in a “corresponding, perfect medium”. The amount of failure of the
second path to close will be the continuous version of the Burgers vector. However, the notions of a corresponding
perfect medium and the same path in this corresponding medium are both ambiguous, especially in the case
of a material with a continuous distribution of defects. How can we make precise, geometric sense of these
notions? In this paper, we provide an answer to this question in terms of the operation of curve development,
as defined in the differential geometry of affine connections. There have been other approaches to the definition
of the Burgers vector in continuum mechanics, however, we believe our approach is the first one that is rigorous
in terms of the underlying differential (Riemann-Cartan) geometry.
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Figure 1.1: Volterra’s cut-and-weld construction of a screw dislocation.

In the classical, nonlinear theory of residual stresses (due to plasticity, distributed defects, thermal expansion,
etc.), the starting point is the decomposition
F=F.F,, (1.1)

of the deformation gradient F? into the factors F,, which represents a local change in the relaxed state of the
material (due to, e.g., plastic deformation), and an “elastic piece”, F., which represents an elastic stretch in
the material from its new, locally relaxed state. It is this latter piece, F, which is the source of the stress. The
map F, is thought of as taking the initial, “perfect” material, and sending it locally to its new, “imperfect”
state, whose stress-free local configuration is called the intermediate configuration. It is worth emphasizing that
this description is only local, and there does not really exist a global map that sends the initial configuration of
the material to some global, intermediate configuration that is stress-free. The small pieces, each of which has a
new stress-free state after the plastic deformation, do not in general mesh together to form a new, global stress-
free state. The differential-geometric meaning of the decomposition (1.1) has not always been clear. The need
for an initial, “perfect” state, from which one obtains the state with defects by a specific plastic deformation
can likewise be a source of confusion. What if the material was created in its “imperfect” state with residual
stresses? What is the meaning of an “initial”, perfect state in that case? (See [17] for a clarification of the
geometric meaning of F,, for the case of thermal stresses.)

The continuum definitions of the Burgers vector encountered in the literature utilize the decomposition (1.1).
Given a material with a distribution of dislocations and a corresponding F,, the total Burgers vector b enclosed
by a curve C' in the reference configuration is commonly defined in terms of an integral involving F: [2; 12]

b:/CdeX. (1.2)

While it is certainly possible to pretend that (1.2) is an ordinary integral and evaluate the result for a given
matrix field F;,, there are conceptual difficulties that make it hard to make geometric, invariant sense of what this
integral means. First, the object that is being integrated, F,dX, lives in the intermediate configuration, which is
only locally defined. One does not have a global region over which to integrate this object. Second, if one treats
the integrand as a vector field living on a curve in some space with possibly non-Euclidean geometry, one has to
face the fact that the integration of a vector along a curve is not in general defined for such geometries—unless
one uses a connection to perform parallel transport. There is no apparent use of parallel transport in (1.2).

In the geometric framework, a body with a distribution of dislocations is represented by a Riemann-
Cartan manifold with a metric-compatible connection that has nonzero torsion and vanishing curvature, i.e., a
Weitzenbock manifold [22]. The torsion tensor is the geometric counterpart of the dislocation density tensor,
as argued in [10; 11; 2; 1]. Given a connection, one can define parallel transport of vectors, and the notion of
parallel transport allows one to define the notion of curve development [9]. In the next section, we will define

2The deformation gradient is defined as the derivative of the deformation map.
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the Burgers vector corresponding to a given closed curve in a material manifold in terms of curve development,
and show that the standard relation between the torsion tensor and the dislocation density is reproduced by this
definition. To make the paper relatively self-contained, we briefly review the geometry of the material manifold
for a solid with distributed dislocations in the appendix.

2 Burgers Vector in Geometric Dislocation Mechanics

Given a closed curve C in a material body, we would like to define the notion of a corresponding curve in
an ideal (defect-free) version of the material, and define the Burgers vector corresponding to C as the failure
of this corresponding curve to close. The relevant notion we will use is that of curve development, or affine
development of curves. This can be intuitively thought of as the process of finding a curve in Euclidean space
that has the same pattern of velocities as the original curve C. The comparison of velocity vectors at different
points in a manifold can be made through the notion of a connection, and this is what we need to use. The
material manifold is a differential manifold with some additional geometric structure such as a metric tensor and
a connection, representing the intrinsic, relaxed state of a material body. Given a configuration of the material
in an ambient space, stresses occur (in general) when the distances between material points as measured by the
metric of the material manifold differ from the distances as measured by the metric of the ambient space. We
represent the material manifold as a Riemann-Cartan manifold, (B,V, G), where B is a differential manifold,
G is a Riemannian metric, and V is a connection compatible with the metric, i.e., VG = 0. For a quick review
of the relevant definitions, see the appendix.

Given a connection V, the parallel transport of a vector Vo € T,B along a curve C : [0,4] — B with
C(0) = p is defined to be a vector field V on C([0,4]) that has vanishing covariant derivative along the curve:
Vac(s)/asV = 0. In components

A B

%JFFABC%VC =0, (2.1)
where € [0,/] is the curve parameter, I'4 g are the connection coefficients for V defined in the appendix, and
we have used the shorthand notation % for %. Generalizing this definition to an arbitrary starting
point 7 instead of ¢ = 0, we can define an operator p(C)% : To)B — Te)B that parallel transports vectors
tangent to the manifold at C(7) to those at C(¢). The operators p(C)L satisfy the identities p(C)t = Id and
p(C)7 op(C)y = p(C)7, for t,7,u € [0, £], where Id denotes the identity operator. Dropping the reference to the
curve C, we will denote the components of the operator p(C)f by pA(t), or simply, p* 5. Thus, given a vector
Vo = V(0) € T,B with components V4(0) in the chart {X“}, the parallel transported vector V(t) € TowB
has components VA () = pA(s)V5(0). Plugging this in the parallel transport equation (2.1), we see that the
operator components p? p(t) satisfy the equation

dptp 4 dCC

r — pPr=0. 2.2
a T Tep—gpie=0 (2:2)

Let us now assume that the connection V is flat, but possibly with torsion, as discussed at the end of our
introduction. Then, parallel transport between two points is the same for two curves that connect the two
points, if these curves can be smoothly deformed to one another. For a simply-connected neighborhood U of p,
this allows us to unambiguously define a point-dependent parallel transport operator that transports vectors at
p to all the points in U, by connecting each point ¢ € U to p by an arbitrary curve lying in U. In this way, the
components p? g of the parallel transport operator become functions of the point ¢, or, for a given coordinate
chart, of the coordinates.

We now define the affine development of C to be the unique curve C : [0, ] — T,B satisfying the following
equations [9]

- . (2.3)
C(t) = p(0)2 - C(1).

S

{c_*<o> =0,

where we have denoted the vector tangent to the curve C' at C(t) by C(t). Note that the affine development C
lies in the vector space T),3. Now suppose that the curve C' is closed: C(0) = C(£) = p. It turns out that affine
development C' is not necessarily closed. We represent a material with distributed dislocations by a material
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manifold with a flat connection V that possibly has nonzero torsion, and define the Burgers vector B(p; C)
corresponding to the curve C based at p to be a measure of the failure of C to close (see Fig. 2.1):3

B(p: C) = () — C(0) = C(1). (2.4)

Note that B(p; C') € T,,B. In components, the Burgers vector is given as

0 A ¢ B
B 0) = €0 -0 = [ G a = [ ot P

(2.5)

where we denoted the components of the operator p(C)? by p“(t). In other words, p“(¢) is the inverse of the
matrix p©p(t), so that pgpBe = 5é and ppp®a = 4. We will next connect our definition of the Burgers
vector with a classical result on the relation between the torsion tensor and the density of dislocations. We will
proceed by looking at a family (homotopy) of curves that start and end at the same point p, and perform a
limiting procedure to investigate the behavior of the Burgers vector as the curves get smaller and smaller.

Figure 2.1: In a manifold with torsion the affine development of a closed curve in the manifold is not a closed curve in the tangent
space, in general. The solid closed curve lies in the manifold and the dotted curve is its affine development in the tangent space
and is not necessarily closed. The lack of closure is related to the Burgers vector.

Consider a smooth, 1-parameter family of curves Cx(t) = C(s,t),0 < s < 1,0 <t <1 lying on an embedded,
two-dimensional submanifold of B, such that Cy(t) = p is a constant curve. It is known that if v is a simple,
null-homotopic (contractible) loop on a surface, then it is the boundary of a topological disk (a genus zero surface
with one boundary curve) [13; 14]. Thus, we know that for 0 < s < 1, C([s, 1), [0, 1]) defines a smooth surface
Qs € B with a boundary given by the curve Cs. As mentioned above, since the connection on B is flat, we can
define a path-independent parallel transport from a given point p to all other points ¢ in a simply-connected
region. Given a small open neighborhood U of the surface Cjs, this allows us to define a parallel transport
operator p(q) that transports vectors tangent at p to the tangent space at ¢ € U. Let the matrix representation
of this operator in a given coordinate system {X“} be pA5(q). Since the functions p*5(g) are defined on an

‘9PAB

B
open neighborhood of €25, we can calculate the partial derivatives 7 and %p)?c . This allows us to turn (2.5)

into a surface integral over €, by using Stokes’ theorem?
A Ay B Ay B s’ b B
B (p; Cy) = ppdX”® = d(ppdX?) = dX~ NdX”. (2.6)
C, Q. ., 0XP
Now, differentiating p5z4p© 4 = 05, we see that
aPBA A Each
HxXD = —Pc PB oXD " (2.7)

3 Acharya and Bassani [1] called B(p; C), “cumulative Burgers vector”.

4In the integral (2.6) over Cs, the integrand is a vector-valued 1-form taking values in the linear space TpB. Thus, we are using
a simple generalization of the classical Stokes’ theorem for vector-valued forms, or, equivalently, we can treat each component of
BA(p; Cs) as a separate function and apply the usual Stokes’ theorem.
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This allows us to rewrite (2.6) as

aP E
BA(p; C5) = — B dXP ndXP. 2.8
0= [ vepn” G (28)
Now, for a given point g € €, let us consider a curve v in 2 joining p at £ = 0 to ¢ at £ = 1, such that the

tangent vector to 7 at ¢° is 9/0XP. Then, using ¥ = % =6 and (2.2), we get

dp® op° )
P e(y(€)| _ 9p Bl POy nAMpN g = T8 pN = T pyp". (2.9)
e X
- q
Using this in (2.8), we obtain
BA(p;C,) = / pc T ppdXP N dX B

s

= / pcA (FCDB*FCBD) (dXD/\dXB)

s

- / AT, (2.10)

s

where {(dXP A dXPB)} = {dXP ANdXPB}pp is a basis for two-forms and T is the torsion tensor, which is a
vector-valued two-form. Informally speaking, the vector index of 7¢ is transported to the tangent space at p by
the parallel transport operator, so that the integrand is a two-form with values in 7,,3. Note that this relation
holds for any closed curve passing through p in U.

Next, we prove a lemma that will allow us to relate the torsion two-form to the area density of the Burgers
vector via equation (2.10). This seems to be a standard argument in Riemannian geometry, see Young [23] for
a related discussion in the context of Riemannian curvature and holonomy.

C(s,t) with0<s<1,0<t<1

Lemma 2.1. On a Riemannian manifold B with metric tensor G, let Cs(t) =
, Cs(0) = Cs(1) =p for s €[0,1], and

denote a one-parameter family of curves such that Co(t) = p fort € [0, 1]
let Qs = C([0,],]0,1]), @ =Qq. Let w be a two-form on Q. Then

Jo,w
11_1}(1) |Q | =w(op, Tp), (2.11)

where o, T, € T,M are orthonormal vectors tangent to Q at p, and || is the area of Q.

Proof: Let S = 95;C and T = 9,C be vector fields tangent to €2 and define J =T — G((g g) S. Using the notation
U -V for G(U, V) for tangent vectors U and V, we have

QS|:/Osds/oldt\/(S-S)(T-T)—(S~T)2:/Osds/oldt\/m:/Osds/oldt|S||J|, (2.12)

where |S| and |T| denote the Riemannian lengths of the tangent vectors. Now, we can write

/st/:ds/oldt w(S,T)/Osds/OIdtw(S,J)/osds/oldt w(S/IS|,3/13))IS]|3, (2.13)

where the second identity follows from the fact that w(S,S) = 0. Defining the orthonormal vectors o = S/|S]|

and 7 = T/|T|, we have
s 1
/ w:/ ds/ dt w(o,7)|S||J]. (2.14)
Qs 0 0

5We assume that  passes through ¢ only once.
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As s — 0, we have
s 1
/ w zw(a,‘r)|p/ ds/ dt|S||J| = w(o, 7)|p 1Qs], (2.15)
Q, 0 0

which proves the lemma. |
We can immediately apply this lemma to (2.10), since A is a vector index in the space T},8, and so for each
A, the integrand is a usual (real-valued) two-form on Q,. We obtain

. BA(p; Cy) AgC A
ig% W - pC T (0'77-) » - T (UaT) p7 (216)

where in the second equality we used the fact that parallel transport from p to p is the identity operator. Thus,
we have shown that the area density of the Burgers vector as calculated by our definition is given by the torsion
tensor.

Remark 2.2. Note that instead of a curve in the material manifold B3, one can start with a spatial closed curve
C(t) € S and evaluate the affine development of the corresponding curve in T,8 after pulling the curve C' to
the manifold B by using the current configuration. Note that this would also result in a Burgers vector defined
in the material manifold. Of course, if needed, one can push-forward the Burgers vector to the spatial manifold
S by using the current configuration.

Remark 2.3. Torsion two-form is similar to stress two-form [8] in the following sense. Stress two-form when
acting on a small piece of a two-manifold (more precisely, a two-plane section of the tangent space at the point)
gives the force one-form (in the current configuration) that acts on the deformed two-manifold [8; 21]. Similarly,
when torsion two-form acts on the same small two-manifold in the reference configuration it gives the total
Burgers vector (in the reference configuration) on that surface.
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A Geometric Theory of Solids with Distributed Defects

To make the paper self-contained in this appendix we briefly review the geometry of bodies with distributed
dislocations. For more details on non-symmetric connections see Bochner and Yano [3]; Schouten [18]; Gogala
[6]; Nakahara [15]; Nester [16]. For more details on the geometric foundations of nonlinear dislocation mechanics
the reader is referred to Yavari and Goriely [22]. A linear (affine) connection on a manifold B is an operation
V : X(B)xX(B) — X(B), where X(B) is the set of vector fields on B, such that V f, f1, fo € C*(B), Va1, a2 € R:

i) VaxipxY =iV, Y + 2Vx, Y, (A1)
ZZ) Vx(a1Y1 + a2Y2) = a1VX(Y1) + (IQVX(YQ), (AQ)
i) Vx(fY)=fVxY + (Xf)Y. (A.3)
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A linear (affine) connection on B is a connection in T3, i.e., V : X(B) x X(B) — X(B). In a local chart {X4},
Vo,0p = I'Y 4g0c, where I'C 45 are Christoffel symbols of the connection and 94 = a% are the natural bases
for the tangent space corresponding to a coordinate chart {z1}. A linear connection is said to be compatible
with a metric G of the manifold if Vx (Y,Z)q = (VxY,Z))c + (Y,VxZ)) g, where ((.,.)g is the inner
product induced by the metric G. It can be shown that V is compatible with G if and only if VG = 0, or in
components

oG
Gaplc = 8)5403 ~T%caGsp — TP cpGas =0. (A.4)

Torsion of a connection is a map T' : X(B) x X(B) — X (B) defined by T(X,Y) = VxY — VyX — [X,Y]. In
components in a local chart {XA}, TAgc = I'*ge — ' ¢p. The connection is said to be symmetric if it is
torsion-free, i.e., VxY — VyX = [X,Y]. It can be shown that on any Riemannian manifold (B, G) there is a
unique linear connection V, which is compatible with G and is torsion-free. This is the Levi-Civita connection.
In a manifold with a connection, the Riemann curvature is a map R : X(B) x X(B) x X(B) — X (B) defined
by R(X,Y)Z =VxVvyZ - VyVxZ — Vix,v]%Z, or, in components

) oM4cp  OTMpp A M A M
R%Bcp = 9X8  9xC + I sul™ op =T cmI™ Bp. (A5)

A metric-affine manifold is a manifold equipped with both a connection and a metric: (B,V,G). If the connec-
tion is metric compatible the manifold is called a Riemann-Cartan manifold [4; 7]. If the connection is torsion
free but has non-vanishing curvature B is called a Riemannian manifold. If the curvature of the connection
vanishes but it has torsion B is called a Weitzenb6ck manifold. If both torsion and curvature vanish B is a flat
(Euclidean) manifold.

Cartan’s moving frames. A frame field {e, }"_; at every point of an n-dimensional manifold B forms a basis
for the tangent space. We assume that this frame is orthonormal, i.e. (€q,es))g = dap. This frame is, in general,
a non-coordinate basis for the tangent space. Given a coordinate basis {04} an arbitrary frame field {e,} is
obtained by an orientation-preserving GL(N, R)-rotation of {04} as e, = Fo494 and det F,4 > 0. We know
that for the coordinate frame [04,0p] = 0 but for the non-coordinate frame field we have [eq, eq] = —¢7ape5,
where ¢, are components of the object of anhonolomy. Note that for scalar fields f, g and vector fields X,Y
on B we have [fX,gY] = fg[X, Y]+ f (X[g]) Y — g (Y[f]) X and hence

C’Yag = FaAFgB (8AF’YB - 3BFA/A) y (AG)

where F7 5 is the inverse of F.,Z. The frame field {e,} defines the coframe field {¥°}"_, such that 9*(eg) = 5.
The object of anholonomy is defined as ¢” = d¥7.

Connection 1-forms are defined as Ve, = e, ® w”,. The corresponding connection coefficients are de-
fined as Ve,eq = (w4,e5)e, = wgqe,. In other words, w?, = w¥pa¥P.  Similarly, V9 = —w* 07,
and Ve, 0% = —w®g,97. The relation between the connection coefficients in the two coordinate systems is
wYap = FaAF/gBF'YCFCAB — FaAF,@B(‘)AF"fB. Equivalently, T4 = FBBFVCFaAoJO‘BA, + Fo,205Fc. In the
non-coordinate basis torsion has the following components

Ty = wsy —w¥yp + . (A7)
Similarly, the curvature tensor has the following components with respect to the frame field
R = 90 nu — O g + wpew® sy — waew® gy + W (A.8)

In the orthonormal frame {e, }, the metric tensor has the simple representation G = 8,59 ® 9. Assuming
that the connection V is metric compatible, i.e. VG = 0, metric compatibility constraints on the connection
1-forms read:

dayw? g + 0gyw” o = 0. (A.9)
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Torsion and curvature 2-forms are defined using Cartan’s structural equations as
T = d9* w5 AIP, (A.10)
RY% = dwg +w°‘7/\w7@, (A.11)

where d is the exterior derivative. Torsion two-form is written as T = e, @ T* = 94 @ T4, where T = F* 4,T4.
Bianchi identities read:

DT® = dT+w s ATP =R NP, (A.12)
DR = dRg+w*y AR"g—wigAR*, =0, (A.13)

where D is the covariant exterior derivative. Note that for a flat manifold the first Bianchi identity tells us that
DT* =0.

For a given frame field {e,} one may be interested in a connection V such that in (B, V) the frame field is
parallel everywhere. This means that Ve, = w” «€g = 0, i.e. the connection 1-forms vanish with respect to the
frame field or w” ~a = 0. Using this we have the following connection coeflicients in the coordinate frame

I'“4p =Fo“04F5. (A.14)
This is called the Weitzenbock connection [20; 5], which has the following torsion components
T ap =Fo© (0aF"5 — 05F74) . (A.15)

For a body with distributed dislocations material manifold — where the body is stress free — is a Weitzenbock
manifold [22].
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