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Computational Analytical Micromechanics.

Background, Opportunities, and Prospective

Valeriy A. Buryachenko∗

The most popular methods of analytical micromechanics of random structure matrix composites being
considered are based just on a few basic concepts. The effective field hypothesis (EFH, also called the H1a
hypothesis, see p. 253 in [1]) is apparently the most fundamental, most prospective, and most exploited concept
of micromechanics (see [1] where other references can be found). This concept has directed a development
of micromechanics over the last sixty years and made a contribution to their progress incompatible with any
another concept. The idea of this concept dates back to Mossotti (1850) who pioneered the introduction of
the effective field concept as a local homogeneous field acting on the inclusions and differing from the applied
macroscopic one. Among a few hypotheses used by Mossotti (1850), one of the most important ones was the
quasi-crystalline approximation (closing hypothesis H2a, p. 264 in [1], see also its multiparticle generalization,
hypothesis H2b, p. 255 in [1]) proposed 100 years later by Lax (1952) in a modern concise form. The idea of the
effective field and quasi-crystalline approximation was added by the hypothesis H3 of “ellipsoidal symmetry”
(p. 265 in [1]) for the distribution of inclusions just for providing the applicability of EFH. As a tool for concrete
applications of the concepts mentioned, Eshelby (1957) solution was used although the Eshelby’s theorem has
a fundamental conceptual sense rather than only an analytical solution of some particular problem for the
ellipsoidal homogeneous inclusion. The concept of the EFH (even if this term is not mentioned) in combination
with subsequent assumptions totally dominates (and creates the fundamental limitations) in all four groups
of analytical micromechanics in physics and mechanics of heterogeneous media: model methods, perturbation
methods, self-consistent methods [e.g., Mori-Tanaka method (MTM), and the Method of Effective Field, MEF],
and variational ones (see for refs. [1]).

However, one shows that the EFH is a central one and other concepts play a satellite role providing
the conditions for application of the EFH. Moreover, one shows that all mentioned hypotheses are not really
necessary and can be relaxed. The first attack on a citadel called EFH was produced by creation in [2, 3, 4] (see
also pp. 607–610 in [1]) the exact general integral equation

"(x) = ⟨"⟩(x) +
∫
[U(x− y)¿ (y)−⟨U(x− y)¿(y)⟩(y)]dy. (1)

where ¿ (x) ≡ L1(x)"(x) (see [1, 3] for complete notations). Equation (1) was obtained without any auxiliary
assumptions such as, e.g., the version of the EFH ⟨U(x−y)¿(y)⟩(y) = U(x−y)⟨¿(y)⟩(y) (hypothesis H1b, p.
253 in [1]) implicitly exploited in the known centering methods and reducing Eq. (1) for statistically homogeneous
media subjected to the homogeneous boundary conditions to the known one

"(x) = ⟨"⟩+
∫

U(x− y)[¿ (y)− ⟨¿⟩]dy, (2)

which goes back to Lord Rayleigh (1892) (see for refs. [1, 4]). One demonstrates (see [3, 4]) that Eq. (2),
erroneously recognized as an exact one after the proofs by Shermergor (1977) and by O’Brien (1979), is correct
only after the additional asymptotic assumption H1b.

A fundamental deficiency of Eq. (2) is a dependence of the renormalizing term U(x−y)⟨¿ ⟩(y) [obtained in
the framework of the asymptotic approximation of the hypothesis H1b] only on the statistical average ⟨¿ ⟩(y)
while the renormalizing term ⟨U(x− y)¿ ⟩(y) in Eq. (1) explicitly depends on details distribution ⟨¿ ∣vi,xi⟩(y)
(y ∈ vi). What seems to be only a formal trick is in reality a new background of micromechanics defining a
new field of micromechanics called computational analytical micromechanics (CAM). CAM makes it possible to
abandon basic concents of analytical micromechanics H1a, H1b, H3 (with more [5] or less [6, 7] comletness) in
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the framework of hypotheses either H2a [5, 7] or H2b [8, 9] used for truncation of hierarchies of averaged Eq.
(1) by exployting of any avaliable numerical method (VIEM [5], BEM, FEA [6, 7], hybrid FEA-BEM, multipole
expansion method, complex potential method, and other, see for refs. [1]).

So, even in the case of statistically homogeneous media subjected to homogeneous boundary conditions
(see [5, 7]), new effects have been found even in the framework of the hypothesis H2a. The final classical
representations of the effective properties obtained by both the MEF and MTM (see for details [1]) depend only
on the average strain concentrator factor Ai, with ⟨"⟩i = Ai⟨"⟩i, while the effective properties estimated by
the new approach (1) implicitly depend on the inhomogeneous tensor Ai(x). The detected dependence allows
us to abandon the hypothesis H1b whose accuracy is questionable for inclusions of noncanonical shape. We
obtained a fundamental conclusion that effective moduli in general depend not only on the strain distribution
inside the referred heterogeneity (describing by the tensor Ai(x), x ∈ vi) but also on the strains in the vicinity
of heterogeneity i.e. extension of Ai(x), x ∕∈ vi is necessary. Then the size of the excluded volume as well as the
binary correlation function will impact on the effective field even in the framework of hypothesis H2a.

It is expected to get a larger difference (with the change of the sign of predicted local stresses, see [5,
7]) between the results obtaining the use of either Eqs. (1) or (2) for composites reinforced by heterogeneities
demonstrating greater inhomogeneity of stress distributions inside heterogeneities. This inhomogeneity can be
produced by the different contributors (see for details [5]): a) peculiarities of heterogeneities manifested even
in the framework of the hypothesis H1a, b) multiparticle interaction of heterogeneities (even for homogeneous
ellipsoidal ones), c) special features of both the microstructure and applied loading. Many of the next linear
statical problems were solved (partially, of course, see for refs. [1]) in the framework of the EFH and can be
recast in the framework of the CAM with detection of significant improvement of predicted accuracy by the use
of Eq. (1) instead of Eq. (2):
a). Composites with either nonellipsoidal [6, 7], coated, or continuously inhomogeneous [5] heterogeneities with,
perhaps, either nonideal interface (including sliding, debonding, cohesive phenomena, as well as surface stress
and surface tension ones) or nonlocal constitutive law (p. 581 in [1]).
b) Inhomogeneity of statistical moments of stresses for homogeneous ellipsoidal heterogeneities detected for
binary interacting heterogeneities [8, 9].
c) Any nonlocal problem (inhomogeneous remote loading, functionally graded materials, clustered materials,
bounded media, contact of microinhomogeneous media, macro-inhomogeneity insde microinhomogeneous medium,
nonlocal constitutive laws either inside or outside the heterogeneities).
d) Variational methods currently postulated homogeneity of polarization tensors inside the heterogeneities (this
assumption is even more restrictive then EFH) can be renewed by using (1) instead of (2) for the case a).
The solutions of mentioned problems obtained in the framework of the EFH were used as the basic elements in
analyses of wide classes of dynamic, nonlinear, and coupled problems (see for refs. [1]). The generalization of
these schemes can be also easy performed in the framework of the CAM in a straitforward manner.
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