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ABSTRACT The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium
tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmem-
brane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal
structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy
calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane
and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close
to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on
structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bend-
ing, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes
that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the
crucial gating parameter is lateral tension in the membrane rather than the curvature of the membrane. Compared to popular
all-atom-based techniques such as targeted or steered molecular-dynamics simulations, the finite element method-based
continuum-mechanics framework offers a unique alternative to bridge detailed intermolecular interactions and biological pro-
cesses occurring at large spatial scales and long timescales. It is envisioned that such a hierarchical multiscale framework will
find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle
contraction and mechanotransduction.

INTRODUCTION

Many fundamentally important biological processes rely on

the mechanical response of biomolecules and their assem-

blies. A set of well-known examples includes actions that

implicate molecular motors (1). For instance, muscle contrac-

tion involves the cooperative mechanical response of a large

number of myosin molecules, the actin filaments, and the

elastic titin assembly; (2,3) cytokinesis also depends critically

on the mechanical properties of the cortex (4–6). Another

class of remarkable biomechanical processes is mechano-

sensation (7), which converts mechanical force exerted on

the cell membrane into biochemical or electrical signals

through cytoskeleton molecules (8,9) and/or mechanosensi-

tive channels (10).

An important aspect of many biomechanical processes is

that phenomena on multiple length-scales play a key role.

For example, mechanotransduction may involve nanometer-

scale conformational changes in one protein but much larger

scale (up to mm) variations in the cell membrane or

cytoskeleton. Similarly, muscle contraction occurs at the

macroscopic scale but originates from nanometer-scale

conformational transitions in muscle proteins. Although

direct mechanical measurements of single biomolecules or

cells are possible (8,11,12), a mechanical testing at multiple

length-scales is difficult. Advanced computer simulations

that can bridge these length-scales are therefore a powerful

technique for exploring fundamental principles associated

with the production, transduction, and regulation of me-

chanical response in biological systems.

The computational study of systems on multiple length-

scales and timescales is a significant challenge because it

requires the development of a framework and computational

model that is sufficiently coarse-grained to treat large length-

and timescales while, at the same time, including sufficient

detail to faithfully capture the characteristics of the specific

system. This is particularly important in biological systems

where features on an atomistic scale are crucial to structure

and function. The challenge is to develop a framework that

complements the traditional all-atom simulations, which are

most appropriate for studying nanometer-scale biological

processes (13,14), with continuum simulations that can treat

large length-scales and timescales.

In this work, we make a useful step toward this direction

by establishing a phenomenological continuum-mechanics

framework based on the finite element method (FEM) for

studying the conformational response of a macromolecule

to external mechanical perturbations. The FEM analysis is

widely used in the engineering field for solving mechanical

and transport problems in systems with complex geometries
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and boundary conditions, and FEM-based continuummodels

are therefore more versatile than those based on highly ide-

alized geometries and mechanical properties (15,16). We

develop a new FEM framework specifically for the gating

behavior of mechanosensitive (MS) channels.

We develop FEM models for a specific type of MS chan-

nel from two bacteria, Mycobacterium tuberculosis (Tb) and
Escherichia coli (E. coli), and parameterize thesemodels using

molecular-mechanics energy calculations. Even with this

minimal quasi-atomistic description, it is shown that reason-

able gating behaviors are observed for both channels studied,

when compared to experimental measurements and previous

all-atom MD simulations. The unique versatility of the FEM

model is demonstrated by studying the response of the MS

channels to two different types ofmembrane deformations, i.e.,

in-plane stretching and out-of-the-plane bending.We conclude

that FEM-basedmodels have tremendous potential in the study

of biological systems, althoughmuchwork remains to be done.

The mechanosensitive (MS) channels

Although certain processes such as tissue remodeling involve

cell adhesion molecules like integrin, most cellular responses

to force are due to mechanosensitive (MS) channels (7,10,17).

In response to load perturbation applied to the cell membrane

or other membrane-associated components, MS channels un-

dergo significant conformational transitions to change their

conductive state, which can lead to depolarization or hyper-

polarization, Ca21 entry with a subsequent cascade of in-

tracellular biochemical events, or release of osmolytes.

Mechanosensitive channels have been identified in more than

30 cell types (7), and abnormality in their functions may

contribute to serious health problems such as neuronal degen-

eration, hypertension, and glaucoma.

Despite extensive research efforts over the last few decades

(7,10,18–20), detailed molecular mechanisms by which MS

channels sense and convert the mechanical deformation into

biological signals remain unclear. The challenge is evident

considering the diverse forms of mechanical stimuli poten-

tially exerted to cells (1,7), which include steady-state con-

tacts, high-frequency vibrations, osmotic pressure gradients,

hemodynamic pressure, and fluid-shear stresses. All these

external stimuli are present in the background of internally

generated forces such as those arising from hydrostatic pres-

sure and cytoskeletal polymerization. Thus the mechano-

transduction pathways have to be designed through evolution

to filter out irrelevant ones while extracting specifically rele-

vant stimulus. In certain cases, the function of MS channels

involve intracellular cytoskeleton and molecular motors

(8,9), while many MS channels also function only through

interacting with the membrane (7,10,18,21); the specific

system that we focus on here, the MS channel of large con-

ductance (MscL) in bacteria, belongs to the latter class.

Overall, how different modes of membrane deformation

(see discussion below and Fig. 1) regulate the function and

sensitivity of MS channels is poorly understood (7,19,22,23).

Major challenge arises for both experiment and simulation

due to the involvement of multiple length- and temporal

scales in mechanotransduction; e.g., it is technically difficult

to experimentally characterize the conformational changes in

both the protein and the membrane at the quantitative level.

The relationship between the channel opening probability

and membrane tension was studied by Sukharev et al. (24)

using the patch-clamp technique onMscL inE. coli. A simple

five-subconductance-states model was established, which

showed that the tension-dependent conformational transition

is primarily attributed to the pore-area variation that occurs

between the closed state and the open state. The structural

rearrangements in the MscL in E. coli have been proposed by
Sukharev et al. (25,26) based on Cys cross-linking exper-

iments, and were confirmed by Perozo et al. (19,23,27) using

electron paramagnetic resonance spectroscopy (EPR) and

site-directed spin labeling, which suggested a plausible mole-

cular mechanisms of gating in MscL.

Previous analytical and simulation studies of MS
channels: insights and limitations

Several groups have attempted to develop analytical models

for the gating transition in MscL. By considering possible

deformation mechanisms (e.g., membrane tension and bend-

ing), Markin and Sachs (28) presented a general formulation

for the thermodynamics of mechanotransduction, which relates

the probability of the channel opening to membrane prop-

erties such as stiffness, thickness, and curvature. Wiggins

and Phillips (29) developed an analytic model to characterize

the free energy of the protein-bilayer system and suggested

that the competition of hydrophobic mismatch could be a

physical mechanism that governs gating. This model was

further improved by adding triggers (besides the channel

radius change) in the transition from the closed to the open

state (30). Finally, Turner and Sens (31) proposed a gating-

by-tilt model as an alternative to dilatational gating, where

the gate opening is due to the swinging of the lipids near the

FIGURE 1 The four basic deformation modes of a membrane: (a) tension,

(b) shear, (c) torsion, and (d) bending. Both tension and bending are inves-

tigated in this work.
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channel with respect to a pivot. These theoretical models

provide insight into common features in MS channels. They

lack sufficient structural detail, however, and their validity to

any specific system is difficult to judge.

There have also been simulation studies of various MS

channels using different approaches. Most simulations have

relied on the single MS channel x-ray structure for an MscL

fromMycobacterium tuberculosis (Tb) solved by Chang et al.
(32), which is generally believed to mimic the fully closed

state of the channel (33,34). As shown in Fig. 2, the

Tb-MscL is a homopentamer with each monomer containing

two transmembrane helices (TM1,TM2) and a cytoplasmic

helix. By retaining the main structural features of the

Tb-MscL and taking related experimental data as constraints,

Sukharev et al. (25,26) developed a series of structural

models for the gating transition in both Tb-MscL and E. coli-
MscL; 13 conformational states were constructed that ranged

from the most closed state to an open conformation in which

the narrowest part of the pore has a diameter of ;36 Å. In

an attempt to construct a gating pathway with more detailed

energetic considerations, Gulligsrud et al. (35) carried out

all-atom MD simulations for Tb-MscL with explicit solvent

and lipid molecules. During the rather short (;3 ns) simu-

lation, however, the lipid membrane maintained a constant

volume well before the conformation of MscL could be

affected, and the increase in the pore radius h, with a surface

tension of 60 dyne/cm, was merely 4 Å. In a subsequent

steered MD simulation (20), the gating (closed/open)

transition in E. coli-MscL was studied by the same authors

using the structural models of Sukharev et al. (26). Instead of

simulating the stretched bilayer explicitly, the lateral and

normal pressure profiles exerted by the deformed bilayer

(due to equi-biaxial tension) on the protein was estimated and

then applied to the protein atoms in the form of an external

steering force. Unfortunately, evenwith such a bias, after 12 ns

of simulation the channel opened to a pore radius of only

9.4 Å, which is significantly smaller than the fully opened

state proposed by Sukharev et al. (25). In a complementary

study, Kong et al. (36) applied target molecular dynamics

(TMD) (37) to study the same gating transition. Since TMD

applies a holonomic constraint during the simulation, reach

of the final target is guaranteed; the constraining force on the

protein atoms in this type of simulation, however, can be

extremely large compared to the realistic gating force exerted

by the deformed membrane, which makes TMD simulations

useful as a qualitative structural biology tool but inappro-

priate for the purpose of analyzing the membrane-mediated

gating mechanism. In fact, the lipid membrane was entirely

ignored in the TMD study (36). Colombo et al. (38) have also

studied the gating process using equilibrium MD simulations

with different pressure conditions. The tilting of a subset of

transmembrane helices was observed as a consequence of the

applied lateral tension, although a full opening was not ob-

served due to the nanosecond timescale of the simulations.

Even though the gating/steering forces are sometimes unre-

alistic, these atomistic simulations yield helpful insights on

the mechanisms of mechanotransduction and they will be

compared with the FEM model in this study.

A continuum-mechanics model with the
finite element representation

It is widely acknowledged that the short timescales

(;10–100 ns) accessible to all-atom simulations (with

explicit solvent and lipid molecules) hamper the possibility

of observing the gating transition in MscL under realistic

FIGURE 2 Structural models and FEM models

of the Tb and E. coliMscL channels. (a,b) Top and

side views of the structural model of Tb. (c,d) Top

and side views of the FEM model of Tb. (e,f) Top

and side views of the structural model of E.
coli. (g,h) Top and side views of the FEMmodel of

E. coli. In the FEM model, the TM1 helices are in

orange and TM2 helices are in blue.
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conditions. A less emphasized fact is that the conformational

response of both model lipid vesicles and cells to mechanical

stimulation can be rather complex, and it is difficult to in-

troduce complex membrane deformations in typical nano-

meter-scale all-atom simulations. As shown in Fig. 1, any

membrane deformation can be decomposed into a combi-

nation of several basic deformation modes: stretching (or

dilatation and thinning), shearing, bending, and twisting. The

first two are in-plane distortions and the last two are out-of-

plane distortions. The out-of-plane modes are capable of

initiating both stretching and shearing stresses, which lead to

complicated stress fields that may result in different gating

thresholds in MS channels. In addition, deformation due to

osmotic pressure variation inside the membrane will be

superimposed onto those caused by external forces. There-

fore, mechanotransduction through MS channels is likely

to be sensitive to both intrinsic (e.g., membrane curvature,

thickness, osmotic pressure, vesicle bilayer structure, and

material property) and extrinsic (e.g., types of loads, mecha-

nochemical environment) factors, and both need to be con-

sidered explicitly in a simulation. Most importantly, the local

stress-strain field surrounding a MS channel is inevitably

governed by the remote mechanical load/stimuli applied to

the entire system. The remote load can be complex (such as

adhesion between cells), leading to intricate local deforma-

tion fields. Even in cases where the remote load is relatively

simple, due to the large rotation caused by the flexible shell-

like geometry and orientation of each individual cell, the

local deformation is still a complicated combination of the

four basic deformation modes described above. To conduct a

complete investigation and to simulate mechanotransduction

in a more realistic manner, it is critical to understand how

MS channels respond to different types of local stress-strain

field, and how such local deformation is derived from

remotely applied loads. This is clearly beyond the capability

of conventional MD simulation techniques.

Ideally, a concurrent multiscale model that treats the lipid

and solvent molecules near the protein differently from those

far away is most suited to study the hierarchical mechano-

chemical coupling phenomenon. Although such an idea has

been pursued effectively in the context of hybrid quantum

mechanical and classical mechanical simulations (39–41) as

well as in the hybrid atomic/continuum framework for

material simulations (42), developing the appropriate bound-

ary condition for soft-matter systems is not a trivial task (43).

Instead, inspired by the successful applications of simple

continuum mechanics models in molecular motor studies

(15,16,44,45), we establish a new phenomenological con-

tinuum framework for studying MS channel gating using the

FEM analysis, which is a technique that finds a broad range

of applications in engineering. The major difference com-

pared to previous mechanical models of biomolecules is that

the FEM model can adopt complex geometry and highly

heterogeneous mechanical properties specific to the system

under study; the parameterization process for the FEMmodel

makes a natural connection between continuum mechanics

and previous all-atom simulations. In the current work, as a

proof of concept, we develop rather simple FEM models for

both the Tb- and E. coli-MscLs, which include only the trans-

membrane helices as homogeneous elastic rods embedded

into an elastic membrane. Nevertheless, simulations using

these simple models generate gating transitions that are re-

markably consistent with available experimental data and

all-atom simulations. More importantly, it is straightforward

to incorporate different deformation modes into the elastic

membrane and to study the corresponding response of the

MscL; here we only illustrate this point with equi-biaxial

membrane tension and axisymmetric bending.

THEORY AND METHODS

In this section, we first present the finite element model and the relevant

parameterization procedures, and then describe the detailed simulation

protocols for studying the mechanical response of the MscL channels. Here

we restrict ourselves to comparing them to in vitro experimental studies of

MscL in lipid vesicles, which means that the model includes a single MscL

in a homogeneous lipid bilayer.

The finite element (FEM) model

We restrict ourselves to a minimalist mechanical model that includes only

the transmembrane domain of the MscL; it is commonly assumed that the

gating behavior is largely determined by the interaction between the trans-

membrane domain and the surrounding membrane (17,23,33,46). Although

the cytoplasmic helices and the loops that connect TM1 and TM2 helices

(Fig. 2) may also play an important role (26,47,48), they were ignored in the

present proof-of-concept model; they can be included in a straightforward

manner in a more complete model. For simplicity, the TM1 and TM2 helices

are treated as homogeneous elastic rods (see below for details) and are

embedded into a homogeneous elastic membrane (49). The model is param-

eterized using molecular-mechanics energy calculations. Although hydra-

tion of polar groups upon channel opening has been proposed to make an

important contribution to the gating process (22), to be consistent with the

simple description of the helices, solvent molecules are not included.

The helices

The structural and FEM models for the Tb and E. coli MscL channels are

shown in Fig. 2. The five TM1 helices form the inner boundary for the pore

with limited contact with the lipid while the shorter TM2 helices form the

outer boundary that interact extensively with the lipid membrane. The TM1

and TM2 helix bundles share the same fivefold symmetry axis, denoted

as the z axis here, which is also the direction of the membrane norm. In

Tb–MscL, the TM1 helix contains residues Val-15–Thr-40, and TM2

includes residues Val-71–Val-90; more precisely, the first few residues of

TM1 adopt 310 rather than a-helix. In the E. coli MscL, both helices are

longer; TM1 and TM2 helices correspond to residues Asn-15–Gly-50 and

Val-77–Glu-107, respectively. We note that there is a break in TM1 due to

Pro-43, which (for simplicity) is not taken into account in our model. Within

the continuum-mechanics framework, each helix is modeled as a cylindrical

elastic rod of 5 Å diameter with spherical caps at both ends (see Fig. 2, c
and d, and Fig. 2, g and h, for the top/side views of Tb and E. coli

models, respectively); spherical caps were employed to ensure a smooth sur-

face of the elastic rod and to obtain converged numerical results (see below).

(Special Note: The diameter of 5 Å was chosen based on the main-chain

structure of an ideal a-helix. The volume of side chain is not considered
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explicitly, which is not expected to be a major problem in the context of the

current work; the effect was included implicitly through nonbonded param-

eters between helices.) Since the elastic rods are assumed to be homoge-

neous in this work, the only system-specific (Tb versus E. coli) property is

the geometry of the TM1 (orange) and TM2 (blue) helices, including length,

radius, and orientation. Under this assumption, the mechanical property of

the elastic rod is homogeneous and isotropic, and the only relevant consti-

tutive parameters are the Young’s modulus and the Poisson’s ratio, values of

which are taken from the previous MD study of Sun et al. (51). They found

that the mechanical properties of a-helices are not strong functions of the

sequence; the effective Young’s moduli of various helices were found to be

in the range of 60–180 GPa. In this study, the Young’s modulus of TM1 and

TM2 helices is taken to be 100 GPa and a Poisson’s ratio of 0.3 is adopted;

these are tabulated along with the relevant geometrical parameters of the

helices in Table 1. Under external loads, these elastic rods may stretch, bend

and/or twist, and they interact with each other as well as with the lipid

membrane as elaborated below.

The lipid bilayer membrane

The lipid bilayer is modeled as an elastic sheet of thickness 35 Å, which is

close to that of a dipalmitoylphosphatidylcholine (DPPC) bilayer and spans

the transmembrane domains of the Tb x-ray structure (32). No distinction is

made between the hydrophobic regions and the polar heads. For the simplest

case of in-plane membrane stretching, a flat square membrane (within the x,y

plane) with a size of 400 3 400Å is employed (Fig. 3 a). The equi-biaxial

membrane tension is most likely induced by osmotic pressure: assuming the

cell is spherical with a typical diameter of 1 mm, a patch of membrane with

the size of 4003 400 Å corresponds to a center angle of;5�, which suggests
that the curvature of the patch is negligible.

The lipid membrane is modeled as homogeneous and isotropic and the

Young’s modulus is estimated from the area compressibility. The mechan-

ical failure of the lipid membrane is not considered although this might be

important in some patch-clamp studies (24). The elastic properties of the

lipid bilayer are assumed to be pressure-independent and estimated as fol-

lows. The stress-strain relationship of a thin membrane subjecting to equi-

biaxial tension is s ¼ Ee/(1 – n), where E is the Young’s modulus, n is the

Poisson’s ratio (which is ;0.3 for most materials) (52), e is the in-plane

membrane strain, and s is the in-plane tensile stress. The value s can be

estimated from the surface tension, g, which in turn can be obtained from the

bilayer area compressibility, Ka. In particular, s ¼ g/h, where h is the

thickness of the membrane (20,53,54) and, under equi-biaxial tension (since

the normal pressure is always much smaller than the lateral pressure

(20,53,54)), g ¼ KaDA/A (53), where A is the undeformed membrane area

and DA is the area increment. For small deformations, DA/A ¼ (1 1 e)2 –

1 ; 2e, and therefore E ¼ (1 � n)Ka2e/he ¼ 2(1 – n)Ka/h. Based on MD

simulations (53) and experiments (54) on the stretching of DPPC membrane

at ambient temperature, Ka is ;230–350 dyne/cm, which results in a

Young’s modulus of;92–140 MPa for the DPPC membrane. Therefore the

Young’s modulus of the lipid is taken to be 100 MPa in this study.

To embed the channel into the continuum membrane, a cavity (hole) with

the shape of a 10-petal flower is created in the elastic sheet (Fig. 3 a), with the

size and shape of the cavity determined using the geometrical parameters of

the elastic rods (Table 1) and the corresponding structure of the closed

channel. The specific shape of the hole conforms to the embedded protein

(e.g., Tb or E. coliMscL), such that the initial distance between the surface of

TM1 (or TM2) helices and the surface of lipid cavity is set to be their

equilibrium distance of;5.5 Å, which was measured from the trajectories in

previous all-atom simulations (20) (based on main-chain atoms in the helices

to lipid molecules, to be consistent with the helical radius used; see Special

Note in text above). The interactions between the lipid and helices are

TABLE 1 Material properties of MscL transmembrane helices

and lipid membrane used in the finite element model

Transmembrane Helices

Properties

Lipid

membrane

Tb

TM1

MscL

TM2

E. coli

TM1

MscL

TM2

Length/diameter* (Å) 400.0 42.0 29.0 55.6 45.6

Thickness/diametery (Å) 35.0 5.0 5.0 5.0 5.0

Young’s modulus E (GPa) 0.1 100.0 100.0 100.0 100.0

Poisson’s ratio n 0.3 0.3 0.3 0.3 0.3

The lengths of helices for Tb-MscL are based on the x-ray structure (PDB

code 1MSL); those for E. coli-MscL are based on the structural model of

Sukharev et al. (26).

*The length is for the square lipid sheet used for stretching (Fig. 3 a); the

diameter is for the spherical lipid sheet used for bending (Fig. 3 b).
yThe thickness is for the lipid membrane; the diameter is for the helices.

FIGURE 3 (a) Schematic for the equi-biaxial tension of the lipid mem-

brane, and a zoomed-in view of the 10-petal lipid hole that encompasses the

protein. (b) Schematic for the axisymmetric bending deformation of the lipid

membrane. The bending is realized by a four-point bending flexure. (c) The

finite element mesh for membrane and protein (E. coli-MscL) during equi-

biaxial tension.
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described in the next subsection.Calculationswere performed toverify that the

system maintained mechanical equilibrium in the absence of external force.

Interaction among continuum components

The nonbonded interaction among the transmembrane helices, and that be-

tween helix and lipid, are represented by a simple pairwise effective poten-

tial of the familiar Lennard-Jones form,

EintðaÞ ¼ C
n

m

d0

a

� �m

� d0

a

� �n� �
; (1)

where Eint(a) is the effective interaction (per surface area) between the

surfaces of two continuum components. For any given pair of interactions,

d0 is the equilibrium distance between the two surfaces, and a is the distance

between the two surfaces. Taking the first derivative of Eint with respect to a

leads to the pressure-distance relationship between two surfaces (adopting

the sign convention that repulsive pressure is positive),

pðaÞ ¼ f

6

d0

a

� �m11

� d0

a

� �n11
" #

; (2)

where p is the interaction pressure between two surfaces, and f ¼ 6Cn/d0.

This nonbonded interaction model has been successfully applied to study the

deformation and buckling of double-walled carbon nanotubes (55) and

radial elastic properties of multiwalled carbon nanotubes (56) as well as

nano-indentation of nanotubes (57). In this study, nonbonded interaction

pairs are included between the lipid hole and each TM1 helix, between the

lipid hole and each TM2 helix, between each pair of TM1 helices, and

between each TM1 helix and each TM2 helix. The interactions between the

TM2 helices were neglected because they are far apart (see Fig. 2). Based on

the structural models for the closed state, d0 for each interaction pair is taken
as the shortest distance between the surfaces of the two corresponding con-

tinuum components. For instance, there are 10 interaction pairs among TM1

helices, which lead to one unique d0 value based on the shortest distance

between TM1 helices in the closed-state structure. For other types of pairwise

combinations, i.e., lipid–TM1, lipid–TM2, and TM1–TM2, d0 takes on

different values (see Table 2). Since the Tb and E. coliMscLs have different

structures, the values of d0s are also different.

The well-depth, C, and the exponents (n, m) are determined from

molecular-mechanics calculations using the program CHARMM (58). For

each pair of helices (TM1–TM1 or TM1–TM2), the interaction energy in the

vacuum is calculated using the polar-hydrogen set of CHARMM force field

(CHARMM 19 (58,59)) with the internal structure of the helices fixed to that

in the x-ray structure (for Tb) or the homology model (for E. coli). The

calculations are done for different combinations of helix pairs, which

effectively sample different relative orientations; for each pair, the position

of one helix varies between �20 Å and 20 Å along the direction of the

center-of-mass separation vector projected onto the membrane. The non-

bonded (electrostatic and van der Waals) interactions are calculated without

a cutoff. To estimate the helix-lipid interactions, the insertion energy profile

of a single helix (TM1 or TM2) is calculated with an implicit membrane

model; i.e., the helix is gradually transferred from the implicit membrane to

the implicit bulk solution along the membrane norm. Several implicit

membrane models available in CHARMM including the EEF1 (60), GBIM

(61), and GBSW (62) models are tested and the results are rather similar at

the semiquantitative level; to be consistent with the parameterization of these

models, the CHARMM 19 force field (59) is used for EEF1 (with the cor-

responding cutoff scheme) and GBIM, while the CHARMM 22 set (63) is

used for GBSW. The EEF1 results are used in the model parameterization. In

these implicit membrane calculations, the membrane thickness is taken to be

23.5 Å, which corresponds to the hydrophobic part of the membrane. The

implicit membrane model is used to avoid the need to sample a large set of

lipid configurations, although this can be done for a more sophisticated

parameterization (see Future Directions).

To illustrate the fitted parameters, the nonbonded interaction energies

(per unit area) between a pair of nearest TM1–TM2 helices and those

between a pair of nearest TM1–TM1 helices of E. coli-MscL are shown in

Fig. 4, as a function of the normalized separation between the two compo-

nents (i.e., the deformed distance between the two surfaces normalized by

d0). The symbols indicate data computed from molecular mechanics (MM)

calculations and the lines are fits based on Eq. 1 with the parameters listed in

Table 2. A number of representative nonbonded interaction curves obtained

from MM analyses are shown, which correspond to the configurations (ori-

entations) of helices in the close, intermediate, and open models of Sukharev

et al. (26). Although the parameters are fitted based on the intermediate

structural state only, the agreement between FEM and MM results is rather

good for other structural states as well, which indicates that the parameters

are fairly transferable.

Finite element analysis and
simulation procedures

Theoretical estimates of stress and strain

The averaged radius of the cavity (hole) is measured to be ;22 Å in the

closed state, which is much smaller than the size of the membrane (;400 Å)

and suggests that the deformation of the hole is dominated by the external

load while the effect of the channel is much smaller (since most of the strain

energy is stored in the membrane). This allows an analytical analysis of

membrane deformation under mechanical stress and estimates for the magni-

tude of tension and bending moments to be used in the FEM simulations.

For a flat membrane containing a circular hole, when the membrane is

under equi-biaxial in-plane tension, the increment of the hole radius can be

derived based on plane stress elasticity theory (52). The closed form solution

of an annulus (with an outer radius b and inner radius a) under uniform

boundary pressure is

sr ¼
a
2

b
2 � a

2 1� b
2

r
2

� �
pi �

b
2

b
2 � a

2 1� a
2

r
2

� �
po; (3)

su ¼
a
2

b2 � a2 11
b
2

r2

� �
pi �

b
2

b2 � a2 11
a
2

r2

� �
po; (4)

ur ¼
1

E

ð1� nÞða2
pi � b

2
poÞ

b
2 � a

2 r1
ð11 nÞa2

b
2ðpi � poÞ

b
2 � a

2

1

r

� �
;

(5)

TABLE 2 Parameters for the nonbonded interactions between helices and between helix and lipid membrane

Interaction pair Tb d0 (Å) MscL f (GPa) m n E. coli d0 (Å) MscL f (GPa) m n

Lipid–TM1 5.5 2.0 9 3 5.5 2.0 9 3

Lipid–TM2 5.5 2.0 7 3 5.5 2.0 7 3

TM1–TM1 0.5 7.0 2 1 1.5 3.3 2 1

TM1–TM2 2.5 3.0 9 3 5.0 1.7 9 3

The interactions between TM2 helices are ignored because they are generally far apart (.17 Å). The value d0 is measured based on the atomic structures

using a diameter of 5 Å for all helices.
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where r is the radial distance from the center of the hole, ur is the radial

displacement, and sr and su are the radial and hoop stress components,

respectively, and po and pi are the pressures applied on the outer and inner

boundaries, respectively. Since the hole is much smaller than the membrane

span, then a � b. Moreover, and since the nonbonded interaction between

the helix bundle and lipid bilayer is small compared with the external load,

then pi � po. These considerations lead to a set of simplified solutions:

sr ¼ 1� a
2

r
2

� �
ð�poÞ; (6)

su ¼ 11
a
2

r2

� �
ð�poÞ; (7)

ur ¼
1

E
ð1� nÞr1 ð11 nÞa

2

r

� �
ð�poÞ; (8)

where�po¼ s is the equi-biaxial membrane tensile stress. Accordingly, the

increment in the hole inner radius is

Dr ¼ 2a

E
s; (9)

which provides an upper bound for the channel pore in the open state. Using

this result, if the desired increment in the lipid hole diameter is ;30 Å (an

estimate compatible with the fully opened MscL, see below), with a ¼ 22 Å

and E ¼ 100 MPa, the required tension for fully opening the channel is;35

MPa. The strain in the direction normal to the membrane is

ez ¼ �n

E
ðsr 1suÞ; (10)

which leads to a reduction in the membrane thickness of

Dh ¼ 2
n

E
hs: (11)

With the membrane tension of 35 MPa, the thickness is predicted to reduce

from 35 Å to ;27 Å, which is an ;24% change. This estimate is in close

agreement with the 20% reduction in the thickness of membrane spanning

part of MscL measured by Perozo et al. (27), which suggests that the current

continuum model is at least qualitatively correct. This analysis also suggests

that the membrane deformation is dominated by the external load applied to

the lipid bilayer, i.e., the lipid-helix interactions (discussed below) play a

minor role in lipid deformation, although these interactions are clearly crucial

to the gating behavior of MscL (64).

For axisymmetric bending, a four-point bend flexure of a circular mem-

brane is employed as sketched in Fig. 3 b. The normal of the membrane is z

axis and a cylindrical coordinate system (z, r, u) is employed. The outer

radius of the membrane is 250 Å, and the 10-petal flower-shaped cavity,

whose detailed geometry depends on the embedded protein, is located at the

center. A circular ring of roller with a radius of 200 Å is placed on top of the

membrane, and a uniform line load is imposed on the outer rim to bend

the circular disk upwards. At equilibrium, the resulting bending moment

within the roller is a constant (denoted by Mo); thus, this flexure simulates

the axisymmetric pure bending of the lipid membrane. The amount of load

needed for gating can be estimated from elastic plate theory (65). For a

circular plate with an outer radius b (200 Å in the present case) containing a

circular hole of radius a (;22 Å for both Tb and E. coli MscLs), the radial

and circumferential bending moments per unit length are, respectively,

Mr ¼
a
2

b
2 � a

2 1� b
2

r
2

� �
Mi �

b
2

b
2 � a

2 1� a
2

r
2

� �
Mo; (12)
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2

b
2 � a

2 11
b
2

r
2

� �
Mi 1

b
2

b
2 � a

2 11
a
2

r
2

� �
Mo; (13)

whereMi andMo are the uniformly distributed bending moments applied on

the inner and outer boundaries of the annulus, respectively. Moreover, the

deflection of the membrane (which is counted negative) can be solved as

w ¼ Mob
2 �Mia

2

2Dð11 nÞðb2 � a
2Þ
ðr2 � b

2Þ1 ðMo �MiÞa2
b
2

Dð1� nÞðb2 � a
2Þ
ln
r

b
;

(14)

where D ¼ Eh3/[12(1 – n2)] and h is the membrane thickness. Once again,

we assume that the interaction moment between helices and lipid is much

smaller than the external bending moment (i.e., Mi , , Mo); when a � b,

we have

Mr ¼ 1� a2

r
2

� �
Mo; (15)

Mu ¼ 11
a
2

r
2

� �
Mo; (16)

dw

dr
¼ Moð1� nÞr1Moa

2ð11 nÞ=r
Dð1� n

2Þ
: (17)

The curvature along the r-direction is

kr ¼ 12
Mr � nMu

Eh3
: (18)

Thus, the membrane curvature at the cavity is

krðr ¼ aÞ ¼ �24
nMo

Eh
3 (19)

and the angle of rotation in the cavity wall is

dw

dr
ðr ¼ aÞ ¼ 24

Moa

Eh
3 : (20)

Based on the structural models of E. coli-MscL (Fig. 2 h), the tilting angle

of the TM1 helices in the closed state is;10�. Upon axisymmetric bending,

FIGURE 4 The fitting of nonbonded interaction between helices of

E. coli-MscL. The x axis is the normalized separation between the helices

(with 1.0 being the equilibrium spacing). The parameters (shown in Table 2)

were fitted based on molecular mechanics (MM) calculations for the helical

pairs in the intermediate structural model in Sukharev et al. (26). This set of

parameters is fairly transferable to other structural states, as shown by the

comparison between FEM and MM calculations for helical pairs in the open

and closed structural states.
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if the cavity wall rotates by the same angle in the opposite direction the

helices may become upright and gating-by-tilt (31) becomes possible. With

h¼ 35 Å, the distributed bending momentMo needed for gating is estimated

to be ;14.3 pN; i.e., the total bending moment exerted on the circular

membrane with a radius of 200 Å is;1800 pN�nm. For Tb-MscL, the initial

tilting angle of TM1 is almost twice as large (Fig. 2 d), leading to a doubled

gating moment.

Simulation protocols

Four-node tetrahedron finite elements are used to mesh the helices and the

membrane (Fig. 3 c) with the commercial package ABAQUS (66). Each

helix contains ;1800 nodes and ;7000 elements, with all nodes roughly

equally spaced. The lipid bilayer consists of ;23,000 nodes and ;118,000

elements, with the mesh more refined toward the boundary of the inner hole.

Finite element calculations are performed using ABAQUS (66) with the

option for finite deformation and strain employed. The nonbonded inter-

actions described above are implemented as a user interaction subroutine

(UINTER), which enables the user to specify the constitutive interactions

between a master and a slave surface. Within the current formulation, both

master and slave surfaces contribute equally in the interaction algorithm.

The subroutine is called for each slave node at each time-increment during

the numerical analysis to compute the tractions at these nodes based on their

relative positions with respect to the master surface. The normal tractions

(i.e., p in Eq. 2) can be either positive or negative, which indicate surface

repulsion and attraction, respectively. In addition to computing the nodal

traction, the UINTER subroutine was used to calculate the corresponding

Jacobian to help accelerate convergence of the computations. The typical

computational time for a gating process (under equi-biaxial tension) is;3 h

on a Dell workstation with 3.2 GHz Intel Xeon CPU and 2 Gb of memory.

Since the membrane deformation is dominated by the external load, this

allows us to simplify the gating simulation. We divide the simulation into

two stages: the first focuses on the membrane deformation due to the exter-

nal load, and the second focuses on the channel conformational transition

due to the displacement field of the lipid-helix interface. We illustrate this

two-stage procedure for the case of equi-biaxial membrane tension below.

During the first stage, the protein is not included and the membrane, with

an embedded cavity (hole), is stretched by applying equi-biaxial displace-

ment on its outer boundary (Fig. 3 a). The displacement components are

applied uniformly on all finite element nodes on the four external edges, as

illustrated in Fig. 3 c, and rigid body motion is eliminated during this

process. The quasi-stretching process is divided into 20 steps to a maximum

membrane tension of s ¼ 35 MPa, which is our estimate for what is needed

to fully open the channel. At the end of each step, the nodal displacements of

the inner hole surface are recorded and transferred to the next stage. The

reaction forces acting on the external boundary nodes are also calculated,

from which the membrane tension (stress) is calculated as a function of the

prescribed displacement.

During the second stage, only the protein deformation is followed ex-

plicitly. In each step, the displacement field of the lipid hole surface recorded

in the first stage is employed as a displacement boundary condition, and the

nonbonded interactions between the lipid and the helix bundle gradually pull

the channel open. There are multiple increments within each step, and the

MscL structure is updated after each increment. The simulation is advanced

by explicit time integration, although the timescale in such quasi-static

simulations (i.e., the MscL configuration was at mechanical equilibrium at a

fixed load) does not correspond to the physical timescale associated with the

gating process, which is on the order of 10–30 ms (17,67).

Similarly, for axisymmetric bending, a total bending moment of 1800

(3600) pN�nm is exerted on the circular membrane for E. coli (Tb) in the first

stage, where the sequential deformed profiles of the lipid hole are computed

during the explicit-lipid simulation. The results are then imposed as the

displacement boundary condition in the second stage, which governs the

conformational transition of the channel.

RESULTS AND DISCUSSION

In this section, we first describe and compare the gating

behaviors of MscL from Tb and E. coli in response to mem-

brane stretch (tension), and then present similar analysis for

the gating response to membrane bending.

Gating of MscL in response to membrane stretch

The gating pathway of MscL

The structural variations during the gating transition ob-

served in the FEM model (at different fractional times) are in

qualitative agreement with the structural models developed

by Sukharev et al. (26) based on experimental constraints.

Figs. 5 and 6 depict the gating pathways predicted by these

two approaches for Tb-MscL and E. coli-MscL, respectively.

As the membrane tension is increased, the lipid hole expands

and, through the nonbonded attraction, the TM2 bundle

expands radially. This is clearly seen in the top view. As a

consequence of the TM2–TM1 and lipid–TM1 interactions,

the TM1 bundle follows the changes in the lipid and TM2

helices, which leads to increase in the pore size. The arrange-

ment of the helices can be examined from the side view in

Figs. 5 and 6. In the undeformed configuration of Tb-MscL

(Fig. 5), the projection of the transmembrane helix bundle in

the direction of the fivefold symmetry axis (the z-axis) is
roughly equal to the membrane thickness. As the membrane

tension is increased the helix bundles tilt, and the projected

length of the helix bundle is shortened by ;30% when fully

opened. The helix titling is largely due to the reduction in the

membrane thickness during dilatation. In E. coli-MscL (Fig.

6), the helix tilting is more striking than in Tb-MscL: in the

closed state, part of the TM1 and TM2 helices protrudes out of

the lipid bilayer, but with increasing membrane tension the

projection of the helix bundle on the z axis becomes shorter

than the membrane thickness. For both MscLs, the tilting of

TM1 helix bundle is more significant than that of the TM2

helix bundle. At the quantitative level, the TM1 titling angle

predicted from the FEMmodel agrees well with the structural

models derived based on experimental constraints for E. coli
(Fig. 6 c) (26). In our model, the helices are highly elastic and

flexible, and they are significantly stretched and bent to main-

tain mechanical equilibrium during the gating process; this

has not been shown in any experimental studies so far due to

the limitation in resolution.

Evolution of the pore radius

A critical parameter in the context of studying MS channel

gating is the size of the channel pore. When only the trans-

membrane helices are considered, the five TM1 helices form a

pore (see Figs. 5 and 6) with a pentagon-shaped projection

onto the x,y (membrane) plane. The area enclosed by the

pentagon can be calculated based on the FEM analysis, and

we define an effective pore radius as the radius of a circle with
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the same area as this hexagon-shaped pore. We define the

effective radial strain (Fig. 7 b) as the increase of the effective
pore radius normalized by that in the undeformed state. For

the purpose of making qualitative comparisons with previous

simulation studies (e.g., steered or targetedMD, see below), a

fractional channel radius (Fig. 7 a) is also defined as the

unitized ratio of the effective radial strain, with 0.0 denoting

the fully closed state and 1.0 denoting the maximum opening

in a specific simulation, regardless of the actual value of the

maximum channel radius computed in that simulation.

In the FEM simulation, the pore radius increases mono-

tonically with increasing membrane tension, as can be seen

in Fig. 7 a where the fractional (virtual) time is proportional

to the membrane stress. Although there are oscillatory fea-

tures due to the equilibrium iterations of many-body inter-

actions in the FEM model, the overall trend is close to a

linear behavior. Recall that in the continuum model, the rela-

tionship between membrane tension and the lipid hole radius

is strictly linear (Eq. 9). Thus, the results show that the evo-

lution of the pore radius and the membrane hole are tightly

coupled. Note that the increment of pore radius and radial

strain have stepwise features, which are related to the chan-

nel stretching-relaxing cycles as the helices iterate to their

equilibrium positions. Interestingly, such features were also

found in all-atom simulations (see below).

We note that the maximum load of 35 MPa imposed in the

FEM simulation might be slightly excessive and this indi-

cates that the evolution of the pore, which is enclosed by the

five TM1 helices, does not quite follow that of the lipid hole

(in our simulations). The maximum pore radius in the FEM

model is ;10–20% larger than in the structural models (26)

and good agreement between the fully opened states is found

at the fractional time (in the FEM simulation) of t ¼ 0.9 for

E. coli and t¼ 0.8 for Tb. When the lipid is under tension, the

deformed lipid hole surface is kept normal to the flat surface

of the membrane, whose opening radius can be determined

as a function of stress (Eq. 9) and this relationship is used to

estimate the load needed to gate the MscL. However, the

actual radius of MscL is governed by the five tilted TM1 heli-

ces enclosing the channel. It is the tilting angle that accounts

for the difference between the MscL pore radius and lipid

hole radius. Nevertheless, the closed form solution in

Theoretical Estimates of Stress and Strain provides a good

estimate for the gating process (see below) and it is straight-

forward to increase or decrease the tension stress s in the

FEM model to achieve a desired maximal pore radius.

Comparison with experiment and previous simulations

The FEM simulations for the membrane strain required for

gating are in good agreement with experimental data. In the

FEM simulations, a complete opening of MscL is achieved

when the applied membrane tension is;28MPa and 32MPa

for Tb- andE. coli-MscLs, respectively, which corresponds to

a dimensionless membrane strain of e¼s(1 – n)/E¼ 22% for

the full gating of E. coli-MscL. The corresponding strain for

50% probability for gating in the patch-clamp experiments

can be estimated (see below) to be 13%, which is in good

FIGURE 5 Comparison between gating

pathways of Tb-MscL under equi-biaxial ten-

sion: (a) the structural model in Sukharev et al.

(26) and (b) the present FEM model. The x axis

of the FEM model is a virtual time-variable,

with 0.0 being the closed state (with an effec-

tive radius of 6.5 Å) and 1.0 being the fully

opened state (with an effective radius of;20 Å

(24)); the TM1 helices are in orange and TM2

helices are in blue). The dashed lines indicate

the approximate location of membrane/water

interface.
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agreement with the prediction of the current work considering

the simplicity of the model.

The strain in the patch-clamp experiments of Sukharev

et al. (24) on the E. coli MscL can be estimated from the

membrane tension and the Young’s modulus. The membrane

tension has been measured, and is ;3.4 MPa. The Young’s

modulus used in the patch-clamp experiment can be esti-

mated as follows: the radius of the pipette was c ;3.2 mm;

with a constant pressure of pp ¼ 42 mmHg, a circular patch

of membrane that was initially flat became a bulged spherical

cap with height w;1.5 mm. In the bulge test, the pressure is

related with the deflection by pp ¼ 8Ehw3/3c4 (68), from

which E; 18 MPa. Therefore, the membrane strain encoun-

tered in the patch-clamp experiment is about e ; 13%.

The monotonic behavior found for the pore radius as a

function of membrane tension suggests that the effective en-

ergy surface is downhill toward the open state in the presence

of tension. This is inconsistent with the energy profile

estimated in Sukharev et al. (24), which involves five states

(closed, open, and three intermediates) separated by sizable

barriers, even in the presence of tension. To capture the real-

istic behavior of the channel with such an energy landscape,

FIGURE 6 Comparison between gating pathways of E. coli-MscL under

equi-biaxial tension: (a) the structural model in Sukharev et al. (26) and (b)

the present FEMmodel. The TM1 helices are in orange and TM2 helices are

in blue. (c) Comparison of the TM1 helix tilting angle between the structural

model and FEM model. The dashed lines indicate the approximate location

of membrane/water interface. Note that both TM1 and TM2 helices bend

significantly in the FEM model; whether these structural changes are

realistic remains to be clarified with further investigation. The model

developed in Sukharev et al. (26) also indicates some degree of bending of

these helices, which is not apparent in the rod representation used here; note

that TM1 has an intrinsic break at Pro-43.

FIGURE 7 Results for equi-biaxial tension. (a) The comparison between

the fractional channel radii computed from the present FEMmodel and those

from the steered (20) and targeted (36) MD simulations. (b) The comparison

between the effective radial strain versus membrane strain of the FEMmodel

and that from the steered MD simulation.
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more refined continuum mechanics models need to be devel-

oped and the effect of temperature (thermal fluctuation) also

needs to be considered.

The evolution of the pore radius during the gating process

as found in the FEM simulations is comparable to that in all-

atom MD studies (20,36). As shown in Fig. 7 a, once the

simulation time and pore radii in the steered (20) and targeted

MD (36) simulations are converted into the fractional time

and the fractional channel radius with respect to themaximum

degree of channel opening in these simulations, the behavior

is very similar in the three very different studies. The fractional

channel radius varies essentially linearly with the fractional

time; the zigzag feature is present in both FEM and steered

MD simulations although the magnitude is much larger in the

latter, which might be due, in part, to the larger scaling factor

used for steered MD simulations (where the channel opening

is much smaller) in Fig. 7 a. The evolution of the pore size is
almostmonotonic in the targetedMDsimulation, which could

be due to the strong monotonic constraint (though in RMSD,

not in the pore radius per se) used in such simulations (37).

Regarding the effective radial strain as a function of the

membrane strain, a quantitative comparison can be made only

between FEMand the steeredMDbecause no lipidwas present

in the targeted MD study. In the steered MD study, the lipid

used by Schulten et al. (20) was dilauroylphosphatidylethanol-

amine, for whichYoung’smodulus could not be obtained from

the literature;moreover, both themembrane surface tensionand

the steering force acting on selected protein residues coexist

in the atomic system, which makes it very difficult to estimate

the membrane stress. Instead, we estimated the dimensionless

membrane strain fromEq. 9, that is, e¼s(1 – n)/E¼Dr(1 – n)/
2a, where a;21.4 Å is the average undeformed radius of the

lipid hole andDr; 3.3 Å is the increment of the hole radius by

the endof the simulation, bothmeasured from the trajectories of

the steered MD simulation (20). Therefore, the maximum

membrane strain is;5.4% in the steered MD study.

As shown in Fig. 7 b, although the channel was far from

fully opened in the nanosecond steered MD simulation, the

relationship between the effective radial strain and mem-

brane strain in the steered MD analyses is in good agreement

with the current FEMmodel at small strain, which nicely illu-

strates that the FEM model has a very reasonable description

for the forces involved in the gating process, yet is capable to

overcome the length- and timescale limits and achieve a

much larger MscL gating profile.

Gating of MscL in response to membrane bending

The gating pathway of MscL

The out-of-plane bending deformation of the membrane

depends critically on the remote mechanical load applied to

the system, which exceeds the capability of typical all-atom

simulations. Simulating the response of MscL to axisymmet-

ric bending nicely illustrates the unique power of the present

FEM model. Based on the discussions in Theoretical Esti-

mates of Stress and Strain, if a maximum total bending mo-

ment of;1800 (3600) pN�nm were applied uniformly on the

circular membrane (Fig. 3 b) for E. coli (Tb) MscL, the cavity

wall would rotate for ;10� (20�) to fully reduce the tilting

angle of the helices. The tilting angle of the transmembrane

helix bundle, a, is defined in terms of the effective radii of the

five TM1 helical bundle at the locations that correspond to the

surfaces of the lipid membrane (see Fig. 8 a for E. coliMscL).

With bending deformation, the wall of the lipid hole rotates

whereas the averaged radius of the lipid cavity throughout the

thickness remains essentially unchanged. Through the lipid-

helix interactions, both TM1 andTM2helices become upright

and the pore radius is only moderately increased. Similar

trends are found in the E. coli (Fig. 8 b) and Tb MscLs (Fig.

8 c); the gate-by-tilting is more obvious in the latter case,

leading to a more expanded pore as quantified below.

Evolution of the pore radius

As shown in Fig. 9 a forE. coliMscL,with increasing bending

curvature, the effective radial strain of the pore shows

interesting nonmonotonic behavior: it first increases for;4%,

then decreases to;�8%, and then increasesmonotonically to

;8%. Such a trend is related to themoving pattern of the TM1

helices: upon bending, the TM1helices not only becomemore

upright (which increases the pore radius) but also slide toward

the interior of the membrane (which decreases the pore

radius). As a result, the evolution of the channel radius and the

radial strain exhibit nonmonotonic behavior as shown in Fig.

9; note that the effective radial strain eR in Fig. 9 a (or that in
Fig. 7 b) can be converted to the channel radius with the

relation R¼ R0(eR1 1), where R0¼ 6.5 Å is the undeformed

radius for E. coli-MscL. As shown in Fig. 9 b, the tilting angle
of TM1 helices reduces gradually with the fractional time. At

the maximum loading, the remnant tilting angle is;1� for E.
coli and the TM1 helices have not yet become upright,

indicating that we have slightly underestimated the bending

moment required for rotating the helices to achieve maximum

gating-by-tilt. Recall that the bending moment is estimated

(see Theoretical Estimates of Stress and Strain) based on the

tilting angle of the lipid hole whereas the result plotted in Fig.

9 b is that of the TM1 helices.

CONCLUDING REMARKS

The value of continuum-mechanics models

Given the importance of mechanically driven processes in

biology (1,3,4,7,9), effective theoretical and computational

methods for their analysis are of considerable significance.

The development of such methods is not a straightforward

task because of the multiscale nature of typical biomechan-

ical problems. Here we take an important step forward by

adopting a continuum-mechanics model in the finite element

(FEM) framework. Although simple continuum-mechanics
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models have been used to describe highly simplified models

of biomolecules (15,16), adopting a flexible implementation

using FEM makes it possible to study biological systems

with more realistic representation of their irregular shapes,

heterogeneous properties, and complex structural changes.

The parameterization process of the FEM model also makes

a natural connection to all-atom simulations.

As a first illustration, we apply the simulation model to

study the gating behavior of mechanosensitive channels

(7,10,17) of large conductance (MscL) in bacteria; the MscL

is chosen based on its relatively simple structural topology

and striking structural response to external mechanical per-

turbation, which have been rather well-characterized in a

series of experiments (17,21). Even with the simple param-

eterization as chosen in the current study, the FEM-based

model captures the major physical properties of MscL.

The model makes some predictions that can be tested

experimentally. For example, the FEM model predicts that

the MscL responds in very different fashion to equi-biaxial

(in-plane) tension and axisymmetric (out-of-plane) bending

of the lipid membrane: With the equi-biaxial tension, the

channel opens fully at a maximal tension; however, with

axisymmetric bending, the channel opens only slightly. This

sensitivity of MscL to the form of the mechanical perturba-

tion has been implicitly assumed in previous work but has

never been shown explicitly using either experiment or

theory (20,21,31,42). Another prediction is that both TM1

and TM2 helices bend substantially during the gating pro-

cess; although it is possible that these are artifacts of the

current FEM model due to the highly simplified description

of helices, the result makes physical sense.

It is encouraging to see that the simple model developed

here shows characteristic differences in the behavior of the

MscL in the two different bacteria. With longer TM helices,

the E. coli-MscL exhibits more striking tilting for the helices

during gating, which was also featured in the structural

model of Guy et al. (26) based on experimental constraints.

Moreover, the gating pathway and pore radius evolution in

FIGURE 8 Results of the present

FEM model as the membrane was sub-

ject to axisymmetric bending. (a) The

TM1 helix bundles at fractional time 0.0

and 1.0, and the definition of the tilting

anglea for theTM1helix bundle; (b) the

gating pathways of E. coli-MscL; and

(c) the gating pathways of Tb-MscL.

The TM1 helices are in orange and TM2

helices are in blue. The dashed lines

indicate the approximate location of

membrane/water interface.
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the FEM simulations are in quite close agreement with the

all-atom steered (20) and targeted (36) MD simulations.

Given that the steered simulations were too short to observe

the entire opening process and the targeted simulations

employed unphysically large forces, the agreement between

FEM results and these simulations has limited quantitative

significance. It does indicate, however, that the FEM frame-

work captures the essential forces for the gating process.

Application of the FEM model to study the structural

response of MscL to membrane bending clearly illustrated

the unique value of continuum-mechanical models.

Future directions

The FEMmodel of this work is highly simplified, the encour-

aging results for gating notwithstanding, and is only meant to

illustrate the value of FEM-based continuum-mechanics

models in biology. The FEM-based model complements all-

atom simulations and purely phenomenological models in

two ways:

First, the FEMmodel overcomes the length- and timescale

limits of atomistic simulations, yet it is not intended to

reproduce all relevant atomistic details or to replace all-

atom simulations; e.g., even large-scale conformational

transitions in biomolecules typically involve important

local structural rearrangements (69,70), which need to

be treated implicitly in a continuum model.

On the other hand, based on useful insights obtained from

atomistic simulations and/or experiments, the FEM

model can be improved or decorated to capture the most

important features that dictate the mechanical response

of biomolecules, thus making it sufficiently detailed

and less phenomenological. Specifically in the context

of mechanosensation, further studies are being carried

out in our research groups to either make the model

more quantitative to fully take advantage of the flexi-

bility offered by FEM, or to go beyond the quasi-static

approach adopted here for the study of more complex

biomechanical processes.

Regarding the quantitative improvements of the continuum-

mechanical model, the helix mechanical properties could be

readily made to be inhomogeneous and/or anisotropic. For

example, the presence of hinge regions in a helix (e.g., at the

proline in TM1 or around glycine in general) can be taken

into consideration by modifying the mechanical properties or

surface area of such regions. Moreover, the surface of a helix

may be divided into hydrophilic and hydrophobic sections

with different Lennard-Jones interaction potentials with the

lipid; this can be a crucial quantitative improvement consid-

ering the postulated importance of hydrophobic mismatch to

the function of membrane proteins (17,23,33,46,71). Solva-

tion of the hydrophilic regions, which has been proposed to

make a crucial contribution to the gating process (22), can be

included in a similar fashion to implicit solvent models in

all-atom simulations (72). The relevant parameters can be

obtained from more sophisticated all-atom simulations com-

pared to those performed here; e.g., potential of mean force

at a relevant temperature instead of potential energy can be

computed. The cytoplasmic S1 helices and the loops link-

ing TM1 and TM2 helices, which may also play an impor-

tant role in determining the quantitative gating behavior

(17,26,47,48), should also be included. Only with all these

improvements considered is a model likely to capture the

more complex features of the MscL energy landscape as esti-

mated by patch-clamp studies (24). For biomolecules with

more complex secondary and tertiary structures, constructing

an effective continuum model is more challenging although

certainly possible and does not introduce additional difficul-

ties into the FEM simulation.

FIGURE 9 Results for axisymmetric bending of the present FEM model.

(a) The evolution of the effective radial strain as a function of the fractional

time. (b) The variation of the tilting angle of the TM1 helix bundle as a

function of the fractional time.
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The membrane can be made more heterogeneous to mimic

realistic cellular membranes that include many components.

(1) For example, experimental measurements of the popula-

tion response of E. coliMscLs in the native membrane reveal

that there is;5% variation in the energy cost of the opening

among the channels, or ;5% variation in tension (therefore,

effective expansion area) between the individual channels

due to the environment (73). Although 5% seems to be small,

for such a system with steep sigmoidal dependence of the

opening probability on tension it leads to the dramatic 50%

decrease in the apparent gating energy cost and expansion

area measured over the whole population (;27 kBT, 12 nm
2).

This compares to the measurements of individual channels

(;50 kBT, ;20 nm2). There are other subtle but potentially

important issues such as the peristaltic deformation of the

membrane and/or the asymmetric motion of the membrane

leaflets that may influence the gating behavior and therefore

need to be considered (74). Recent advances in developing

effective coarse-grained models for multicomponent lipids

(75,76) will greatly facilitate the efforts in constructing con-

tinuum models for heterogeneous membrane systems. In

addition to studying individual biomolecules, the availability

of effective continuum mechanical models will also raise the

exciting possibility of studying cooperativity between many

biomolecules, such as in muscle contraction and signal

transduction across the cellular membrane (3,77–80).

Regarding the FEM simulation, it is fairly straightforward

to go beyond the quasi-static approach adopted here and in-

clude time- aswell as temperature-dependent features. Simulat-

ing the lipid and channel in a fully coupled fashion makes it

possible to treat lipid-protein interactions on a more explicit

and realistic level. Both time- and temperature-dependent

physical properties of the helix and membrane, as well as the

interactions among them, can be readily incorporated into

the FEM model. For example, it is possible to include a

dynamic (oscillatory) mechanical load, which can be very

interesting to the study of phenomena such as desensitization

of ion channels (81). Temperature is also an interesting

variable because some biomechanical processes can also be

triggered or regulated by change in temperature (82); how to

include the effect of thermal fluctuation in a continuum

simulation, however, is a challenging issue. It is straight-

forward to vary the intrinsic variables (e.g., membrane

curvature, thickness, and physical properties of the protein

or macromolecules) and extrinsic parameters (e.g., osmotic

pressure and other environment-related variables), and to

explore their effects. With its flexible length- and timescale

formulation, the FEM model can be used to simulate the

conformational transitions of proteins or other macromole-

cules when the system is under very complex mechanical

load such as cell adhesion. Moreover, low-resolution

intermediate structures accessible in FEM simulations can

be further refined by subsequent all-atom simulations.

Evidently, combining recent advances in all-atom simula-

tions and solid mechanics will greatly expand the limitations

in the spatial and timescales for the biological problems that

can be analyzed computationally.
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