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Abstract

We propose to model thick multiwalled carbon nanotubes as beams with non-
convex curvature energy. Such models develop stressed phase mixtures composed of
smoothly bent sections and rippled sections. This model is motivated by experimen-
tal observations and large-scale atomistic-based simulations. The model is analyzed,
validated against large-scale simulations, and exercised in examples of interest. It
is shown that modelling MWCNTs as linear elastic beams can result in poor ap-
proximations that overestimate the elastic restoring force considerably, particularly
for thick tubes. In contrast, the proposed model produces very accurate predictions
both of the restoring force and of the phase pattern. The size effect in the bending
response of MWCNTs is also discussed.
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1 Introduction

Since their discovery in 1991 (Iijima, 1991), carbon nanotubes (CNTs) have
attracted much attention because of a unique combination of properties. A
very special crystallographic and geometric structure, often nearly flawless,
results in remarkable mechanical, electronic, thermal and chemical proper-
ties. Mechanics plays a very important role, not only because arguably CNTs
are the stiffest and strongest material in Nature, but also because the elec-
tronic and chemical properties are a strong function of deformation (Tombler
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et al., 2000; Srivastava et al., 1999). It is not surprising that CNTs appear as
a fundamental building-block in an array of nanostructured multifunctional
materials and nanoscale devices (see Tombler et al. (2000); Papadakis et al.
(2004); Poncharal et al. (1999); Zhang et al. (2004); Cao et al. (2005); Lau
et al. (2003) to name a few that are referenced elsewhere in the paper).

The focus of the present paper is on the mechanics of multiwalled carbon
nanotubes (MWCNTs). MWCNTs can be geometrically understood as mul-
tiple layers of graphene rolled into nested cylinders. The theoretical study of
the mechanics of CNTs has been a very active topic of research in the recent
years, ranging from their elastic properties (Kudin et al., 2001; Sánchez-Portal
et al., 1999) to the study of how they break through plasticity or brittle frac-
ture (Dumitrica et al., 2006). In the study of fracture, the role of defects has
been highlighted by several studies (Mielke et al., 2004; Zhang et al., 2005;
Khare et al., 2007) to harmonize theory and fracture experiments on indi-
vidual MWCNTs (Yu et al., 2000). Although the linearized elasticity mod-
uli and the failure mechanisms are of importance, the nonlinear elasticity
of CNTs is the key mechanical phenomenon in many situations of scientific
and technological interest. Indeed, CNTs have shown to be extremely flexi-
ble, resilient to severe and cyclic mechanical deformation, and very prone to
mechanical buckling. They have been shown to undergo dramatic geometric
transitions reversibly, without noticeable defects in the crystalline structure
(Iijima et al., 1996; Yakobson et al., 1996; Tombler et al., 2000). Often, mor-
phologically very different configurations are metastable states of the system
(Arroyo and Belytschko, 2004b; Zhang et al., 2006). Thus, the hollow (nearly)
perfect structure of CNTs, together with a wall made out of one of the stiffest
and strongest materials, confers these nanostructures with features of strong
crystalline solids (when probed in tension in the direction of their axis) and
features of flexible macromolecules.

Because of these mechanical properties, CNTs and in particular MWCNTs act
as structural members in a number of devices and nanostructured materials
(Lau et al., 2003; Tombler et al., 2000; Papadakis et al., 2004; Poncharal et al.,
1999). In some instances, not only their geometry, high stiffness or strength is
sought, but specifically the resilience and ability to undergo large deformations
is exploited (Zhang et al., 2004; Cao et al., 2005). Despite the fact that in the
literature the nonlinear elasticity of CNTs is well established and has been
shown to have far-reaching consequences (Yakobson et al., 1996; Arroyo and
Belytschko, 2003; Pantano et al., 2004), in obtaining properties of CNTs from
experimental observations or in analyzing CNT-based devices, researchers pre-
dominantly use linear models of elasticity such as the Euler-Bernouilli beam
theory. It is often the case that observations of anomalous mechanical be-
havior highlight the limitations of such models (Poncharal et al., 1999). The
need for a tractable model amenable to simple analytical calculations, which
nevertheless captures the complex mechanics of thick MWCNTs, is precisely
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the motivation of the present work. It is not reasonable to require large-scale
atomistic or multiscale simulations on supercomputers to interpret correctly
routine material characterization experiments. We show in this paper that
in very common situations the usual linear elastic models provide very poor
predictions, and that a slightly richer model is sufficient for an accurate de-
scription of the mechanics of thick MWCNTs.

The model we present here strongly relies on the observation that thick MWC-
NTs are very prone to developing rippling deformations when probed in bend-
ing. By thick we mean tubes with tens of walls or more, whose inner hollow
space is much smaller than the thickness of the multi-layer structure; such
nanotubes are very common as shown by the references elsewhere in the pa-
per. As revealed by recent computations (Arroyo and Belytschko, 2003), the
rippling deformations cause an anomalous anharmonic elastic behvior of the
nanotubes seen as a structural member (see Section 2). This anharmonic elas-
tic response is strongly size-dependent, as elaborated in Section 2. Based on
these observations, we propose in Section 3 a mesoscopic nonlinear beam model
to describe thick MWCNTs. This simple yet nontrivial model retains the es-
sential nonlinear mechanics of thick multiwalled carbon nanotubes, and allows
us to model accurately large systems with hundreds of millions of atoms. In
Section 4 we test the model against large-scale simulations, and find an ex-
cellent agreement. In Section 5 we exercise the model in simple applications
illustrating the ability of the proposed model to describe the mechanics of
MWCNTs-based devices and materials. The systems studied are easily acces-
sible with the proposed model, but are out of reach of atomistic or even typical
coarse-grained simulations.

The kind of phase-transforming beam model we propose for nanotubes was
studied mathematically by James (1981). Our work is also conceptually related
to other approaches to mesoscopic models for the mechanics carbon nanotubes
in different regimes. For instance, Zhigilei et al. (2005) developed a model rem-
iniscent of a discretized rod model with quadratic contributions to the strain
energy, and applied it to study the dynamics of CNTs. Buehler et al. (2004)
identified a regime for very long tubes in which the entropic contributions to
the free energy dominate the internal energy contributions. This observation
motivated the entropic model in Buehler (2006) for very long tubes. In the
regime considered here, entropic effects are negligible.
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2 Rippling of carbon nanotubes

2.1 Experimental record and previous theoretical work

Rippling deformations of thick MWCNTs have been reported in the literature,
see Fig. 1 for an illustration. In these TEM images, a number of MWCNTs are
bent through kinematic constraints due to polymeric matrices as in Fig. 1(b-e)
or to electrostatic forces as in Fig. 1(f). While single-walled CNTs or MWCNTs
with a large hollow internal space typically form localized sharp kinks when
subject to bending (see for instance Iijima et al. (1996) or the lower left pic-
ture in Fig. 1(b)), the absence of this internal space prevents thick MWCNTs
from developing deep buckles capable of absorbing alone the deformation, and
rather form sequences of morphologically well defined ripples extending over
long sections of the nanotubes. A dramatic reduction in the effective Young’s
modulus of MWCNTs with increasing tube diameter, inferred from measured
resonant frequencies and the Euler-Bernouilli linear elastic beam theory, has
been attributed to the emergence of this rippling deformation mode (Poncharal
et al., 1999). It is interesting to note from the TEM micrographs in Fig. 1 that
even if the deformation is not completely localized in a very narrow region as
in bent SWCNTs, these MWCNTs display mixtures of rippled highly curved
regions with smoothly bent almost straight regions. Thus, to some degree,
the deformation is also concentrated in a particular region. It should also be
emphasized that these rippling deformations are a purely elastic (recoverable)
phenomenon (Bower et al., 1999), although upon excessive deformation, re-
coverable rippling is followed by irreversible damage in the MWCNT structure
(Poncharal et al., 1999).

The rippling deformations have been the subject of a number of theoretical
investigations, most dealing with the understanding of the morphology of the
ripples and how their wavelength and amplitude scales with the imposed cur-
vature and the nanotube diameter. Given the practical difficulty of accessing
the thick MWCNTs mechanics by direct atomistic calculations (they typically
contain tens to hundreds of million atoms), different continuum approxima-
tions have been employed. In Pantano et al. (2003, 2004), elastic thin shell
models of MWCNTs were treated computationally, while in Mahadevan et al.
(2004) analytical calculations were performed on thin shell models inspired
by experimental observations of bent rubber scrolls. This reference hypoth-
esized that the available TEM micrographs of rippling were a manifestation
of popliteal rippling observed in the rubber scrolls, while detailed computa-
tions such as those in the present paper suggest that the observed rippling in
MWCNTs results from a diamond buckling pattern. As a matter of fact, for
rubber scrolls loosely packed, the diamond pattern is also observed (Mahade-
van, 2004). Liu et al. (2003) based their study in 2D simulations with a highly
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anisotropic nonlinearly elastic model which displayed undulations reminiscent
of the rippling deformations of MWCNTs. The main goal of this reference
was to explain the reduction in the effective Young’s modulus with increasing
diameter observed by Poncharal et al. (1999), and to this end, an elastic beam
model with a scale-invariant bilinear moment-curvature relationship was pro-
posed and exercised. The model we present here is related to this approach,
but with important differences as it will become apparent later.

2.2 Simulation method and setup

Using finite element simulations based on an atomistic-based finite deforma-
tion continuum theory for single-layer crystalline films, it has been possible to
perform reliable accurate simulations of multimillion MWCNT systems dis-
playing rippling (see Arroyo and Belytschko (2002) for the theory and Ar-
royo and Belytschko (2004b) for the implementation). These computations
have revealed that the diamond or Yoshimura buckling pattern is the three-
dimensional structure responsible for the TEM micrographs of rippling defor-
mations, and that an anharmonic elastic response governs the mechanics of
thick multiwalled carbon nanotubes (MWCNTs). While it is true that many of
the features of rippling mechanics result from classical nonlinear thin shell me-
chanics (the dominant nonlinearity is geometric), the simulations performed
in this work have the following features:

(1) The elasticity of the graphene wall is systematically inherited from the un-
derlying atomistic potential. This automatically includes into the model
the material nonlinearities. This is not the case in geometrically nonlin-
ear models that fit the linearized moduli and adopt a standard functional
form of the strain energy for finite deformations. It has been shown in
Arroyo and Belytschko (2005) that a finite deformation Kirchhoff-Saint
Venant model with correct infinitesimal moduli captures accurately the
small strain response of CNTs, and describes only qualitatively the large
deformation mechanics. Here, the widely used Brenner potential describes
for the bonded interactions (Brenner, 1990).

(2) The continuum theory provides a continuum version of the inter-wall van
der Waals interactions, which replaces the double sum over the atoms
by a double integral over the nanotube surface. These integrals are then
approximated through numerical quadrature in the finite element imple-
mentation (Arroyo and Belytschko, 2004b). These interactions are crucial
in CNT mechanics. A standard Lennard-Jones potential models the van
der Waals interactions (Girifalco et al., 2000). This potential produces
very smooth and weak inter-wall tangential interactions, in agreement
with experimental observations (Cumings and Zettl, 2000). Upon irradi-
ation (Kis et al., 2004) or cycling in the presence of impurities (Williams
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et al., 2002), stronger tangential inter-wall forces have been reported.
This effect is ignored here.

(3) The continuum model does not require the artificial concept of a wall
thickness for a two-dimensional arrangement of atoms governed by a
model that views them as points (i.e. relying on the Born-Oppenheimer
hypothesis). The issue of the thickness of graphene has stirred a some-
what sterile controversy in the physics and the engineering literature, the
essence of which is a matter of definition and a consequence of an un-
natural model. Viewing the graphene sheet as an object with thickness
requires an artificial modification of the classical thin shell theory, intro-
ducing different fictitious thicknesses to produce a theory coherent with
the moduli of CNTs obtained either from experiments or from ab initio
calculations (see Huang et al. (2006) and references therein). Our model
agrees with the view expressed for instance in Hernández et al. (1998);
Kudin et al. (2001) that the elasticity of graphene is properly described
in terms of surface objects rather than bulk objects. In Arroyo and Be-
lytschko (2004a), a complete treatment of the elastic moduli of nanotubes
was presented without the need of defining a wall thickness.

(4) As extensively tested in Arroyo and Belytschko (2004b), the computa-
tional strategy followed here very accurately reproduces atomistic sim-
ulations, and for large systems grants reductions in the computational
complexity of the models of typically two orders of magnitude.

To study the response of MWCNTs subject to pure bending, four-point bend-
ing tests have been performed computationally in an incremental-iterative pro-
cedure. A limited-memory BFGS algorithm is implemented to minimize the
energy at each loading step, thereby finding stable equilibrium configurations.
The typical simulation setup for these studies is shown in Fig. 2 (a). Note that
each individual wall is modeled, and interacts with neighboring walls through
a Lennard-Jones model of the van der Waals energy. We assume that there
are no other stronger coupling forces, such as those occurring in irradiated
nanotubes (Huhtala et al., 2004; Kis et al., 2004), and therefore, the sliding
forces between walls are very weak in agreement with ample experimental ev-
idence. The study of the influence of stronger inter-wall coupling forces on the
overall structural response of MWCNTs is certainly an interesting topic, but
falls beyond the scope of the present work.

When studying the strain energy vs. curvature relation, only the central sec-
tion of the tube is considered, sufficiently far away from the supports. This
part of the model displays a uniform deformation state to a very high degree as
checked in the post-processing of the simulations. The relevant section in the
computation of the energy and the actual radius of curvature is also shown in
Fig. 2 (b). The largest model considered here is a 40-walled CNT 480 nm long
(see Fig. 3). This system contains about 31 million atoms. The reduced finite
element model has only slightly over 400,000 nodes. Direct atomistic simula-
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tion of such a system is extremely challenging, while the reduction granted by
the atomistic-based continuum model makes it possible to conduct systematic
simulation campaigns like the one presented here. However, the computational
cost of the reduced model is still quite large; on the one hand, the system is
very nonlinear and thus requires an adequate number of loading steps and it-
erations for proper convergence. On the other hand, as detailed in Arroyo and
Belytschko (2004b), even if large finite elements encompassing many atoms
discretize each wall, the scale of the van der Waals interactions (the equilib-
rium spacing of the walls is about 0.34 nm) needs to be resolved. This results
in a large number of quadrature points in each finite element to integrate
accurately the van der Waals interactions. For instance, the 40-walled CNT
model described above required 10 million van der Waals quadrature points.
Note that these are not degrees of freedom, and that the constitutive relation
is evaluated in fewer quadrature points. The simulations were performed in a
large-scale computing facility using up to 512 processors. The results reported
are very robust with respect to changes in the size of the loading steps, the
numerical tolerances, and the refinement of the finite element mesh.

The simulation setup described above is computationally expensive since only
one half of the computed model is actually considered to extract the energy-
curvature relation. However, we have found that simpler boundary condi-
tions in earlier works introduce additional kinematic constraints, which have
a noticeable quantitative influence on the energy scalings. In Arroyo and Be-
lytschko (2003), Dirichlet boundary conditions at the ends of much shorter
tubes were implemented. The fixed node positions were consistent with uni-
formly curved deformations and kept the end cross-sections planar. As shown
in Fig. 2, with the present setup individual walls slide relative to each other,
resulting in end cross-sections that are far from being planar. This can be eas-
ily understood by noting that the outer walls suffer a stronger rippling that
the inner walls. Of course, depending on the actual conditions in a particular
experimental setting, different constraints may become appropriate. We have
chosen the four-point bending setup because it provides a clean method to
probe pure bending, and it avoids unnatural or hidden constraints. We should
also mention that the boundary conditions in previous studies are quite dif-
ficult to properly implement since, once rippling occurs, the neutral fiber of
the MWCNT ceases to be the geometrical central fiber. The location of this
neutral fiber is required to impose boundary conditions that result in a homo-
geneous bending state, but it is not known a priori.

2.3 Rippling mechanics and energy scaling for thick MWCNTs

A number of MWCNTs of different sizes (from 10 to 40 walls) have been
studied. In all cases we observe that for small imposed curvatures the strain
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energy of the system (which includes the bonding energy of each graphene
layer and their interaction van der Waals energy) scales harmonically, i.e.

E ∝ κ2, (1)

where κ denotes the imposed curvature. The harmonic regime results from a
harmonic strain energy density w (strain energy per unit undeformed length
of the nanotube) of the form

w =
1

2
Bκ2. (2)

where the coefficient of proportionality can be very well estimated analytically
as

B = Ysπ
n∑

i=1

r3
i , (3)

where Ys is the surface Young’s modulus of graphene (Hernández et al., 1998;
Kudin et al., 2001; Arroyo and Belytschko, 2004a), n is the number of tubes in
the MWCNT and ri is the radius of each individual tube. We systematically
observe that beyond a given curvature and coinciding with the emergence of
the rippling mode, the scaling of the strain energy with deformation dramat-
ically changes its nature to a robust power-law

E ∝ κa, with 1 < a < 2. (4)

This exponent characterizes an anharmonic elastic response in that it lies be-
tween the harmonic exponent of 2 and the typical exponent of 1 predicated by
linearized buckling theory, which predicts that the body or structure can be
deformed at constant force. The anharmonic scaling arises from a complex bal-
ance between the short-range membrane and bending interactions and van der
Waals intertube forces in the constrained multi-layer structure of MWCNTs.
This regime manifests itself in deformations reminiscent of the Yoshimura or
diamond pattern, instead of the classical Fourier buckling modes (Bažant and
Cedolin, 1991).

The transition between the harmonic and the anharmonic elastic power-laws
is better represented in a logarithmic scale as shown in Fig. 2 (d). From the
presented data, it is clear that the anharmonic regime emerges at moderate
curvatures, and as discussed below, the thicker the nanotube the narrower
the harmonic regime is. Thus, for thick tubes the bending response is funda-
mentally dictated by the rippling regime. To our knowledge, it has not been
possible to derive analytical estimates of either the exponent a or the constant
of proportionality in the anharmonic power-law. Nonlinear analysis has been
successful in other related situations involving thin shell crumpling (Cerda
et al., 1999).

Since we are considering uniformly bent nanotubes, the anharmonic energy
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Table 1
Material parameters obtained computationally for several MWCNTs.

b (nm) B (aJ·nm) C̄ (aJ/nm) a

10-Walled CNT 7 9.3 · 104 2.0 · 102 1.42

20-Walled CNT 14 1.4 · 106 4.5 · 102 1.42

30-Walled CNT 21 6.7 · 106 8.5 · 102 1.42

40-Walled CNT 28 2.1 · 107 1.2 · 103 1.42

scaling arises from a strain energy density of the form

w = Cκa = C̄κ̄a, with 1 < a < 2. (5)

where the non-dimensional measure of curvature κ̄ = bκ has been introduced
and b denotes the diameter of the nanotube. Therefore C̄ has units of energy
per unit length. The values for the parameters B, C̄ and a obtained from the
simulations are reported in Table 1. These values correspond to the Brenner
potential (Brenner, 1990) used in the present study, a standard analytical po-
tential for hydrocarbon systems. It is well-known that this potential produces
excessively compliant models and it has been slightly modified to produce
correct elastic moduli (Arroyo and Belytschko, 2004a). The modified Brenner
potential leads to results and conclusions very similar to those reported here.

Careful analysis of the computations reveals that in the vicinity of the transi-
tion the energy of the system is slightly below both regimes described above.
This coincides with deformations exhibiting the classical sinusoidal Fourier
buckling mode in the direction of the nanotube axis, characteristic of linear
instability analysis, see Fig. 3(b). A mixture of the Fourier and the Yoshimura
deformation patterns can also be observed in this Figure. The Fourier mech-
anism very early becomes less favorable than the Yoshimura pattern. Thus,
the numerical results suggest that the Fourier deformation mode is the most
efficient one in a very narrow range, and allows the system to tunnel between
smoothly bent harmonic states and rippled Yoshimura states.

It should be pointed out that rippling deformations not only appear in bend-
ing. Torsional rippling has been also theoretically predicted (Arroyo and Be-
lytschko, 2003, 2005), and there seems to be experimental evidence supporting
this prediction (Forró and Schonenberger, 2001). In principle, it is conceivable
that compressive rippling could occur. However, it is unlikely to be observed
except for very short tubes since a compressed MWCNT is prone to relax
through beam buckling rather than through local compressive buckling. As a
matter of fact, strongly compressed and laterally constrained MWCNTs have
been observed to develop compressive crushing bands (Lourie et al., 1998).
In the present paper we focus on bending rippling, avoiding the complicated
issue of bending-torsion-compression coupling.
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2.4 Size effect

We now discuss the size effect in the mechanical response of MWCNTs. To
highlight the absence of scale-invariance, we first review the scale-free har-
monic case. The harmonic (though geometrically nonlinear) response of an
elastic rod subject to bending is characterized by a quadric growth of the
strain energy density w (energy per unit length of the rod) in terms of the
curvature κ of the rod:

w =
1

2
Y Iκ2, (6)

where I denotes the moment of inertia of the cross section, and Y the ma-
terial’s Young’s modulus. The cross section of the beam is characterized by
a dimension b (e.g. the outer diameter of a MWCNT), and its length is de-
noted by `. Consider now a beam scaled by a factor λ, with bλ = λb, `λ = λ`,
Iλ = λ4I, while Y does not change. Consequently, the energy of the origi-
nal beam and the scaled beam subject to a given non-dimensional curvature
(κ̄ = bκ) follow the relation

E(κ̄) =
1

2
Y I

`

b2
κ̄2 = λ−3 1

2
Y Iλ

`λ

b2
λ

κ̄2 = λ−3Eλ(κ̄) (7)

According to this formula, upon appropriate re-scaling by the λ−3 factor, all
the E− κ̄ curves of geometrically self-similar beams made out of the same ma-
terial collapse into a single curve, hence the harmonic theory of beam bending
does not display a size effect.

Let us now turn to the MWCNTs mechanics. Even though MWCNTs are not
solid cylinders, we are considering tubes with a small inner hollow space. It is
well known that in this case a good approximation to their linear mechanics
is obtained by modelling thick MWCNTs as bulk cylinders with an equivalent
Young’s modulus Y = Ys/t, where t = 0.34 nm is the spacing between the
walls and Ys is the surface Young’s modulus of the graphene layer viewed as
a continuum without thickness. We check that in the harmonic regime, the
energy-curvature relationships of a 10-walled, a 20-walled, a 30-walled, and
a 40-walled CNTs tested computationally indeed collapse into a single curve
upon appropriate scaling. This is shown by the collapse of the blue curves in
Fig. 4 (a). The energy-curvature relations have been plotted in a log-log scale,
which is better suited for our purposes. However, it is apparent in this Figure
that in the anharmonic regime the rescaled energy-curvature curves do not
collapse, but rather show a distinct size effect. This size-dependent mechanical
response is not surprising noting that the morphology of the ripples is not scale
invariant, as shown in Fig. 4 (b). Specifically, we observe that:

(1) For thicker MWCNTs, the transition between the harmonic and the an-
harmonic regimes occurs at a smaller non-dimensional curvature.
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(2) The exponent characterizing of the anharmonic regime does not show a
dependence on the size of the MWCNTs; in all cases, we find a = 1.42.

The first observation is consistent with the fact observed in computations
that for thick MWCNTs the harmonic regime ceases to be stable for very
small imposed non-dimensional curvatures. As for the second observation, we
note that in previous simulations (Arroyo and Belytschko, 2003) using the
over-constrained Dirichlet boundary conditions described in Section 2.2, larger
exponents were obtained (e.g. a = 1.66 for a 34-walled CNT) and a depen-
dence of the exponent a with size was observed. This dependence should be
considered spurious for pure bending, but is certainly meaningful in more con-
strained situations. We shall see the important consequences of the size effect
in structural problems later in the paper. A systematic quantitative study of
the size dependence can be found in Arias and Arroyo (2007).

It should be emphasized at this point that this strong size effect is in sharp
contrast with the constitutive moment-curvature behavior predicated by Liu
et al. (2003). On the one hand, as further emphasized in the following section,
the moment-curvature we obtain is neither monotonic nor bilinear. On the
other hand, Liu et al. (2003) find a scale-invariant law. This may be due to
the fact that these authors consider a simplified 2D model for the MWCNTs.

3 Phase transforming elastica

We next propose an elastica model with a non-convex bending energy density,
which yields simple stressed microstructures consisting of mixtures of high
curvature and low curvature phases. We restrict our attention to the purely
static case. A similar model was studied in detail by James (1981). General
solutions were obtained for buckling, and in particular is was shown that such
a model produces deformations with continuous tangents and discontinuous
curvatures at the phase boundaries. This model was later exercised to inter-
pret the experimental results for polycrystalline wires made out of a shape
memory alloy (Berg, 1995a,b). In three and four point bending experiments,
the coexistence of low and high strain phases was observed upon stress.

More recently, Purohit and Bhattacharya (2003) and Purohit and Bhattacharya
(2002) have considered beams which are non-convex in shear and stretch, but
convex in curvature. It has been argued that this model is well suited for beams
made out of shape memory alloy single-crystals. In contrast with the previous
model, this model develops discontinuities in the tangents. The experimental
TEM micrographs of MWCNTs (see Fig. 1) show mixtures of rippled high-
curvature sections and smoothly bent low-curvature sections with continuity
of the tangents, suggesting a model in the spirit of James (1981) in the present
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setting. As a matter of fact, the simulations presented in the previous sections
suggest that indeed MWCNTs exhibit a non-convex bending energy.

3.1 Elastic beam with non-convex curvature energy

We consider a bending strain energy per unit reference length of the form

w(κ) = min
{

1

2
Bκ2; Cκa

}
, (8)

where the bending stiffness B can be estimated analytically, see Eq. (3), but
the parameters C and a are obtained from the simulations. This bending
energy is supplemented by the inextensibility constraint (pure elastica) or by
a stretching energy. Note that this model ignores the observation made before
that in the vicinity of the transition between the harmonic and the anharmonic
regimes the system lowers these two energies through a Fourier deformation
mode.

It is well known (Abeyaratne and Knowles, 2006) that such a non-convex
energy can lead to stressed phase mixtures. Indeed, upon the action of a
bending moment M , the potential energy density of the system becomes

P (κ,M) = w(κ)−Mκ. (9)

The bias introduced by the loading first produces the emergence of a new
local energy minimum, and hence a new high-strain phase is possible (see
Fig. 5). We call Mm the bending moment at which the energy well in the
high-strain phase is created. In the present setting, the low-strain phase L
corresponds to the smoothly bent phase characterized by the quadratic scaling,
while the high-strain phase H is a rippled phase displaying the anharmonic
scaling. The applied moment at which the energy levels of the two energy
minima coincide is called the Maxwell moment M0. Further applied moment
eventually leads to the destruction of the low-strain minimum, for MM . Thus,
for Mm ≤ M ≤ MM both the smoothly bent and the rippled phases can exist.
This local or material picture is complicated when a given structure is studied;
for instance a macroscopic strain can in general be accommodated by non-
homogeneous states displaying mixtures of smooth and rippled deformations.

Specializing the theory in Abeyaratne and Knowles (2006) to the present set-
ting, the necessary condition for the existence of an energy well in either phase
is

∂

∂κ
P (κ,M) = 0, (10)
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which provides two candidate minima characterized by the relations

κL(M) =
M

B
and κH(M) =

(
M

aC

) 1
a−1

(11)

To assess whether these candidates for energy wells are indeed possible, we
define the curvature at which the harmonic and the anharmonic regimes meet

κd =
(

2C

B

) 1
2−a

(12)

The low-strain phase is possible if and only if κL ≤ κd, which leads to

M ≤ B
(

2C

B

) 1
2−a

= MM . (13)

On the other hand, the high-strain phase is possible if and only if κH ≥ κd,
hence

M ≥ aC
(

2C

B

)a−1
2−a

= Mm. (14)

To determine the Maxwell bending moment, we equate the low-strain and
high-strain potential energy densities

PL(M) = P (κL(M), M) = P (κH(M), M) = PH(M), (15)

to obtain

M0 =

[
a

2B(a− 1)
(aC)

1
a−1

]a−1
2−a

. (16)

For an applied moment M in the range [Mm, MM ] two phases are possible,
and in general coexist.

At a phase boundary, the transformation curvature is defined by

κT (M) = κH(M)− κL(M). (17)

In phase-transforming materials, besides the mechanical forces one must ac-
count for the phase or configurational forces, which are energetically conjugate
to the position of the phase boundaries. Here, the configurational or driving
force on an phase boundary f may be understood as the energy release rate
as the phase boundary moves, and can be shown to be the jump in the poten-
tial energy density at the phase boundary or equivalently an integral of the
transformation curvature:

f = [[P (κ,M)]] =
∫ M

M0

κT (M ′) dM ′. (18)

Since a phase boundary can only exist if the bending moment lies in the
interval [Mm, MM ], it follows that the driving force on the phase boundary
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lies in the interval [fm, fM ] where

fm = PL(Mm)− PH(Mm) =
∫ Mm

M0

κT (M ′) dM ′ < 0 (19)

and

fM = PL(MM)− PH(MM) =
∫ MM

M0

κT (M ′) dM ′ > 0 (20)

From these expressions it is clear that the diving force acting on an phase
boundary vanishes if the moment in the elastica coincides with the Maxwell
moment.

3.2 Nucleation and propagation criteria

It is well known that the equilibrium configurations of nonlinearly elastic ma-
terials with non-convex energies are not uniquely determined by the combina-
tion of the mechanical equilibrium, bulk constitutive relation and boundary
conditions. Additional information about the material is needed in order to
select amongst the multiple positions of a phase boundary compatible with
mechanical equilibrium. A general way of removing the degeneracy of con-
ventional continuum mechanics for phase transforming materials is to append
the standard model with a nucleation criterion (given by critical stresses or
driving forces for nucleating a high-strain phase from a low-strain phase fLH

n

and vice-versa fHL
n ) and a kinetic law prescribing the velocity of the phase

boundary ṡ as a function of the driving force f acting on it, or inversely by
the relation f = φ(ṡ). In the kinetic relation, an important parameter is the
resistance of a phase boundary to its motion, expressed in terms of the driv-
ing force needed to enlarge the high-strain phase fLH

r and that needed for a
motion of the phase boundary that makes the high-strain phase smaller fHL

r

(see Abeyaratne and Knowles (2006) for details).

The purely static simulations of MWCNTs carried out in the present study
have provided valuable information regarding the bending energetics, but do
not provide sufficient data to model in detail the transition from one phase
to the other and the kinetic law. Indeed, on the one hand, rate effects are
absent in these simulations. On the other hand, despite we have observed
a Fourier deformation mode near the transition, which possibly lowers the
energetic barrier predicated by the elementary model encapsulated in Eq. (8),
we have not attempted to quantify and model its effect on the nucleation and
kinetics of the phase transformation. Instead, we consider two extreme but
illuminating rate-independent regimes: an energetic criterion, according to
which any material point adopts instantaneously the lowest energy state, and
a rate-independent frictional kinetic criterion, by virtue of which the material
switches from one phase to the other if and only if the energy well of the
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current phase is destroyed. Any other choice of nucleation criterion and rate-
independet kinetic law falls within these two extremes.

Energetic criterion

The aforementioned degeneracy can be eliminated by requiring that each ma-
terial point adopts instantaneously the state with the lowest possible energy,
irrespective of the energy barrier that may be present. Physically, this can be
attributed to thermal agitation or any other tunneling mechanism not included
in the model. This prescription provides an extreme nucleation criterion and
kinetic law. Indeed, new phases are nucleated if and only if they are energeti-
cally favorable. On the other hand, phase boundaries move in such a way that
the total energy is minimized, i.e. phase equilibrium is enforced in addition to
mechanical equilibrium. This amounts to requiring that at any phase bound-
ary f = 0, and thus, recalling Eq. (18), at the phase boundary the bending
moment is M0 and the kinetic law is simply φ(ṡ) = 0.

More operationally, at any given material point subjected to a stress M ∈
[Mm, MM ], the minimum potential energy alone selects the phase of the mate-
rial; if PL(M) < PH(M) then κ = κL(M), and conversely if PL(M) ≥ PH(M)
then κ = κH(M). For this model, the nucleation stress from the low to the
high strain phase coincides with the nucleation stress from the high to the
low strain phase MLH

n = M0 = MHL
n , and a material phase boundary can

resist no driving force at all, hence the propagation driving forces needed to
enlarge or decrease the high strain phase vanish, fLH

r = fHL
r = 0. Obviously,

for M < Mm only the L phase is possible, hence κ = κL(M), and similarly
for M > MM it follows that κ = κH(M).

This energetic criterion leads to the so-called Maxwell processes. A simple
Maxwell process for a uniformly stressed elastica subject to an increasing
bending moment is sketched in the rightmost plot in Fig. 6 in magenta. It
follows the L response from the origin to its intersection with the horizontal
line M = M0. At this point, the high-strain phase nucleates at some point of
the elastica, for instance at a boundary, and propagates through the material.
The macroscopic moment-curvature relationship then follows the line M = M0

until it intersects the H response. After this point, the whole elastica has
transformed into the high-strain phase. Upon unloading, the systems follows
exactly the same path, and therefore does not exhibit any kind of hysteresis
nor dissipation in such a cycle.
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Rate-independent frictional kinetic criterion

As an opposite extreme case, we consider a rate-independent “frictional” ki-
netic law

f = φ(ṡ) =

 fM if ṡ > 0

fm if ṡ < 0
(21)

For ṡ = 0, the driving force lies in the interval [fm, fM ], and is determined by
mechanical equilibrium. According to this law, a given material point stays
in its current phase unless this phase becomes impossible. Thus, as before for
M < Mm we have κ = κL(M), and for M > MM it follows that κ = κH(M).
If M ∈ [Mm, MM ], then the material stays in its current phase. This model
adopts the extreme allowable values for the nucleation and propagation driving
forces

fLH
r = fLH

n = fM and fHL
r = fHL

n = fm. (22)

Physically, this kinetic law and nucleation criterion assumes that the system
cannot overcome the energy barrier between states, no matter how low it is.
Such a model produces hysteretic loading-unloading cycles, as illustrated in
the rightmost plot of Fig. 6 in green.

3.3 Cantilever beam and three-point-bending solutions

We now review simple boundary value problems with non-homogeneous stress
states for the geometrically exact phase-transforming elastica model. We con-
sider a cantilever beam of length L described by x ∈ [0, L] and y = 0 in its
undeformed configuration. The leftmost point of the beam is clamped, while
a vertical force (0, F ) is applied on the beam at a fixed value x = ` < L
irrespective of the deformation of the beam. Note that this is not a follower
load (such as the one that would act on the tip of the cantilever following this
material point through the deformation), which simplifies the problem. We
consider a Monge parametrization of the deformed beam y(x). The arc-length

parameter labels material particles, and it is given by s =
∫ x
0

√
1 + (y′(ξ))2 dξ.

We assume that L is large enough so that throughout the deformation the
abscissa of the end point of the beam satisfies xend > `. The bending moment
on the elastica is M(x) = (` − x)F for x < ` and zero otherwise. Thus, in a
loading path starting from F = 0 the high strain phase will nucleate at the
clamped end irrespective of the nucleation criterion, and the phase boundary
will never reach the point where the load is applied, no matter how large F
is. At each point in the elastica the bending moment is known and therefore
either the energetic or the frictional criteria given above provide a prescription
for the corresponding curvature κ(x) (the latter requires in addition keeping
track of the state of the material point). Finally, recalling the expression of the
curvature of a curve described by the Monge parametrization, we can integrate
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y(x) from the ODE

y′′(x)− κ(x)
[
1 + (y′(x))2

] 3
2 = 0, y(0) = 0, y′(0) = 0. (23)

This ODE is integrated for x ∈ (0, `) since the part of the cantilever beam
beyond the point of application of the load has zero bending moment and is
rectilinear. To consider a three-point-bending test with a constant distance
between the end supports 2` and an applied force in the central support of
2F , in which the elastica can slide on the end supports upon deformation (see
Berg (1995b) for an experimental setup), it is sufficient to complete the above
solution by the symmetry y(−x) = y(x).

By way of illustration, Fig. 7 shows a loading-unloading cycle for an elastica
model for a 20-walled CNT with the parameters C and a extracted from the
large scale simulations. In this example, ` = 112 nm. Both the reversible
energetic and the hysteretic frictional models have been considered. It can
be noticed that despite the peak reaction force is almost identical in both
cases, the extent of the high-strain rippled phase for the energetic model is
considerably larger.

4 Comparison between the large-scale simulations and the phase-
transforming elastica

To assess the ability of the phase-transforming elastica to describe the me-
chanics of MWCNTs, we consider a simple benchmark example with a non-
uniform stress state along the tube: a three-point-bending test. We compare
the results given by large-scale three-dimensional simulations with the method
described in Section 2.2 performed in a supercomputer with those obtained
analytically from the elastica model. The parameters C and a are extracted
from the simulations of MWCNTs under uniform bending described in Section
2, and should be viewed in the present context as material parameters. The
objective of the comparison is twofold: it serves as a validation of the meso-
scopic phase-transforming elastica and it interrogates the full system about
the appropriateness of the considered phase-boundary kinetic laws.

We consider a 20-walled CNT 280 nm long, which contains some 4.7 million
atoms. The computational model in these simulations has around 100,000
finite element nodes. The simulation setup and typical deformations are shown
in Fig. 8. The simulations are driven by the relative motion of the supports
in the direction normal to the initially straight MWCNT. It can be observed
that rippling starts to develop in the vicinity of the central support, where the
bending moment is maximum. The rippled region then propagates through

17



the MWCNT towards the end supports as the load is increased. The diamond
pattern in the rippled regions can be clearly observed.

The reaction-displacement response of the full system as given by the simu-
lations is plotted in Fig. 9 (black dots). To get meaningful comparisons, the
simulations must be carefully post-processed to factor out the flexibility of
the supports, i.e. the local deformation of the outer wall at these points. To
this end, the central fiber of the MWCNT is obtained in terms of the inner
wall (see the black line in Fig. 10). The response as predicted by the phase-
transforming elastica supplemented by the energetic (magenta) and frictional
(green) criteria is also plotted. The agreement between the large-scale simu-
lations and the simple model is remarkable. In the full model, the response
deviates from linear elasticity at the point predicted by the energetic criterion,
and then stays between the magenta and the green curves.

To test whether the system exhibits any kind of friction, or rather accom-
modates locally to the minimum energy state, we consider a closed loading
cycle. We find that upon unloading, the large-scale model does not exhibit
noticeable hysteresis, but rather a reversible response within the numerical
tolerances (the unloading data is also represented in Fig. 9 but cannot be
distinguished from the loading data). This indicates that no spurious rate ef-
fects are introduced by the incremental-iterative numerical solution method.
This also suggests that the energy barrier between the harmonic phase and
the anharmonic (rippled) phase is lowered by a mechanism not included in
the simple energy in Eq. (8). Indeed, a careful analysis of the deformations in
Fig. 8 reveals a barely noticeable Fourier deformation pattern in the vicinity
of the transition between the rippled and the smoothly bent regions, which is
consistent with the observation put forward in Section 2.3. Based on this evi-
dence, we hypothesize that the system mobilizes this deformation mechanism
to efficiently transition (tunnel) between the harmonic and the anharmonic
energy wells.

The above discussion strongly suggests that the appropriate kinetic law in
the rate-independent limit is given by the strictly energetic criterion. The
slightly higher restoring force of the full system as compared to the phase
transforming elastica with the energetic criterion (see Fig. 9) can be caused by
a variety of phenomena ignored in our simple model. One possible explanation
is that the system pays an energetic price for variations in the amplitude of the
rippling deformation. Figure 8 clearly shows this variation in the strength of
the Yoshimura mode when the stress state is not uniform. The manifestation of
this effect in the elastica model would be a curvature (strain) gradient energy
term in the anharmonic regime. Rate effects could in principle also explain the
observed disagreement, but they can be excluded here since we have checked
that the response is strictly reversible upon unloading.
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A further argument against the frictional kinetic law for the system under
study is provided by the comparison of the phase patterns given by the full
model and the two versions of the elastica model. We find that the frictional
model predicts rippled phases which are considerably smaller than those ob-
served in the tree-dimensional simulations, while the phase distributions given
by the energetic criterion agree very well with the full model. Figure 10 shows a
side view of the three-dimensional simulations, together with the central fiber
post-processed from the 3D data. The deformation predicted by the phase-
transforming purely energetic elastica model is super-imposed in this plot
and color-coded (red for the high-curvature phase, blue for the low-curvature
phase). The agreement in the deformations and the phase-pattern at different
load levels is again remarkable.

5 Applications

Once the ability of the phase-transforming elastica to encapsulate the complex
mechanics of rippling has been established, we exercise the model in applica-
tions of interest.

5.1 Size effect in MWNCTs subject to three point bending

We first investigate the consequences in non-uniform bending situations of the
size effect of the constitutive response of MWCNTs reported Section 2.4. To
this end, we consider three geometrically self-similar three-point-bending tests
for nanotubes of different diameters. Three-point-bending tests have been per-
formed experimentally on CNTs, see Tombler et al. (2000) for an experimental
setup involving a trench and an atomic force microscope. If the material re-
sponse is linear elastic, then it is scale-invariant and the reaction at the central
point scales as the size of the beam to the power of two. We perform the test on
the phase-transforming elastica model with the material parameters of Table
1. The results are reported in Fig. 11.

It is apparent from the Fig. 11 that the thicker the MWCNT, the sooner
a high-strain rippled phase appears in the center of the beam. For the 40-
walled CNT, the nucleation of the rippled phase occurs for a barely noticeable
deformation. After nucleation, the rippled phase propagates towards the outer
supports. The extent of this phase at the end of the experiment is also larger
the thicker the tube is. The Figure also shows that the reaction exerted by the
MWCNTs that develop rippling is only a fraction of the reaction expected from
the simple linear elastic Euler-Bernouilli beam model (66% for the 10-walled
tube, 40% for the 20-walled tube and 28% for the 40-walled tube, predicted
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with the energetic model). This reduction of the effective elastic modulus as
the diameter is increased is consistent with the experimental results reported
in Poncharal et al. (1999).

5.2 Indentation of a forest of vertically aligned CNTs

In recent years, a number of groups have synthesized forests of vertically
aligned CNTs (see for example Lau et al. (2003)). These systems show promise
in a number of applications such as super-hydrophobic surfaces, or field emit-
ters. Their mechanical characterization has been carried out through atomic
force microscopy (AFM). Qi et al. (2003) proposed a consecutive contact model
to predict the force-penetration curves of a given forest, and used it to sup-
port the interpretation of experimental curves. These authors assumed that
the MWCNTs behave as linearly elastic Euler-Bernouilli beams. This is a good
assumption for small indentation depths, or for MWCNTs with a large aspect
ratio that accommodate large tip displacements with small curvatures relative
to κd.

Here we consider a simplified model of MWCNT forest in which the tubes are
disposed perpendicular to a substrate in a 2D hexagonal lattice. We consider
500 nm long 40-walled tubes, whose diameter is around 28 nm, and a density
of 200 nanotubes per squared micron. The aspect ratio is similar to those
reported in Qi et al. (2003). This forest is penetrated by a diamond-tip AFM,
which is modeled as a three-sided pyramid with apex angle φ = 60◦. Following
Qi et al. (2003), we assume that each nanotube contacts the AFM tip just
at its end. For the tip considered, this hypothesis is valid for indentation
depths smaller than 70% of the length of the tubes. As the tip is lowered,
it successively contacts tubes that deform as cantilever beams with a force
acting on their tip. Friction on the AFM tip is neglected, and consequently
these forces are assumed to be normal to the tip faces.

By computing the force-displacement curve of a single tube (we consider here
a follower load at the tip of the geometrically-exact phase transforming elas-
tica with the energetic criterion), it is easy to compute the theoretical force-
penetration curve. The setup and the results are reported in Fig. 12, both for
the proposed phase-transforming model and for a conventional elastic beam
model. It can be observed that both models agree for small indentation depths,
when the tubes closer to the apex have not reached the nucleation bending
moment. For larger indentation depths, the tubes successively and progres-
sively develop rippling and consequently the force on the indenter force drifts
from that predicted by the simple beam model. The linear elastic beam model
over-estimates the indentation force at the end of the test by almost 50%.
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6 Conclusions and outlook

We have presented a mesoscopic model for the mechanics of thick MWC-
NTs. In this model the rippling deformations are viewed as a phase transition
for a beam with non-convex bending energy. The model is suggested by ex-
perimental observations and by the results of large scale simulations using
an atomistic-based continuum model discretized by finite elements (Arroyo
and Belytschko, 2004b). These simulations and experiments (Poncharal et al.,
1999) show that thick nanotubes are very prone to rippling. In the rippling
regime, a complex balance of membrane, bending and inter-wall energies, to-
gether with the geometric structure of MWCNTs, results in an anomalous yet
very robust anharmonic power-law behavior of the energy-curvature relation
E ∝ κa with 1 < a < 2. It is noteworthy that the reversible nonlinear atom-
istic mechanics of CNTs can first be described by a continuum surface model
(Arroyo and Belytschko, 2002), and then the collective complex behavior of
many shells can be encoded into a simple power-law. The anharmonic elastic
regime is characterized in pure bending by a size dependent multiplicative fac-
tor and by a size independent exponent a ≈ 1.42. As a result, the thicker the
MWCNT, the sooner rippling develops and the more relevant the anharmonic
regime is in its structural response.

Using well-known results for phase-transforming materials, the consequences
of the non-convex bending energy have been studied. In particular, we have
highlighted the emergence of stressed mixtures of a high-strain (rippled) phase
and a low-strain (smoothly bent) phase, and the need for a nucleation crite-
rion and a kinetic law to uniquely determine the mechanics of the phase-
transforming elastica. Since the large-scale static simulations upon which we
build the mesoscopic model do not provide sufficient information about the ki-
netics or nucleation, we have considered two extreme rate-independent cases:
a purely energetic model that selects the phase of a material point solely on
the basis of energy minimization, and a frictional model that forces each ma-
terial point to stay in its current phase unless the corresponding energy well
is destroyed.

We have compared the results provided by the phase-transfoming elastica and
those provided by large-scale simulations for a 20-walled CNTs subject to
three-point-bending. The comparison shows that the agreement in the force-
displacement curve is excellent, and lies between the response provided by the
energetic and the frictional versions of the phase-transforming elastica. The
simulations provide two important clues that strongly support the energetic
model; on the one hand, upon unloading the full 3D system does not exhibit
hysteresis, and on the other hand, the deformations and phase patterns of
the energetic model match very accurately those of the full model while the
frictional model produces much smaller rippled phases. Based on the large-
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scale simulations, we speculate that the emergence of a Fourier deformation
mode near the onset of rippling may help the system tunnel between the
harmonic smoothly bent state and the Yoshimura rippled state, effectively
reducing the energy barrier between the two potential energy wells.

We have shown that the mesoscopic proposed model can efficiently and accu-
rately describe the mechanics of MWCNT-based devices and materials involv-
ing possibly large numbers of long tubes. Recent examples of such materials
include foams and yarns made out of MWCNTs (Zhang et al., 2004; Cao
et al., 2005). The proposed model can also be applied to study the bending
dynamics of MWCNTs (Poncharal et al., 1999). However, this requires a pos-
sibly rate-dependent model for the kinetic law. The identification of such a
model from large-scale dynamic simulations is currently under investigation.
The results presented here pose an important limitation on the kinetic law for
the phase-transforming beam: it should coincide with the energetic model in
the rate-independent limit. The parameter C in the proposed model has been
shown to be size-dependent, and the parameter a is different for torsion and
bending. Unfortunately, we have not been able to obtain analytical estimates
for these parameters in terms of the geometric and material properties of the
MWCNTs, although a study on the systematics of these parameters with size
can be found in Arias and Arroyo (2007). Such estimates would greatly facil-
itate the practical application of the proposed phase-transforming elastica.
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COPYRIGHTED MATERIAL.

Fig. 1. Experimental TEM observations of rippling deformations in bending: (a)
Kuzumaki et al. (1998), (b,c) Bower et al. (1999), (d,e) Lourie et al. (1998), (f)
Poncharal et al. (1999).
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Fig. 2. (a) Simulation setup for the pure bending test of a 30-walled CNT 360
nm long, (b) snapshots of the central uniformly bent part of the nanotube at two
loading stages (the diamond deformation pattern is apparent), (c) cross-sections
highlighting the importance of relative sliding of the walls, and (d) strain energy
scaling vs. curvature in log-log scale (left) and in linear scale (right).

procedure. A limited-memory BFGS algorithm is implemented to minimize
the energy at each loading step, thereby finding stable equilibrium configu-
rations. The typical simulation setup for these studies is shown in Fig. 2.2
(a). Note that each individual wall is modeled, and interacts with neighboring

7

Fig. 2. (a) Simulation setup for the pure bending test of a 30-walled CNT 360
nm long, (b) snapshots of the central uniformly bent part of the nanotube at two
loading stages (the diamond deformation pattern is apparent), (c) cross-sections
highlighting the importance of relative sliding of the walls, and (d) strain energy
scaling vs. curvature in log-log scale (left) and in linear scale (right).
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smoothly bent harmonic states and rippled Yoshimura states.

(a)

(b)

Fig. 3. Pure bending of a 40-walled CNT (only the central section 240 nm long is
shown): (a) Visualization of the inner walls for a highly bent equilibrium configura-
tion and (b) snapshots of four loading steps near the onset of rippling. Mixtures of
a sinusoidal Fourier deformation mode of classical linearized buckling analysis and
a Yoshimura or diamond pattern characteristic of post-buckling of thin cylindrical
shells can be observed. The discrepancy between the linearized buckling and the
postbuckling wavelengths is apparent.

It should be pointed out that rippling deformations not only appear in bend-
ing. Torsional rippling has been also theoretically predicted (Arroyo and Be-
lytschko, 2003, 2005), and there seems to be experimental evidence supporting
this prediction (Forró and Schonenberger, 2001). In principle, it is conceivable
that compressive rippling could occur. However, it is unlikely to be observed
except for very short tubes since a compressed MWCNT is prone to relax

11

Fig. 3. Pure bending of a 40-walled CNT (only the central section 240 nm long is
shown): (a) Visualization of the inner walls for a highly bent equilibrium configura-
tion and (b) snapshots of four loading steps near the onset of rippling. Mixtures of
a sinusoidal Fourier deformation mode of classical linearized buckling analysis and
a Yoshimura or diamond pattern characteristic of post-buckling of thin cylindrical
shells can be observed. The discrepancy between the linearized buckling and the
postbuckling wavelengths is apparent.
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Fig. 4. Size effect in the bending response of MWCNTs: (a) Upon appropriate re-s-
caling, the curvature-energy relationships collapse for harmonic CNTs of different
sizes, while the anomalous response displays a strong size effect. (b) Outer shell
of 10-walled, 20-walled, 30-walled and 40-walled CNTs subject to approximately
the same non-dimensional curvature κ̄. The rippled deformation is ostensibly not
scale-invariant suggesting the size-effect.

that in the anomalous regime the rescaled energy-curvature curves do not
collapse, but rather show a distinct size effect. This size-dependent mechanical
response is not surprising noting that the morphology of the ripples is not scale
invariant, as shown in Fig. 4 (b). Specifically, we observe that:

(1) For thicker MWCNTs, the transition between the harmonic and the
anomalous regimes occurs at a smaller non-dimensional curvature.

(2) The exponent characterizing of the anomalous regime does not show a
dependence on the size of the MWCNTs; in all cases, we find a = 1.42.

The first observation is consistent with the fact observed in computations
that for thick MWCNTs the harmonic regime ceases to be stable for very
small imposed non-dimensional curvatures. As for the second observation, we
note that in previous simulations (Arroyo and Belytschko, 2003) using the
over-constrained Dirichlet boundary conditions described in Section 2.2, larger
exponents were obtained (e.g. a = 1.66 for a 34-walled CNT) and a depen-
dence of the exponent a with size was observed. This dependence should be
considered spurious for pure bending, but is certainly meaningful in more con-
strained situations. We shall see the important consequences of the size effect
in structural problems later in the paper. A systematic quantitative study of
the size dependence is the subject of current work.

It should be emphasized at this point that this strong size effect is in sharp
contrast with the constitutive moment-curvature behavior predicated by Liu
et al. (2003). On the one hand, as further emphasized in the following section,

13

Fig. 4. Size effect in the bending response of MWCNTs: (a) Upon appropriate re-s-
caling, the curvature-energy relationships collapse for harmonic CNTs of different
sizes, while the anharmonic response displays a strong size effect. (b) Outer shell
of 10-walled, 20-walled, 30-walled and 40-walled CNTs subject to approximately
the same non-dimensional curvature κ̄. The rippled deformation is ostensibly not
scale-invariant suggesting the size-effect.
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Fig. 5. Emergence and destruction of energy minima upon loading for the non-con-
vex energy. The potential energy minima representing the material stable states are
represented by the green dots.

It is well known (Abeyaratne and Knowles, 2006) that such a non-convex
energy can lead to stressed phase mixtures. Indeed, upon the action of a
bending moment M , the potential energy density of the system becomes

P (κ,M) = w(κ)−Mκ. (9)

The bias introduced by the loading first produces the emergence of a new
local energy minimum, and hence a new high-strain phase is possible (see
Fig. 5). We call Mm the bending moment at which the energy well in the
high-strain phase is created. In the present setting, the low-strain phase L
corresponds to the smoothly bent phase characterized by the quadratic scaling,
while the high-strain phase H is a rippled phase displaying the anomalous
scaling. The applied moment at which the energy levels of the two energy
minima coincide is called the Maxwell stress M0. Further applied moment
eventually leads to the destruction of the low-strain minimum, for MM . Thus,
for Mm ≤M ≤MM both the smoothly bent and the rippled phases can exist.
This local or material picture is complicated when a given structure is studied;
for instance a macroscopic strain can in general be accommodated by non-
homogeneous states displaying mixtures of smooth and rippled deformations.

Specializing the theory in Abeyaratne and Knowles (2006) to the present set-
ting, the necessary condition for the existence of an energy well in either phase
is

∂

∂κ
P (κ,M) = 0, (10)

which provides two candidate minima characterized by the relations

κL(M) =
M

B
and κH(M) =

(
M

aC

) 1
a−1

(11)

To assess wether these candidates for energy wells are indeed possible, we
define the curvature at which the harmonic and the anomalous regimes meet

κd =
(

2C

B

) 1
2−a

(12)

15

Fig. 5. Emergence and destruction of energy minima upon loading for the non-con-
vex energy. The potential energy minima representing the material stable states are
represented by the green dots.
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The low-strain phase is possible if and only if κL ≤ κd, which leads to

M ≤ B
(

2C

B

) 1
2−a

= MM . (13)

On the other hand, the high-strain phase is possible if and only if κH ≥ κd,
hence

M ≥ aC
(

2C

B

)a−1
2−a

= Mm. (14)

To determine the Maxwell bending moment, we equate the low-strain and
high-strain potential energy densities

PL(M) = P (κL(M), M) = P (κH(M), M) = PH(M), (15)

to obtain

M0 =

[
a

2B(a− 1)
(aC)

1
a−1

]a−1
2−a

. (16)

For an applied moment M in the range [Mm, MM ] two phases are possible,
and in general coexist.
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Energetic criterion

Frictional criterion

Fig. 6. Potential energy for a generic applied bending moment M ∈ (Mm,MM )
(left), non-monotonic moment-curvature relation (center), and loading-unloading
cycles for an elastica subjected to a uniform bending moment with a nucleation site
at one end (right).

At a phase boundary, the transformation curvature is defined by

κT (M) = κH(M)− κL(M). (17)

In phase-transforming materials, besides the mechanical forces one must take
care of the phase or configurational forces, which are energetically conjugate
to the position of the phase boundaries. Here, the configurational or driving
force on an phase boundary f may be understood as the energy release rate
as the phase boundary moves, and can be shown to be the jump in the poten-
tial energy density at the phase boundary or equivalently an integral of the
transformation curvature:

f = [[P (κ,M)]] =
∫ M

M0

κT (M ′) dM ′. (18)

16

Fig. 6. Potential energy for a generic applied bending moment M ∈ (Mm,MM )
(left), non-monotonic moment-curvature relation (center), and loading-unloading
cycles for an elastica subjected to a uniform bending moment with a nucleation site
at one end (right).
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y(x) from the ODE

y′′(x)− κ(x)
[
1 + (y′(x))2

] 3
2 = 0, y(0) = 0, y′(0) = 0. (23)

This ODE is integrated for x ∈ (0, ") since the part of the cantilever beam
beyond the point of application of the load has zero bending moment and is
rectilinear. To consider a three-point-bending test with a constant distance
between the end supports 2" and an applied force in the central support of
2F , in which the elastica can slide on the end supports upon deformation (see
Berg (1995b) for an experimental setup), it is sufficient to complete the above
solution by the symmetry y(−x) = y(x).
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Fig. 7. Force-deflection response for a 20-walled cantilevered CNT, and phase com-
position and deformation (not magnified) at the highest load for the energetic (top)
and the frictional (bottom) criteria. The color coding (magenta for energetic model,
green for frictional model; red for high-strain phases, blue for low-strain phase) is
kept throughout the paper.

By way of illustration, Fig. 7 shows a loading-unloading cycle for an elastica
model for a 20-walled CNT with the parameters C and a extracted from the
large scale simulations. In this example, " = 112 nm. Both the reversible
energetic and the hysteretic frictional models have been considered. It can
be noticed that despite the peak reaction force is almost identical in both
cases, the extent of the high-strain rippled phase for the energetic model is
considerably larger.

4 Comparison between the large-scale simulations and the phase-
transforming elastica

To assess the ability of the phase-transforming elastica to describe the me-
chanics of MWCNTs, we consider a simple benchmark example with a non-
uniform stress state along the tube: a three-point-bending test. We compare
the results given by large-scale three-dimensional simulations with the method

20

Fig. 7. Force-deflection response for a 20-walled cantilevered CNT, and phase com-
position and deformation (not magnified) at the highest load for the energetic (top)
and the frictional (bottom) criteria. The color coding (magenta for energetic model,
green for frictional model; red for high-strain phases, blue for low-strain phase) is
kept throughout the paper.
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described in Section 2.2 performed in a supercomputer with those obtained
analytically from the elastica model. The parameters C and a are extracted
from the simulations of MWCNTs under uniform bending described in Section
2, and should be viewed in the present context as material parameters. The
objective of the comparison is twofold: it serves as a validation of the meso-
scopic phase-transforming elastica and it interrogates the full system about
appropriateness of the considered phase-boundary kinetic laws.

Fig. 8. View of the three dimensional deformation of a 20-walled CNT 280 nm long
subjected to a vertical displacement of 28 nm, from the onset of rippling to the last
computed configuration.

We consider a 20-walled CNT 280 nm long, which contains some 4.7 million
atoms. The computational model in these simulations has around 100,000
finite element nodes. The simulation setup and typical deformations are shown
in Fig. 8. The simulations are driven by the relative motion of the supports
in the direction normal to the initially straight MWCNT. It can be observed
that rippling starts to develop in the vicinity of the central support, where the
bending moment is maximum. The rippled region then propagates through
the MWCNT towards the end supports as the load is increased. The diamond
pattern in the rippled regions can be clearly observed.

The reaction-displacement response of the full system as given by the simu-
lations is plotted in Fig. 9 (black dots). To get meaningful comparisons, the
simulations must be carefully post-processed to factor out the flexibility of
the supports, i.e. the local deformation of the outer wall at these points. To
this end, the central fiber of the MWCNT is obtained in terms of the inner
wall (see the black line in Fig. 10). The response as predicted by the phase-
transforming elastica supplemented by the energetic (magenta) and frictional
(green) criteria is also plotted. The agreement between the large-scale simu-

21

Fig. 8. View of the three dimensional deformation of a 20-walled CNT 280 nm long
subjected to a vertical displacement of 28 nm, from the onset of rippling to the last
computed configuration.
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Fig. 9. Reaction force versus imposed vertical displacement for a linear elastic beam
model (dashed), the mesoscopic beam model (frictional criterion in green, energetic
criterion in magenta) and the 3D large-scale simulations (dots).

lations and the simple model is remarkable. In the full model, the response
deviates from linear elasticity at the point predicted by the energetic criterion,
and then stays between the magenta and the green curves. To test whether
the system shows some kind of friction, or it rather accommodates locally to
the minimum energy state, we consider a closed loading cycle. We find that
upon unloading, the large-scale model does not exhibit noticeable hysteresis,
but rather a reversible response within the numerical tolerances (the unload-
ing data is also represented in Fig. 9 but cannot be distinguished from the
loading data). This indicates that no spurious rate effects are introduced by
the incremental-iterative numerical solution method. This also suggests that
the energy barrier between the harmonic phase and the anomalous (rippled)
phase is lowered by a mechanism not included in the simple energy in Eq. (8).
Indeed, a careful analysis of the deformations in Fig. 8 reveals a barely no-
ticeable Fourier deformation pattern in the vicinity of the transition between
the rippled and the smoothly bent regions, which is consistent with the ob-
servation put forward in Section 2.3. Based on this evidence, we hypothesize
that the system mobilizes this deformation mechanism to efficiently transition
(tunnel) between the harmonic and the anomalous energy wells.

The above discussion strongly suggests that the appropriate kinetic law in
the rate-independent limit is given by the strictly energetic criterion. The
slightly higher restoring force of the full system as compared to the phase
transforming elastica with the energetic criterion (see Fig. 9) can be caused by
a variety of phenomena ignored in our simple model. One possible explanation
is that the system pays an energetic price for variations in the amplitude of the
rippling deformation. Figure 8 clearly shows this variation in the strength of
the Yoshimura mode when the stress state is not uniform. The manifestation of

22

Fig. 9. Reaction force versus imposed vertical displacement for a linear elastic beam
model (dashed), the mesoscopic beam model (frictional criterion in green, energetic
criterion in magenta) and the 3D large-scale simulations (dots).
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this effect in the elastica model would be a curvature (strain) gradient energy
term in the anomalous regime. Rate effects could in principle also explain the
observed disagreement, but they can be excluded here since we have checked
that the response is strictly reversible upon unloading.

Fig. 10. Comparison between the deformations and rippling patterns provided by
the full 3D model and the mesoscopic beam model with the energetic criterion for
three selected loading stages.

A further argument against the frictional kinetic law for the system under
study is provided by the comparison of the phase patterns given by the full
model and the two versions of the elastica model. We find that the frictional
model predicts rippled phases which are considerably smaller than those ob-
served in the tree-dimensional simulations, while the phase distributions given
by the energetic criterion agree very well with the full model. Figure 10 shows a
side view of the three-dimensional simulations, together with the central fiber
post-processed from the 3D data. The deformation predicted by the phase-
transforming purely energetic elastica model is super-imposed in this plot
and color-coded (red for the high-curvature phase, blue for the low-curvature
phase). The agreement in the deformations and the phase-pattern at different
load levels is again remarkable.

5 Applications

Once the ability of the phase-transforming elastica to encapsulate the complex
mechanics of rippling has been established, we exercise the model in applica-
tions of interest.

23

Fig. 10. Comparison between the deformations and rippling patterns provided by
the full 3D model and the mesoscopic beam model with the energetic criterion for
three selected loading stages.
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5.1 Size effect in MWNCTs subject to three point bending

We first investigate the consequences in non-uniform bending situations of the
size effect of the constitutive response of MWCNTs reported Section 2.4. To
this end, we consider three geometrically self-similar three-point-bending tests
for nanotubes of different diameters. Three-point-bending tests have been per-
formed experimentally on CNTs, see Tombler et al. (2000) for an experimental
setup involving a trench and an atomic force microscope. If the material re-
sponse is linear elastic, then it is scale-invariant and the reaction at the central
point scales as the size of the beam to the power of two. We perform the test on
the phase-transforming elastica model with the material parameters of Table
1. The results are reported in Fig. 11.
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Fig. 11. Size effect in a three-point-bending test with self-similar geometry (constant
length to diameter ratio and length to imposed displacement ratio): (a) Deformation
at the nucleation of a rippled phase (in red), (b) deformation and phase distribution
at the last stage (for the energetic criterion), and (c) force-displacement response for
the energetic (magenta) and frictional (green) criteria and linearly elastic response
(- -).

It is apparent from the Fig. 11 that the thicker the MWCNT, the sooner
a high-strain rippled phase appears in the center of the beam. For the 40-
walled CNT, the nucleation of the rippled phase occurs for a barely noticeable
deformation. After nucleation, the rippled phase propagates towards the outer
supports. The extent of this phase at the end of the experiment is also larger
the thicker the tube is. The Figure also shows that the reaction exerted by the
MWCNTs that develop rippling is only a fraction of the reaction expected from
the simple linear elastic Euler-Bernouilli beam model (66% for the 10-walled
tube, 40% for the 20-walled tube and 28% for the 40-walled tube, predicted
with the energetic model). This reduction of the effective elastic modulus as
the diameter is increased is consistent with the experimental results reported
in Poncharal et al. (1999).
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Fig. 11. Size effect in a three-point-bending test with self-similar geometry (constant
length to diameter ratio and length to imposed displacement ratio): (a) Deformation
at the nucleation of a rippled phase (in red), (b) deformation and phase distribution
at the last stage (for the energetic criterion), and (c) force-displacement response for
the energetic (magenta) and frictional (green) criteria and linearly elastic response
(- -).
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Fig. 12. Indentation of a forest of 40-walled CNTs 500 nm long disposed in an
hexagonal lattice with a density of 200 nanotubes per squared micron: setup of
the forest and the AFM tip (left), and force-penetration curves obtained with the
proposed model and a standard elastic beam model (right).

atomistic-based continuum model discretized by finite elements (Arroyo and
Belytschko, 2004b). These simulations show that thick nanotubes are very
prone to rippling. In this regime, a complex balance of membrane, bending
and inter-wall energies, together with the geometric structure of MWCNTs,
results in an anomalous yet very robust power-law behavior of the energy-
curvature relation E ∝ κa with 1 < a < 2. It is noteworthy that the reversible
nonlinear atomistic mechanics of CNTs can first be accurately described by a
continuum surface model (Arroyo and Belytschko, 2002), and then the collec-
tive complex behavior of many shells can be encoded into a simple power-law.
The anomalous elastic regime is characterized in pure bending by a size de-
pendent multiplicative factor and by a size independent exponent a ≈ 1.42. As
a result, the thicker the MWCNT, the sooner rippling develops and the more
relevant the anomalous regime is in its structural response. Supercomputing
has been instrumental in this study, allowing for an extensive simulation cam-
paign.

Adapting well-known results on phase-transforming materials (Abeyaratne
and Knowles, 2006), the consequences of the non-convex bending energy have
been studied. In particular, we have highlighted the emergence of stressed mix-
tures of a high-strain (rippled) phase and a low-strain (smoothly bent) phase,
and the need for a nucleation criterion and a kinetic law to uniquely determine
the mechanics of the phase-transforming elastica. Since the large-scale static
simulations upon which we build the mesoscopic model do not provide suffi-
cient information about the kinetic law or the nucleation criterion, we have
considered two extreme rate-independent cases: a purely energetic model that
selects the phase of a material point solely on the basis of energy minimization,
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Fig. 12. Indentation of a forest of 40-walled CNTs 500 nm long disposed in an
hexagonal lattice with a density of 200 nanotubes per squared micron: setup of
the forest and the AFM tip (left), and force-penetration curves obtained with the
proposed model and a standard elastic beam model (right).
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