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Abstract

In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with
distributed line and point defects. In particular, we determine the stress fields of i) a parallel cylindrically-
symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, ii) a cylindrically-
symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium, iii) a distribution
of edge dislocations in an orthotropic medium, and iv) a spherically-symmetric distribution of point defects
in a transversely isotropic spherical ball.
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1 Introduction

In anelasticity, any measure of strain has both an elastic and a non-elastic part. Given a pair of thermo-
dynamically conjugate stress and strain, locally a non-vanishing strain does not necessarily correspond to a
non-vanishing stress. Elastic strain refers to the part of strain that is locally related to the corresponding stress.
The remaining part is referred to as eigenstrain, a term that was first used by Mura [1982].1 Defects are one
source of anelasticity. Vito Volterra, in his seminal work [Volterra, 1907], pioneered the mathematical study
of defects many years before the first experimental observations of defects in solids. He classified line defects
into six types, three of which are now called dislocations or translational defects, and the other three are called
disclinations or rotational defects. Kondo [1955a,b] and Bilby et al. [1955] independently explored the profound
connections between the mechanics of defects and non-Riemannian geometries in the 1950s. Kondo [1955a,b]
discovered that the reference configuration of a solid is not necessarily Euclidean in the presence of defects. He
realized that the curvature and the torsion of the reference manifold are measures of incompatibility and the
density of dislocations, respectively. Defects due to plastic deformations naturally occur in most of the known
problems in mechanics and tribology, e.g., contact mechanics [Jackson and Green, 2005, Brake, 2012, 2015,
Jackson et al., 2015], mechanical impact [Ghaednia and Marghitu, 2016], and dislocation-boundary interactions
[Wang et al., 2013, Hooshmand et al., 2017]. Other examples of anelastic sources include swelling and cavitation
[Pence and Tsai, 2005, Goriely et al., 2010, Moulton and Goriely, 2011], bulk and surface growth [Amar and
Goriely, 2005, Yavari, 2010, Sozio and Yavari, 2017], thermal strains [Stojanovic et al., 1964, Ozakin and Yavari,
2010, Sadik and Yavari, 2017], and the presence of inclusions and inhomogeneities [Yavari and Goriely, 2013a,
Golgoon et al., 2016, Golgoon and Yavari, 2017, 2018]. There have been some theoretical investigations on the
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effects of eigenstrains in linear anisotropic media, e.g., [Willis, 1964, Li and Dunn, 1998, Kinoshita and Mura,
1971, Giordano et al., 2009], and references therein.

Very little is known about the effects of material anisotropies on the stress field and energetics of defects
in solids. Eshelby [1949] investigated infinitely-long straight edge dislocations in linear anisotropic solids. He
extended Nabarro’s calculation of the width of a dislocation to the anisotropic case. His results are limited to
edge dislocations with an axis that is an infinite straight line, but there is no restriction on the type of anisotropy
of the medium. Eshelby et al. [1953] developed the general solution for the induced displacement fields of
dislocations in homogeneous linear anisotropic solids for the special case of the elastic state being independent
of one of the three Cartesian coordinates. The dynamical response of uniformly moving dislocations in linear
anisotropic media was studied by Teutonico [1962]. It was observed that both edge and screw dislocations
are prone to exhibiting anomalous dynamical behavior such that the interaction force between two parallel
dislocations (on the same slip plane) changes sign when dislocation velocity increases. Head [1967] predicted
instabilities of dislocations in some anisotropic metallic crystals. It was found that a straight dislocation may
decrease its energy if it changes to a zig-zag shape, i.e., a straight dislocation may be unstable. In the setting of
the linear theory of elasticity, Willis [1970] analyzed dislocations in anisotropic media (see also [Willis, 1967]).
Particularly, the displacement fields of infinite straight dislocations and plane curvilinear dislocation loops were
obtained. Schaefer and Kronmüller [1975] investigated the elastic interaction of point defects in linear isotropic
and anisotropic cubic media using Green’s function approach. They specifically discussed the differences between
the interactions in isotropic and anisotropic materials and the effects of anisotropy on the interaction potential.
Some basic developments in the linear theory of dislocations in anisotropic media were presented in [Indenbom,
1992, Lothe, 1992]. Methods for obtaining the induced linear elastic fields of defects in transversely isotropic
bimaterials and orthotropic bicrystals (in 2D) were proposed in [Yu et al., 1995] and [Yu, 2001], respectively.
In particular, some closed-form solutions for the elastic fields of inclusions and dislocations were presented.

A successive approximation method was proposed in [Teodosiu, 1982] to study the nonlinear screw dislocation
problem using the linear elasticity solution. Nonetheless, the method fails to find the correct solution near the
dislocation axis. Only a handful of exact solutions for defects in nonlinear elastic solids exist in the literature,
and they are all restricted to isotropic materials. We should mention [Weso lowski and Seeger, 1968, Gairola,
1979, Zubov, 1997, Rosakis and Rosakis, 1988, Acharya, 2001, Yavari and Goriely, 2012a] for dislocations,
[Zubov, 1997, Derezin and Zubov, 2011, Yavari and Goriely, 2013b] for disclinations, and [Yavari and Goriely,
2012b, 2014, Clayton, 2015] for point defects and discombinations.

To the best of our knowledge, despite the known importance of the anisotropic behavior of solids, especially
at finite strains, the study of defects in the setting of nonlinear elasticity has been limited to isotropic solids.
In this paper we study several examples of line and point defects in nonlinear anisotropic solids and present
some analytical solutions for their stress fields. We consider an arbitrary cylindrically-symmetric distribution of
parallel screw dislocations in orthotropic and monoclinic media, along with a parallel cylindrically-symmetric
distribution of wedge disclinations in an infinite orthotropic medium. As the geometry of the material manifold
explicitly depends on the distribution of defects, the material preferred directions (that identify the type of
anisotropy) in the reference configuration explicitly depend on the defect distribution as well, and, in general,
are different from those of the material in its current configuration. For instance, for the distributed screw
dislocations that we consider, the assumption that the dislocated body is orthotropic in the reference (current)
configuration implies that the body is monoclinic in the current (reference) configuration.

In this paper, the boundedness of the stress on the dislocation and disclination axes will be discussed. In
particular, for an arbitrary cylindrically-symmetric distribution of parallel screw dislocations the stress exhibits
a logarithmic singularity on the dislocation axis unless the axial deformation is suppressed. Note that these
singularities arise due to the presence of anisotropy, e.g., radial fiber-reinforcement, and in particular, they do not
occur when the material is isotropic. Exploiting the so-called standard reinforcing model (see, e.g., [Merodio and
Ogden, 2003]), we obtain conditions under which the energy per unit length and the resultant longitudinal force
of a single screw dislocation for a fiber-reinforced material are finite provided that the isotropic base material
has a finite axial force and a finite energy per unit length. Employing Cartan’s moving frames approach, for a
given distribution of edge dislocations we will construct the material manifold and obtain explicit solutions for
the stress field when the medium is orthotropic. We will also consider a spherically-symmetric distribution of
point defects in a finite transversely isotropic spherical ball. We will show that for an arbitrary incompressible
transversely isotropic material with the radial material preferred direction a uniform point defect distribution
induces a uniform hydrostatic stress inside the region the distribution is supported.
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The rest of the paper is structured as follows. In §2 we tersely review some fundamentals of geometric non-
linear anisotropic elasticity and some related topics on nonlinear defect mechanics. We consider a cylindrically-
symmetric distribution of parallel screw dislocations in orthotropic and monoclinic media in §3.1 and §3.2,
respectively. A cylindrically-symmetric distribution of parallel wedge disclinations in an orthotropic medium is
studied in §3.3. In §3.4 edge dislocations in an orthotropic medium are considered. In §3.5 we calculate the
residual stresses due to a spherically-symmetric distribution of point defects in a transversely isotropic ball. We
end the paper with some remarks in §4.

2 Geometric Anelasticity for Anisotropic Solids

In this section we briefly review some fundamental elements of the geometric theory of nonlinear elasticity for
anisotropic solids. For more detailed discussions, see [Marsden and Hughes, 1983, Yavari et al., 2006].

Kinematics. A body B is identified with a Riemannian manifold (B,G), and a configuration of B is a smooth
embedding ϕ : B → S, where (S,g) is a Riemannian manifold —the ambient space. An affine connection ∇ on
a smooth manifold B is a linear mapping ∇ : X (B)×X (B)→ X (B), where X (B) represents the set of all smooth
vector fields on B, such that the following properties are satisfied ∀ X,Y,X1,X2,Y1,Y2 ∈ X (B),∀ f, f1, f2 ∈
C∞(B),∀ a1, a2 ∈ R (see [do Carmo, 1992, Petersen, 2006] for more details): a) ∇f1X1+f2X2Y = f1∇X1Y +
f2∇X2

Y, b) ∇X(a1Y1+a2Y2) = a1∇X(Y1)+a2∇X(Y2), c) ∇X(fY) = f∇XY+(Xf)Y. It can be shown that
there is a unique torsion-free and compatible affine connection associated with any Riemannian manifold that
is called a Riemannian connection. Let us denote the Levi-Civita connection associated with the Riemannian
manifolds (B,G) and (S,g) by ∇G and ∇g, respectively. We denote the set of all configurations of B by C.
A motion is a curve c : R+ → ϕt ∈ C such that ϕt assigns a spatial point x = ϕt(X) = ϕ (X, t) ∈ S to every
material point X ∈ B at any time t. The body is assumed to be stress-free in its reference configuration, which
may have a nontrivial geometry, in general, e.g., in the presence of eigenstrains. The deformation gradient
F is the tangent map of ϕ defined as F(X, t) = dϕt(X) : TXB → Tϕt(X)S. The adjoint of F is defined as

FT(X, t) : Tϕt(X)S → TXB, g (FV,v) = G
(
V,FTv

)
, ∀V ∈ TXB, v ∈ Tϕt(X)S. The right Cauchy-Green

deformation tensor is defined as C(X, t) = FT(X, t)F(X, t) : TXB → TXB . The Finger deformation tensor is
defined as b(x, t) = F(X, t)FT(X, t) : Txϕ (B) → Txϕ (B), and in components, bab = F aAF

b
BG

AB . Another
measure of strain is the Lagrangian strain tensor E = 1

2 (ϕ∗tg −G), where ϕ∗tg is the pull-back of the spatial
metric (in components (ϕ∗tg)AB = F aAF

b
Bgab). The Jacobian of deformation J relates the Riemannian volume

element of the material manifold dV (X,G) to that of the spatial manifold dv(ϕt(X),g), written as

J =

√
det g

det G
det F , dv(x,g) = J dV (X,G) . (2.1)

Equilibrium Equations. The localized balance of linear momentum in spatial and material forms are written
as

divσ + ρb = ρa, Div P + ρ0B = ρ0A, (2.2)

where σ is the Cauchy stress and P is the first Piola-Kirchhoff stress, and ρ0, A, and B are the material mass
density, material acceleration, and material body force, respectively, and ρ, a, and b are their corresponding
spatial counterparts. Note that the material and spatial divergence operators in components are given as

(divσ)
a

=σab|b =
∂σab

∂xb
+ σacγbcb + σcbγacb ,

(DivP)
a

=P aA|A =
∂P aA

∂XA
+ P aBΓAAB + P cAF bAγ

a
bc ,

(2.3)

where γabc and ΓABC denote the Christoffel symbols of the connections ∇g and ∇G, respectively. Note that in
the local coordinate charts {xa} and {XA}, one has ∇g

∂b∂c = γabc∂a and ∇G
∂B∂C = ΓABC∂A.
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Material Symmetry Group. In the case of a simple material, the response function at any material point
depends only on the first deformation gradient (and its evolution) at that point [Noll, 1958]. Consider an
elastic body made of a simple material with the response function W at a material point X. We assume that
the response function is the energy function. A response function may be any measure of stress as well. The
material symmetry group GX associated with the body at the point X with respect to the reference configuration
(B,G) is defined as

W (X,FK,G,g) = W (F,G,g) , ∀ K ∈ GX , (2.4)

for all deformation gradients F, where K : TXB → TXB is an invertible linear transformation. For hyperelastic
solids, objectivity implies that the energy function depends on the deformation at a referential point X through
the right Cauchy-Green deformation tensor C[, i.e., W = W (X,C[,G). Thus, the material symmetry group
GX for a hyperelastic solid is defined to be the subgroup of G-orthogonal transformations Orth(G) such that
[Ehret and Itskov, 2009]

W (X,Q−?C[Q−1,G) = W (X,C[,G) , ∀ Q ∈ GX 6 Orth (G) , (2.5)

where Orth(G) =
{
Q : TXB → TXB | Q> = Q−1

}
, and we use the notation G 6 H when G is a subgroup

of H . Note that the set of orthogonal transformations is explicitly metric dependent. In other words, if the
material metric G changes, Orth(G), and hence, GX changes as well. The symmetry group can be equivalently
characterized using a finite collection of structural tensors ζi of order µi, i = 1, . . . , n, forming a basis for the
space of tensors that are invariant under the action of G as follows (also, see [Spencer, 1971, Liu et al., 1982,
Mazzucato and Rachele, 2006])

Q ∈ G 6 Orth (G) ⇐⇒ 〈Q〉µ1
ζ1 = ζ1 , . . . , 〈Q〉µn ζn = ζn , (2.6)

where 〈Q〉µ is the µ-th power Kronecker product of a G-orthogonal transformation Q defined for any µ-th order

tensor ζ as (〈Q〉µ ζ)Ā1...Āµ = QĀ1
A1
. . . QĀµAµζ

A1...Aµ . Note that (2.6) suggests that the material symmetry
group G is the invariance group of the set of the structural tensors ζi, i = 1, . . . , n.

Remark 2.1. We define the material symmetry group at a material point in its natural (stress-free) state.
This has the following physical interpretation. One is given a body with a distribution of defects that is
residually-stressed in its current configuration. Now imagine that the body is partitioned into a large number
of small elements and each is allowed to relax. The symmetry group of a material point in this locally relaxed
configuration is the same as its symmetry group in the Riemannian material manifold (B,G).

Remark 2.2. In the so-called theory of “material uniformity” of Noll [1967] and Wang [1967] one characterizes
uniformity of the mechanical response of a body that may be residually stressed, although Noll and Wang did not
explicitly mention residual stresses (see also [Epstein and Elzanowski, 2007]). Their developments are essentially

based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts: F =
e

F
p

F.

They call
p

F and
e

F a “local configuration”, and a “local deformation”, respectively. A body is “materially

uniform” if its energy function (or any response function) depends only on
e

F and not on the material point X.
In our formulation of anelasticity, the deformation gradient is purely elastic; the plastic (defect) part is buried
into the material metric. Therefore, our symmetry group GX is what Noll and Wang call the “isotropy group

relative” to
p

F. Their “isotropy group relative” to
p

F explicitly depends on
p

F while our material symmetry group
explicitly depends on the material metric G. What Wang [1967] calls an “intrinsic” Riemannian metric is our

material metric G =
p

FT
p

F. However, Noll and Wang did not use the concept of natural distances and a stress-free
reference configuration; their main interest was the material symmetry group. In particular, for isotropic solids
the symmetry group is preserved under a uniform scaling of the “intrinsic” Riemannian metric, i.e., this metric
is unique for isotropic solids up to a constant factor [Wang, 1967]. However, note that a scaling of G changes
the natural distances. In other words, two material metrics related by a uniform scaling are not equivalent
in our geometric theory of anelasticity as they do not correspond to equivalent reference configurations. More
specifically, if the body is stress-free in (B,G), in general, it is not stress-free in (B, α2G), if for example, the
boundary has prescribed displacements.
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Constitutive Equations. In this paper our calculations are restricted to incompressible transversely isotropic,
orthotropic, and monoclinic solids. To establish a materially covariant strain energy density function, structural
tensors corresponding to the symmetry group of the material are used. For detailed discussions on structural
tensors and the determination of the integrity basis and the corresponding invariants of a set of tensors, see
[Spencer, 1971, 1982, Liu et al., 1982, Zheng and Spencer, 1993, Lu and Papadopoulos, 2000].

Transverse Isotropy. Let us assume a compressible transversely isotropic material such that the unit vector
N(X) identifies the material preferred direction at a point X in the reference configuration. The strain energy
density per unit volume of the reference configuration is given as (see, e.g., [Doyle and Ericksen, 1956, Spencer,
1982, Lu and Papadopoulos, 2000]) W = W (X,G,C[,A), where A = N⊗N is a structural tensor representing
the transverse isotropy of the material symmetry group, and (.)[ denotes the flat operator for lowering tensor
indices. The second Piola-Kirchhoff stress tensor is given by

S = 2
∂W

∂C[
. (2.7)

The energy function W depends on the following five independent invariants defined as

I1 = tr C , I2 = det C tr C−1 , I3 = det C , I4 = N ·C ·N , I5 = N ·C2 ·N . (2.8)

In components they read

I1 = CAA , I2 = det(CAB)(C−1)DD , I3 = det(CAB) , I4 = NANBCAB , I5 = NANBCBQC
Q
A . (2.9)

Using (2.7), one obtains2

S =

5∑
n=1

2WIn

∂In
∂C[

, WIn :=
∂W

∂In
, n = 1, . . . , 5 . (2.10)

Note that

∂I1
∂C[

= G] ,
∂I2
∂C[

= I2C
−1−I3C−2 ,

∂I3
∂C[

= I3C
−1 ,

∂I4
∂C[

= N⊗N ,
∂I5
∂C[

= N⊗C ·N+N ·C⊗N , (2.11)

where (.)] is the sharp operator for raising tensor indices. Thus, from (2.10) and (2.11), one obtains the following
representation for the second Piola-Kirchhoff stress tensor

S = 2
{
WI1G

] +WI2

(
I2C

−1 − I3C−2
)

+WI3I3C
−1 +WI4 (N⊗N) +WI5 (N⊗C ·N + N ·C⊗N)

}
.

(2.12)
If the material is incompressible, then I3 = 1, and thus, W = W (X, I1, I2, I4, I5). Therefore, from (2.12), S is
expressed as

S = 2
{
WI1G

] +WI2

(
I2C

−1 −C−2
)

+WI4 (N⊗N) +WI5 (N⊗C ·N + N ·C⊗N)
}
− pC−1 , (2.13)

in which p is the Lagrange multiplier associated with the incompressibility condition J = 1. The Cauchy stress
tensor σab = 1

JF
a
AF

b
BS

AB is represented in component form as3

σab = 2F aAF
b
B

[
(WI1 + I1WI2)GAB −WI2C

AB +WI4N
ANB +WI5

(
NQNACBQ +NPNBCP

A
)]
− pgab.

(2.14)

2For the sake of brevity, we do not assume an explicit dependence of W on X, which in the case of inhomogeneous bodies
is needed. We suppose instead that the material is piece-wise homogeneous and model an inhomogeneity using different energy
functions in different regions of the body.

3Note that one can use the Cayley-Hamilton theorem to obtain ∂I2
∂C[

= I2(C−1)] − I3(C−2)] = I1G] −C].
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Orthotropy. Next, we consider a compressible orthotropic material with three G-orthonormal vectors N1(X),
N2(X), and N3(X) specifying the orthotropic axes in the reference configuration at a point X. A choice of
structural tensors is given by A1 = N1 ⊗N1, A2 = N2 ⊗N2, and A3 = N3 ⊗N3, where only two of which are
independent as A1 + A2 + A3 = I. Hence, the energy function is given as [Doyle and Ericksen, 1956, Spencer,
1982, Lu and Papadopoulos, 2000]

W = W (X,G,C[,A1,A2) . (2.15)

The energy function W is represented in terms of the following seven independent invariants

I1 = tr C , I2 = det C tr C−1 , I3 = det C , I4 = N1 ·C ·N1 ,

I5 = N1 ·C2 ·N1 , I6 = N2 ·C ·N2 , I7 = N2 ·C2 ·N2 .
(2.16)

Using (2.7), one writes

S =

7∑
n=1

2WIn

∂In
∂C[

, WIn :=
∂W

∂In
, n = 1, . . . , 7 . (2.17)

Substituting (2.11) into (2.17), the second Piola-Kirchhoff stress tensor is given by

S = 2
{
WI1G

] +WI2

(
I2C

−1 − I3C−2
)

+WI3I3C
−1 +WI4 (N1 ⊗N1) +WI5 (N1 ⊗C ·N1 + N1 ·C⊗N1)

+WI6 (N2 ⊗N2) +WI7 (N2 ⊗C ·N2 + N2 ·C⊗N2)
}
. (2.18)

In the case of incompressible solids I3 = 1 and W = W (X, I1, I2, I4, I5, I6, I7). Therefore, using (2.18), one
obtains the following representation for the second Piola-Kirchhoff stress tensor

S = 2
{
WI1G

] +WI2

(
I2C

−1 −C−2
)

+WI4 (N1 ⊗N1) +WI5 (N1 ⊗C ·N1 + N1 ·C⊗N1)

+WI6 (N2 ⊗N2) +WI7 (N2 ⊗C ·N2 + N2 ·C⊗N2)
}
− pC−1 . (2.19)

In components, the Cauchy stress tensor is given as

σab = 2F aAF
b
B

[
(WI1 + I1WI2)GAB −WI2C

AB +WI4N1
AN1

B +WI5

(
N1

QN1
ACBQ +N1

PN1
BCP

A
)

+WI6N2
AN2

B +WI7

(
N2

SN2
ACBS +N2

KN2
BCK

A
) ]
− pgab . (2.20)

Monoclinic Symmetry. One of the preferred directions of a material with a monoclinic symmetry (say
N3(X)) is perpendicular to the plane of the other two (denoted by N1(X) and N2(X)), which are not orthogonal.
As an example one can consider an isotropic base material reinforced with two families of fibers such that the
fibers are not at right angles, nor are they mechanically equivalent. In this case, the energy function is similar
to that of orthotropic materials given by (2.15), where A1 = N1 ⊗N1 and A2 = N2 ⊗N2. Nonetheless, an
extra invariant I8 = (N1 ·N2)N1 ·C ·N2 that models the coupling between the fibers (in N1 and N2 directions)
is needed to express the energy function for monoclinic materials as N1 and N2 are not perpendicular (see
[Merodio and Ogden, 2006, Vergori et al., 2013, Demirkoparan and Merodio, 2017]). Therefore

S =

8∑
n=1

2WIn

∂In
∂C[

, WIn :=
∂W

∂In
, n = 1, . . . , 8 . (2.21)

Hence4

S = 2
{
WI1G

] +WI2

(
I2C

−1 − I3C−2
)

+WI3I3C
−1 +WI4 (N1 ⊗N1) +WI5 (N1 ⊗C ·N1 + N1 ·C⊗N1)

+WI6 (N2 ⊗N2) +WI7 (N2 ⊗C ·N2 + N2 ·C⊗N2) +
WI8

2
(N1 ⊗N2 + N2 ⊗N1)

}
, (2.22)

4Note that ∂I8
∂C[

= N1 ⊗N2 + N2 ⊗N1.
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and for incompressible solids

S =2
{
WI1G

] +WI2

(
I2C

−1 −C−2
)

+WI4 (N1 ⊗N1) +WI5 (N1 ⊗C ·N1 + N1 ·C⊗N1)

+WI6 (N2 ⊗N2) +WI7 (N2 ⊗C ·N2 + N2 ·C⊗N2) +
WI8

2
(N1 ⊗N2 + N2 ⊗N1)

}
− pC−1 .

(2.23)

The Cauchy stress is given in components as

σab = 2F aAF
b
B

[
(WI1 + I1WI2)GAB −WI2C

AB +WI4N1
AN1

B +WI5

(
N1

QN1
ACBQ +N1

PN1
BCP

A
)

+WI6N2
AN2

B +WI7

(
N2

SN2
ACBS +N2

KN2
BCK

A
)

+
WI8

2

(
N1

AN2
B +N2

AN1
B
) ]
− pgab .

(2.24)

Cartan’s Moving Frame. At a point X of a manifold B consider an orthonormal frame field {eα}Nα=1

forming a basis for TXB. This frame field is not necessarily a coordinate basis for the tangent space. However,
given a coordinate basis { ∂

∂XA
}, one can obtain an arbitrary frame field {eα} using an SO(N,R)-rotation of

the coordinate basis such that eα = FAα
∂

∂XA
. For a coordinate frame

[
∂

∂XA
, ∂
∂XB

]
= 0,5 whereas for the non-

coordinate frame, [eα, eβ ] = −cγαβeγ , where cγαβ are the componenets of the object of anhonolomy. One can
show that cγαβ = FAαF

B
β (∂AF

γ
B − ∂BFγA), where FγA is the inverse of FAγ . Connection 1-forms are defined

by∇eα = eγ⊗ωγα, and in components, ∇eβeα = 〈ωγα, eβ〉 eγ = ωγβαeγ . In terms of the co-frame field {ϑα}Nα=1

corresponding to {eα}, one has ωγα = ωγβαϑ
β . Similarly, one obtains ∇ϑα = −ωαγϑγ and ∇eβϑ

α = −ωαβγϑγ .

The metric tensor is represented as G = δαβϑ
α ⊗ ϑβ . Metric compatibility of ∇ gives the following constraints

on the connection 1-forms δαγω
γ
β + δβγω

γ
α = 0. In a non-coordinate basis, the torsion and curvature have the

following components Tαβγ = ωαβγ − ωαγβ + cαβγ and Rαβλµ = ∂βω
α
λµ − ∂λωαβµ + ωαβξω

ξ
λµ − ωαλξωξβµ +

ωαξµc
ξ
βλ, respectively. Torsion and curvature 2-forms are, respectively, given by T α = dϑα + ωαβ ∧ ϑβ and

Rαβ = dωαβ + ωαγ ∧ ωγβ . These are Cartan’s first and second structural equations. The density of Burgers’
vector b at a point X of B is related to torsion 2-from as follows

bα(X;Cs) =

∫
Ωs

PαβT β , (2.25)

where Ωs ∈ B is a smooth surface with a boundary given by the curve Cs, and P(Cs)
t
τ : TCs(τ)B → TCs(t)B

parallel transports vectors tangent to the manifold at Cs(τ) to Cs(t) (see [Katanaev, 2005, Ozakin and Yavari,
2014] for more details).

3 Examples of Anisotropic Bodies with Distributed Defects

In this section, we consider several examples of distributed defects in cylindrical bars made of orthotropic
and monoclinic solids as well as distributed defects in spherical balls made of transversely isotropic solids.
Particularly, we consider cylindrically-symmetric distributions of parallel screw dislocations and disclinations in
an orthotropic medium, a spherically-symmetric distribution of point defects in a transversely isotropic spherical
ball, and a cylindrically-symmetric distribution of screw dislocations in a monoclinic medium. We also discuss
the effects of the constitutive parameters on the induced stress fields for different types of defects.

3.1 A Cylindrically-Symmetric Distribution of Parallel Screw Disclocations in an
Orthotropic Medium

Let us consider a cylindrically-symmetric distribution of screw dislocations parallel to the Z-axis with a radially-
symmetric Burgers’ vector density b(R) (in a cylindrical coordinate system (R,Θ, Z)) in an infinite orthotropic
medium. We assume that in the reference configuration the dislocated body is orthotropic. The material pre-
ferred directions at a material point X are denoted by N1(X), N2(X), and N3(X) in the reference configuration.

5Note that for any pair of vector fields U and V on B, one can define a new vector field —the commutator —given by
[U,V]Xf := UX(Vf)−VX(Vf), for any smooth function at X on B.
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In the current configuration, the preferred directions are given by n1(x), n2(x), and n3(x) at the point x corre-
sponding to the material point X. We assume that N1 and N2 are in the radial and axial directions, respectively.
Note that N3, which is perpendicular to N1 and N2, explicitly depends on the distribution of screw disloca-
tions as will be seen in the following. This is because the geometry of the material manifold has an explicit
nontrivial dependence on the dislocations distribution (see (3.1)). In the current configuration, the body will
have monoclinic anisotropy as n1 will be perpendicular to the plane of n2 and n3, which will not be orthogonal
in the ambient space. It is known that the material manifold for a nonlinear solid with distributed dislocations
is a Weitzenböck manifold, i.e., a manifold with torsion having a flat connection and vanishing non-metricity
(see [Yavari and Goriely, 2012a, Ozakin and Yavari, 2014] for more details). Therefore, the material metric for
the dislocated body is written as

G =

 1 0 0
0 R2 + f(R)2 f(R)
0 f(R) 1

 , (3.1)

where f(R) is related to the Burgers’ vector density b(R) such that f ′(R) = R
2π b(R). Let us endow the ambient

space with the Euclidean metric g = diag{1, r2, 1}. We then assume an embedding of the material manifold
into the ambient space of the form (r, θ, z) = (r (R) ,Θ, αZ), where α is a positive constant denoting the

longitudinal stretch. Hence, F = diag{r′(R), 1, α}. Assuming incompressibility, i.e., J =
√

detg
detGdetF = 1, one

obtains r(R)
R r′(R)α = 1. Eliminating the rigid body translation by setting r(0) = 0, one obtains r(R) = 1√

α
R.

Therefore, the right Cauchy-Green deformation tensor is written as6

C =


1
α 0 0

0 1
α −α

2f(R)
R2

0 − f(R)
α

α2

R2 (R2 + f(R)2)

 . (3.2)

Note that N1 = ER, N2 = EZ , and N3 = 1
REΘ − f(R)

R EZ . Note also that N3 is obtained using the orthonor-
mality of the material preferred directions, and ER = ∂/∂R, EZ = ∂/∂Z, and EΘ = ∂/∂Θ form a basis for
TXB. Using (2.16), the invariants of the strain energy function are simplified and are written as

I1 = tr C =
2

α
+
α2

R2
(R2 + f(R)2) , I2 =

1

2

[
tr(C2)− (tr C)2

]
=

1

α2
+ 2α+ α

f(R)2

R2
,

I4 =
1

α
, I5 =

1

α2
, I6 = α2 , I7 =

α4

R2
(R2 + f(R)2) .

(3.3)

The non-zero components of the Cauchy stress tensor following (2.20) read

σrr =
2

α2

[
WI2

(
α3 +

α3f(R)2

R2
+ 1
)

+ αWI4 + 2WI5

]
+

2WI1

α
− p(R) , (3.4)

σθθ =
2αWI1 + 2

(
α3 + 1

)
WI2 − α2p(R)

αR2
, (3.5)

σzz =
2α

R2

[ (
f(R)2 +R2

)
(αWI1 +WI2 + 2α3WI7) +R2(WI2 + αWI6)

]
− p(R) , (3.6)

σθz =− 2f(R)

R2

(
αWI1 +WI2 + α3WI7

)
. (3.7)

We assume that the stress vanishes when the body is dislocation-free and the longitudinal stretch α = 1 (see
also [Merodio and Ogden, 2003, Vergori et al., 2013, Golgoon and Yavari, 2018]). Thus

(WI4 + 2WI5) |I1=I2=3,I4=I5=I6=I7=1= 0 , and (WI6 + 2WI7) |I1=I2=3,I4=I5=I6=I7=1= 0 . (3.8)

6The symbolic computations in this paper were performed using Mathematica [Wolfram Research, 2016].
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In the absence of body and inertial forces, the only non-trivial equilibrium equation is σrb|b = 0, implying7 that

(cf. (2.3)) σrr,r + σrr

r − rσ
θθ = 0. Therefore, p′(R) = h(R), where

h(R) =
2

αR5

[
2R3f(R)f ′(R)

(
α2WI2 + α2WI1I1 + α(2 + α3)WI1I2 + α2WI1I4 + 2αWI1I5 + α4WI1I7

+ (α3 + 1)WI2I2 + αWI2I4 + 2WI2I5 + α3(α3 + 1)WI2I7 + α4WI4I7 + 2α3WI5I7

)
+ 2α3Rf(R)3f ′(R)

(
αWI1I2 +WI2I2 + α3WI2I7

)
−R2f(R)2

{
2αWI1I2(2 + α3)

+ 2α2WI1I4 + 4αWI1I5 + 2α4WI1I7 + α2WI2 + 2(α3 + 1)WI2I2 + 2αWI2I4 + 4WI2I5

+ 2α3(α3 + 1)WI2I7 + 2α4WI4I7 + 4α3WI5I7 + 2α2WI1I1

}
− 2α3f(R)4

(
αWI1I2 +WI2I2 + α3WI2I7

)
+R4WI4

]
+

4WI5

α2R
.

(3.9)

If one assumes that the medium is a cylinderical bar with a finite radius Ro and the surface R = Ro is traction-
free, one obtains

p(R) =

∫ R

Ro

h(ζ)dζ +
2

α2

[(
α3 +

α3f(Ro)
2

R2
o

+ 1
)
WI2 |R=Ro+αWI4 |R=Ro+2WI5 |R=Ro

]
+

2

α
WI1 |R=Ro . (3.10)

Let us employ the so called standard reinforcing model for compressible materials, which is defined as [Tri-
antafyllidis and Abeyaratne, 1983, Merodio and Ogden, 2003, 2005]

W = W (I1, I2, I4, I5, I6, I7) = Wiso (I1, I2) +WR
fib (I4, I5) +WZ

fib (I6, I7) , (3.11)

where Wiso denotes the strain energy function for the isotropic base material, whereas WR
fib and WZ

fib represent
the anisotropic effects due to the fiber reinforcement in the radial and longitudinal directions, respectively.
Consider as an example a cylindrical body made of a Mooney-Rivlin solid reinforced with fibers in the radial
and longitudinal directions such that

W (I1, I2, I4, I5, I6, I7) =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3) +

γ1

2
(I4 − 1)

2

+
γ2

2
(I5 − 1)

2
+
ξ1
2

(I6 − 1)
2

+
ξ2
2

(I7 − 1)
2
.

(3.12)

Using (3.9), we have

h(R) = αµ2
f(R)

R3
[2Rf ′(R)− f(R)] +

2

R

1

α2

(
1

α
− 1

)[
αγ1 + 2γ2

(
1 +

1

α

)]
. (3.13)

Thus, from (3.10)

p(R) =αµ2

∫ R

Ro

f(ζ)

ζ3
[2ζf ′(ζ)− f(ζ)] dζ +

2

α2

(
1

α
− 1

)[
αγ1 + 2γ2

(
1 +

1

α

)][
1 + ln

R

Ro

]
+
µ1

α
+
µ2

α2

(
α3 +

α3f(Ro)
2

R2
o

+ 1
)
.

(3.14)

7Note that p = p(R) is implied from the other equilibrium equations.
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The physical components of the Cauchy stress read8

σ̂rr =αµ2

(f(R)2

R2
− f(Ro)

2

R2
o

)
+ αµ2

∫ Ro

R

f(ζ)

ζ3
[2ζf ′(ζ)− f(ζ)] dζ

− 2

α2
(

1

α
− 1)

{
αγ1 + 2γ2(1 +

1

α
)

}
ln

R

Ro
,

(3.15)

σ̂θθ =αµ2

∫ Ro

R

f(ζ)

ζ3
[2ζf ′(ζ)− f(ζ)] dζ − αµ2

f(Ro)
2

R2
o

− 2

α2
(

1

α
− 1)

{
αγ1 + 2γ2

(
1 +

1

α

)}[
1 + ln

R

Ro

]
,

(3.16)

σ̂zz =2α2(α2 − 1)ξ1 +
4α4ξ2
R2

(
f(R)2 +R2

) [α4

R2

(
f(R)2 +R2

)
− 1
]

+ αµ2

(f(R)2

R2
− f(Ro)

2

R2
o

)
− 2

α2

(
1

α
− 1

){
αγ1 + 2γ2

(
1 +

1

α

)}[
1 + ln

R

Ro

]
+ αµ2

∫ Ro

R

f(ζ)

ζ3
[2ζf ′(ζ)− f(ζ)] dζ + (αµ1 + µ2)(α− 1

α2
) + α2µ1

f(R)2

R2
,

(3.17)

σ̂θz =− f(R)

α
1
2R

(
αµ1 + µ2 + 2α3ξ2

[
α4

R2

(
R2 + f(R)2

)
− 1

])
. (3.18)

Remark 3.1. From (3.14), for an arbitrary cylindrically-symmetric distribution of parallel screw dislocations,
the pressure p(R), and hence, σ̂rr, σ̂θθ, and σ̂zz exhibit a logarithmic singularity on the dislocation axis (R = 0)
unless α = 1. Note that this singularity is inherently due to the anisotropy effects, i.e., the presence of the
reinforcement in the radial direction. In particular, the singularity does not occur when γ1 = γ2 = 0, e.g., when

the material is isotropic. Note also that as R → 0, f(R) = b(0)
4π R

2 +O(R3), and thus, f(R)
R is finite at R = 0.

This implies that unlike the other stress components, σ̂θz is nonsingular.

Remark 3.2. Note that in the case of fiber-reinforced neo-Hookean materials (µ2 = 0) and a given arbitrary
cylindrically-symmetric distribution of screw dislocations supported on a cylinder of radius Ri, the stress field
for R > Ri is independent of b(R) and is identical to that of a single screw dislocation with Burgers vector

b0 =
∫ Ri

0
ηb(η)dη. Acharya [2001] and Yavari and Goriely [2012a] had observed this for isotropic neo-Hookean

solids.

As an example, let us assume the following Burgers’ vector density distribution:

b(R) =

{
b0 0 < R ≤ Ri ,
0 Ri < R ≤ Ro ,

(3.19)

where Ri ≤ Ro. Thus

f(R) =
1

2π

∫ R

0

ηb(η)dη =
b0
4π

{
R2 0 < R ≤ Ri ,
R2
i Ri < R ≤ Ro .

(3.20)

Fig. 1 depicts the variation of the different components of the Cauchy stress for the Burgers’ vector density
distribution (3.19) such that Ri/Ro = 0.5 and b0Ro = 20. Notice that the σ̂rr and σ̂θθ vanish for a neo-Hookean
solid.

Remark 3.3. As noted by Zubov [1997], the energy per unit length (along the dislocation line) of a single screw
dislocation in a Mooney-Rivlin solid is unbounded.9 This is also the case for a fiber-reinforced Mooney-Rivlin
material due to the standard reinforcing model considered here (cf. (3.11)). Let us consider incompressible

8The physical components of the Cauchy stress tensor, i.e., σ̂ab = σab
√
gaagbb (no summation) [Truesdell, 1953] are given as

σ̂rr = σrr, σ̂θθ = r2(R)σθθ, σ̂zz = σzz , and σ̂θz = r(R)σθz .
9Note, however, that the energy of distributed screw dislocations is not necessarily unbounded (see also [Sadik and Yavari,

2016]). In particular, a Mooney-Rivlin reinforced material with the energy function (3.12) and the Burgers’ vector distribution
(3.19) has a finite energy per unit length.
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Figure 1: Stress distribution in a medium with the constitutive equation (3.12) and the dislocation distribution (3.19) such that
Ri/Ro = 0.5, b0Ro = 20, and α = 0.9 for different values of the constitutive parameters.
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isotropic base materials, for which the energy per unit length of a single screw dislocation remains bounded, i.e.,

2π
∫ Ro

0
Wiso(I1(ξ), I2(ξ))ξdξ < ∞, for finite Ro (examples include Varga [Zubov, 1997], incompressible power-

law [Knowles, 1977, Rosakis and Rosakis, 1988], generalized incompressible neo-Hookean materials [Yavari and
Goriely, 2012a], and Hencky material [Yavari, 2016]). Exploiting the standard reinforcing model, the energy
function for the fiber-reinforced material with the isotropic base with the energy function Wiso(I1, I2) is assumed
to be given as

W = Wiso(I1, I2) +
γ1

2
(I4 − 1)

2
+
γ2

2
(I5 − 1)

2
+
ξ1
2

(I6 − 1)
2

+
ξ2
2

(I7 − 1)
β
. (3.21)

Then the energy per unit length along a single screw dislocation line is finite if β < 1. To see this, we need

to show that 2π
∫ Ro

0
ξ2
2 (I7(ζ)− 1)

β
ζdζ < ∞ as the finiteness of the contribution of the other terms in the

energy per unit length is trivial (cf. (3.3)). Noting that for a single screw dislocation with Burgers vector bi,
b(R) = 2πbi δ

2(R), and hence, f(R) = bi
2πH(R), we have

πξ2

∫ Ro

0

(I7(ζ)− 1)
β
ζdζ = πξ2

∫ Ro

0

[α4

ζ2
(ζ2 + f(ζ)2)− 1

]β
ζdζ = πξ2

∫ Ro

0

[
α4− 1 +

α4b2i
4π2ζ2

]β
ζdζ <∞ , (3.22)

provided that β < 1. Similarly, one can show that if the resultant longitudinal force, i.e., FZ = 2π
∫ Ro

0
σ̂zz(ζ)ζdζ,

induced by a single screw dislocation is finite for the isotropic base material with the energy function Wfib(I1, I2),
so is the axial force for the fiber-reinforced material with the energy function (3.21) when β < 1.

As the underlying geometry of the material manifold explicitly depends on the distribution of defects, so are
the material preferred directions (and thus, the material symmetry group). One of the consequences of this is
that the class of anisotropy of the defective body is, in general, different in the reference and current configu-
rations given that the reference configuration has a nontrivial geometry, whereas the geometry of the current
configuration is trivial. The next section is aimed at illustrating that depending on whether the dislocated
body is orthotropic in its reference configuration or in its current configuration, the induced residual stresses
are different.

3.2 A Cylindrically-Symmetric Distribution of Parallel Screw Disclocations in a
Monoclinic Medium

In the previous section, we assumed that the dislocated body is orthotropic in the reference configuration. In-
stead, let us assume that the medium with the cylindrically-symmetric distribution of parallel screw dislocations
is orthotropic in its current configuration such that the orthotropic axes are in the radial, circumferential, and
axial directions in the ambient space. In the reference configuration, the material will be monoclinic such that
N3 = R̂ is perpendicular to the plane of N1 = Θ̂ and N2 = Ẑ.10 We assume the same class of deformations
as was assumed in the previous section, and thus, r(R) = 1√

α
R. Hence, the right Cauchy-Green deformation

tensor is given by (3.2). The invariants of the strain energy function for the monoclinic material are given as

I1 = tr(C) =
2

α
+
α2

R2
(R2 + f(R)2) , I2 =

1

2

[
tr(C2)− (tr C)2

]
=

1

α2
+ 2α+ α

f(R)2

R2
,

I4 =
R2

α(R2 + f(R)2)
, I5 =

R2

α2(R2 + f(R)2)
, I6 = α2 , I7 =

α4

R2
(R2 + f(R)2) , I8 = 0 .

(3.23)

10Note that N1 = EΘ/(R
2 +f(R)2)1/2 and N2 = EZ are not orthogonal in the nontrivial geometry of the reference configuration

(cf. (3.1)).
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From (2.24), the non-zero components of the Cauchy stress tensor read

σrr =
2WI2

α2

(
α3 +

α3f(R)2

R2
+ 1
)

+
2WI1

α
− p(R) , (3.24)

σθθ =
2αWI1 + 2

(
α3 + 1

)
WI2 − α2p(R)

αR2
+

2(αWI4 + 2WI5)

α(R2 + f(R)2)
, (3.25)

σzz =
2α

R2

[ (
f(R)2 +R2

)
(αWI1 +WI2 + 2α3WI7) +R2(WI2 + αWI6)

]
− p(R) , (3.26)

σθz =− 2f(R)

R2

(
αWI1 +WI2 + α3WI7

)
− 2f(R)

R2 + f(R)2
WI5 +

α

(R2 + f(R)2)
1
2

WI8 . (3.27)

Note that for the stress to vanish when α = 1 and the body is dislocation-free, i.e., f(R) = 0 (identically), one
needs to have (WI4 + 2WI5) = (WI6 + 2WI7) = WI8 = 0, evaluated at I1 = I2 = 3, I4 = I5 = I6 = I7 = 1,
I8 = 0. The equilibrium equation implies that p′(R) = S(R), where

S(R) =− 1

α4R3

[
− 4αf(R) (Rf ′(R)− f(R))

(
α4WI1I1 + α3WI1I2 + α6WI1I7 −

R4(αWI1I4 +WI1I5)

(f(R)2 +R2)
2

)

− 4f(R)
(
α3 +

α3f(R)2

R2
+ 1
)

(Rf ′(R)− f(R))

{
α4WI1I2 + α3WI2I2 + α6WI2I7

− R4(αWI2I4 +WI2I5)

(f(R)2 +R2)
2

}
+ 4α5f(R)WI2 (f(R)−Rf ′(R)) +

2α2R4(αWI4 + 2WI5)

f(R)2 +R2

− 2α5f(R)2WI2

]
.

(3.28)

Assuming that the surface R = Ro is traction-free the pressure field is obtained as

p(R) =

∫ R

Ro

S(ζ)dζ +
2

α2

(
α3 +

α3f(Ro)
2

R2
o

+ 1
)
WI2 |R=Ro+

2

α
WI1 |R=Ro . (3.29)

Let us consider the following model for the strain energy function

W = W (I1, I2, I4, I5, I6, I7, I8) = Wiso (I1, I2) +WΘ
fib (I4, I5) +WZ

fib (I6, I7) +WZΘ
fib (I8) , (3.30)

where Wiso describes that part of the energy function pertaining to the isotropic base material, while WΘ
fib

and WZ
fib represent the reinforcement effects in the circumferential and axial directions. WZΘ

fib (I8) models the
coupling between the axial and circumferential fibers. Note, however, that I8 = 0, and for the stress to vanish
for the dislocation-free body, one needs WI8 = 0 at I8 = 0, which implies that WZΘ

fib (I8) = 0, i.e., the coupling
term must vanish. A way out would be to require that the coupling term depend on some other invariants as
well, e.g., one can define WZΘ

fib (I1, I8) = ηI8(I1 − 3) for some positive constant η. For the sake of simplicity, as
an example, we consider a fiber-reinforced Mooney-Rivlin material with the following energy function

W (I1, I2, I4, I5, I6, I7) =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3) +

λ1

2
(I4 − 1)

2

+
λ2

2
(I5 − 1)

2
+
ξ1
2

(I6 − 1)
2

+
ξ2
2

(I7 − 1)
2
.

(3.31)

Therefore, one obtains

S(R) =
1

α2R3 (f(R)2 +R2)

[
α3µ2f(R)(R2 + f(R)2)(2Rf ′(R)− f(R))

+ 2R4
{
αλ1 −

R2

f(R)2 +R2
(
2λ2

α2
+ λ1) + 2λ2

}]
.

(3.32)
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Thus, the physical components of the stress are given as

σ̂rr = αµ2

(
f(R)2

R2
− f(Ro)

2

R2
o

)
+

∫ Ro

R

S(ζ)dζ , (3.33)

σ̂θθ =

∫ Ro

R

S(ζ)dζ − αµ2
f(Ro)

2

R2
o

+
2R2

α2(R2 + f(R)2)

[
αλ1

( R2

α(R2 + f(R)2)
− 1
)

+ 2λ2

( R2

α2(R2 + f(R)2)
− 1
)]
,

(3.34)

σ̂zz = 2α2ξ1(α2 − 1) + 4α4ξ2

(
1 +

f(R)2

R2

)[
α4
(

1 +
f(R)2

R2

)
− 1
]

+

∫ Ro

R

S(ζ)dζ

+ αµ2

(
f(R)2

R2
− f(Ro)

2

R2
o

)
+ (αµ1 + µ2)(α− 1

α2
) + α2µ1

f(R)2

R2
,

(3.35)

σ̂θz = − 1√
α

f(R)

R
(αµ1 + µ2)− 2ξ2α

5
2
f(R)

R

[
α4
(

1 +
f(R)2

R2

)
− 1
]

− 2λ2√
α

Rf(R)

R2 + f(R)2

( R2

α2(R2 + f(R)2)
− 1
)
.

(3.36)

Remark 3.4. For an arbitrary cylindrically-symmetric distribution of parallel screw dislocations with a smooth
Burgers’ vector density b(R) in a monoclinic material, the pressure, and hence, σ̂rr, σ̂θθ, and σ̂zz have a
logarithmic singularity on the dislocation axis unless α = 1. Nevertheless, the shear component σ̂θz is finite and

vanishes at R = 0. This is because as R→ 0, f(R) = b(0)
4π R

2 +O(R3), and thus, from (3.32)

S(R) =
2 (α− 1)

α2

[
λ1 +

2λ2

α

(
1 +

1

α

)]
1

R
+O(R) . (3.37)

Therefore, p(R) = C − 2(α−1)
α2

[
λ1 + 2λ2

α

(
1 + 1

α

)]
ln R

Ro
+ O(R2) as R → 0, where C is a constant. It is

straightforward to see that when α = 1, the stress is finite and σ̂rr = σ̂θθ = σ̂zz at R = 0.

In Fig. 2 the stress field is shown for the dislocation distribution (3.19), where Ri/Ro = 0.5 and b0Ro = 20
for different values of the constitutive parameters given by (3.31).

3.3 A Parallel Cylindrically Symmetric Distribution of Wedge Disclinations in an
Orthotropic Medium

Let us consider a parallel cylindrically-symmetric distribution of wedge disclinations in an infinite orthotropic
medium in the reference configuration. In the cylindrical coordinates (R,Θ, Z), assume that the material
orthotropic axes are in the R, Θ, and Z directions. The radial density of the wedge disclinations is denoted by
w(R). The material manifold for a body having a distribution of wedge disclinations is a Riemannian manifold
with a non-vanishing curvature. The material metric for the disclinated body is given by [Yavari and Goriely,
2013b]

G =

 1 0 0
0 f(R)2 0
0 0 1

 , (3.38)

where f ′′(R) = − R
2πw(R). The ambient space is endowed with the Euclidean metric g = diag{1, r2, 1}. We em-

bed the material manifold into the ambient space by looking for mappings11 of the form (r, θ, z) = (r(R),Θ, αZ),
where α is a constant representing the axial stretch of the bar that depends on the axial boundary conditions.
Therefore, the deformation gradient reads F = diag (r′(R), 1, α). Incompressibility constraint dictates that

J =
√

detg
detGdetF = α r(R)

f(R)r
′(R) = 1. Thus, imposing r(0) = 0, we have r(R) =

(
2
α

∫ R
0
f(ξ)dξ

) 1
2

. The right

11Note that for the class of deformations that is considered, the material will be orthotropic in its current configuration as well.
The orthotropic axes in the current configuration will be in the radial, circumferential, and axial directions (similar to those in the
reference configuration).
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Figure 2: Stress distribution in a medium with the constitutive equation (3.31) and the dislocation distribution (3.19) such that
Ri/Ro = 0.5, boRo = 20, and α = 0.9 for different values of the constitutive parameters.
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Cauchy-Green deformation tensor reads C = diag
{

1
α2

f(R)2

r(R)2 ,
r(R)2

f(R)2 , α
2
}

. From (2.16), the invariants of the strain

energy function are simplified to read

I1 = tr(C) = α2 +
1

α2

f(R)2

r(R)2
+
r(R)2

f(R)2
, I2 =

1

2
(tr(C2)− tr(C)2) =

1

α2
+ α2 r(R)2

f(R)2
+
f(R)2

r(R)2
,

I4 =
1

α2

f(R)2

r(R)2
, I5 =

1

α4

f(R)4

r(R)4
, I6 = α2 , I7 = α4 .

(3.39)

The non-zero physical components of the Cauchy stress are as follows12

σ̂rr =
2

α2

f(R)2

r(R)2

(
WI1 + α2WI2 +WI4

)
+

4

α4

f(R)4

r(R)4
WI5 +

2

α2
WI2 − p(R) , (3.40)

σ̂θθ =2
r(R)2

f(R)2

(
WI1 + α2WI2

)
+

2

α2
WI2 − p(R) , (3.41)

σ̂zz =2α2
(
WI1 +WI6 + 2α2WI7

)
+ 2WI2

(
f(R)2

r(R)2
+ α2 r(R)2

f(R)2

)
− p(R) . (3.42)

The equilibrium equation implies that p′(R) = k(R), where

k(R) =
2

α8f3r9

[
2α4f4r7f ′

(
α2WI1 +WI1I2 − 2WI1I5 + α4WI2 + α2WI2I2 +WI2I4 − 2α2WI2I5 + α2WI4

)
+ 2α2f6r5f ′

(
α2WI1I1 + 2α4WI1I2 + 2α2WI1I4 + α6WI2I2 + 2α4WI2I4 + 2WI2I5 + α2WI4I4 + 4α2WI5

)
− 2α6f2r9f ′

(
WI1I1 + 2α2WI1I2 +WI1I4 + α4WI2I2 + α2WI2I4

)
+ 8α2f8r3f ′

(
WI1I5 + α2WI2I5 +WI4I5

)
+ 8f10WI5I5rf

′ − 2α6r11f ′
(
WI1I2 + α2WI2I2

)
− α3f6r5

(
α2WI1 + 2WI1I2 − 4WI1I5 + α4WI2 + 2α2WI2I2 + 2WI2I4 − 4α2WI2I5 + α2WI4

)
− α5f2r9

(
α2WI1 − 2WI1I2 + α4WI2 − 2α2WI2I2

)
− 8αf10r

(
WI1I5 + α2WI2I5 +WI4I5

)
− 2αf8r3

(
α2WI1I1 + 2α4WI1I2 + 2α2WI1I4 + α6WI2I2 + 2α4WI2I4 + 2WI2I5 + α2WI4I4 + 3α2WI5

)
+ 2α5f4r7

(
WI1I1 + 2α2WI1I2 +WI1I4 + α4WI2I2 + α2WI2I4

)
− 8f12WI5I5

αr

]
.

(3.43)
Assuming (3.12) for the energy function, one obtains

p′(R) =− 1

α9fr10

[
− 2α7f2r8f ′

(
α2µ2 − 2γ1 + µ1

)
+ α5f4r6

{
α
(
α2µ2 − 2γ1 + µ1

)
− 8(γ1 − 2γ2)f ′

}
− 32αγ2f

8r2f ′ + 6α4(γ1 − 2γ2)f6r4 + 28γ2f
10 + α8r10

(
α2µ2 + µ1

) ]
.

(3.44)

Knowing that the traction vanishes on the outer boundary R = Ro, one finds

p(Ro) =
1

α2

f(Ro)
2

r(Ro)2

{
µ1 + α2µ2 + 2γ1

[
1

α2

f(Ro)
2

r(Ro)2
− 1

]}
+

4γ2

α4

f(Ro)
4

r(Ro)4

[
1

α4

f(Ro)
4

r(Ro)4
− 1

]
+
µ2

α2
. (3.45)

Therefore, p(R) =
∫ R
Ro
p′(ξ)dξ + p(Ro). The stress components are simplified and read

σ̂rr =
1

α2

f(R)2

r(R)2

{
µ1 + α2µ2 + 2γ1

[
1

α2

f(R)2

r(R)2
− 1

]}
+

4γ2

α4

f(R)4

r(R)4

[
1

α4

f(R)4

r(R)4
− 1

]
+
µ2

α2
− p(R) , (3.46)

σ̂θθ =
r(R)2

f(R)2

(
µ1 + α2µ2

)
+
µ2

α2
− p(R) , (3.47)

σ̂zz =α2
[
µ1 + 2ξ1(α2 − 1) + 4α2ξ2(α4 − 1)

]
+ µ2

[
f(R)2

r(R)2
+ α2 r(R)2

f(R)2

]
− p(R) . (3.48)

12When the body is disclination-free f(R) = R, and the stress vanishes if the energy function satisfies (3.8).
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Figure 3: σ̂rr and σ̂θθ distributions for different values of the constitutive parameters for a uniform disclination distribution with
ωo = 8π/R2

o such that α = 1.

Example 3.5. For a uniform disclination distribution w(R) = wo, one has f ′′(R) = − R
2πwo, and thus, f(R) =

R− wo
12πR

3. Therefore

r(R) =
R

α
1
2

(
1− wo

24π
R2
) 1

2

, (3.49)

provided that wo < 24π/R2
o.

Remark 3.6. For the uniform disclination distribution, the stress field exhibits a logarithmic singularity on
the disclinations axis unless the axial stretch α = 1. Moreover, when α = 1, the stress is finite and hydrostatic
at R = 0. To see this, as R→ 0, r(R) = R

α
1
2

+O(R3), and f(R) = R+O(R3). From (3.44), therefore

p(R) = C +
2(1− α)

α4

[
α2γ1 + 2γ2(1 + α)

]
lnR+O(R2) , (3.50)

where C is a constant. Hence, the stress is logarithmically unbounded at R = 0 unless α = 1. Similar to the
case of parallel screw dislocations in an orthotropic medium (cf. Remark. 3.1), the singularity arises as a result
of radial reinforcement effects, and does not, in particular, occur in isotropic materials. Note that for α = 1, at

R = 0, one has σ̂rr = σ̂θθ = σ̂zz = µ1 + 2µ2 +
∫ Ro

0
p′(ξ)dξ − p(Ro).

In Fig. 3, we show the variation of the stress components for the uniform disclination distribution with
wo = 8π/R2

o and for some different values of the constitutive parameters.13

Example 3.7. For a single wedge disclination ω(R) = 2πΘoδ
2(R), where Θo is the angle of the wedge shape

region that is removed in Volterra’s cut-and-weld operation (see [Yavari and Goriely, 2013b] for more details).

13Note that the numerical values shown in [Yavari and Goriely, 2013b]’s Fig. 4 are not correct. This was caused by a typo in the
sign of the integral term in the numerical evaluation of the pressure function from Eq. (4.23). In other words, the numerical values
in that figure correspond to the following (incorrect) relation for the pressure with a positive sign for the integral term

p(R) = µ
f2(Ro)

r2(Ro)
+ µ

∫ Ro

R

[
f(η)f ′(η)∫ η
0 f(ξ)dξ

−
f3(η)

4(
∫ η
0 f(ξ)dξ)2

−
1

f(η)

]
dη .
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Figure 4: σ̂rr and σ̂θθ distributions for different values of the constitutive parameters for a single positive wedge disclination with
Θo = π/2 such that α = 1.

Therefore, f ′′(R) = −Θo
2π δ(R), which implies that f(R) = R(1 − Θo

2π ), and thus, r(R) = R

α
1
2

(1 − Θo
2π )

1
2 . Fig. 4

illustrates the stress distribution for different values of the reinforcement and the base material parameters in
the case of a single wedge disclination of positive sign with Θo = π

2 .

3.4 Distributed Edge Dislocations in an Orthotropic Medium

Next, we consider a distribution of edge dislocations in an orthotropic medium such that the material preferred
directions are parallel to the Cartesian axes in the Cartesian coordinates (X,Y, Z). Let us consider the or-
thonormal frame field {eα(X,Y, Z)}3α=1, where e1, e2, and e3 are in the X, Y , and Z-directions, respectively.
We assume that the edge dislocation distribution consists of dislocations with i) the dislocation line parallel to
the Z-axis such that the Burgers’ vector density is given by b1(Z)e1 + c1(Z)e2, ii) X-oriented Burgers’ vector
density b2(X,Y, Z)e1 such that the dislocation line is parallel to the Y -axis, iii) Y -oriented Burgers’ vector
c2(X,Y, Z)e2 with the dislocation line parallel to the X-axis. Let us consider the following co-frame field (see
also [Yavari and Goriely, 2012a])

ϑ1 = eξ(Z)+γ(Y )dX , ϑ2 = eη(Z)+λ(X)dY , ϑ3 = eψ(Z)dZ , (3.51)

where ξ(Z), γ(Y ), η(Z), λ(X), and ψ(Z) are scalar functions to be determined. The corresponding frame field
reads

e1 = e−ξ(Z)−γ(Y )∂X , e2 = e−η(Z)−λ(X)∂Y , e3 = e−ψ(Z)∂Z . (3.52)

Note that G = δαβϑ
α ⊗ ϑβ , and thus

G = diag
{
e2(ξ(Z)+γ(Y )), e2(η(Z)+λ(X)), e2ψ(Z)

}
. (3.53)

The above dislocation distribution corresponds to the following torsion 2-forms (cf. (2.25))

T 1 = b1(Z)ϑ3 ∧ ϑ1 + b2(X,Y, Z)ϑ1 ∧ ϑ2 , T 2 = c1(Z)ϑ2 ∧ ϑ3 + c2(X,Y, Z)ϑ1 ∧ ϑ2 , T 3 = 0 . (3.54)

This represents a distribution of edge dislocations with the following total Burgers’ vector density

b(X,Y, Z) = (b1(Z) + b2(X,Y, Z)) e1 + (c1(Z) + c2(X,Y, Z)) e2

= e−ξ(Z)−γ(Y ) [b1(Z) + b2(X,Y, Z)] ∂X + e−η(Z)−λ(X) [c1(Z) + c2(X,Y, Z)] ∂Y .
(3.55)
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From (3.51), one obtains

dϑ1 =e−ψ(Z)ξ′(Z)ϑ3 ∧ ϑ1 + e−η(Z)−λ(X)γ′(Y )ϑ2 ∧ ϑ1 ,

dϑ2 =e−ψ(Z)η′(Z)ϑ3 ∧ ϑ2 + e−ξ(Z)−γ(Y )λ′(X)ϑ1 ∧ ϑ2 , dϑ3 = 0 .
(3.56)

Metric compatibility implies the following connection 1-forms matrix

ω = [ωαβ ] =

 0 ω1
2 −ω3

1

−ω1
2 0 ω2

3

ω3
1 −ω2

3 0

 . (3.57)

Cartan’s first structural equation gives the following connection 1-forms

ω1
2 =

(
b2(X,Y, Z) + γ′(Y )e−η(Z)−λ(X)

)
ϑ1 +

(
c2(X,Y, Z)− λ′(X)e−ξ(Z)−γ(Y )

)
ϑ2 ,

ω2
3 =

(
c1(Z) + η′(Z)e−ψ(Z)

)
ϑ2 , ω3

1 =
(
b1(Z)− ξ′(Z)e−ψ(Z)

)
ϑ1 .

(3.58)

The second structural equation, i.e., Rαβ = 0 is trivially satisfied if one assumes that

ξ′(Z) = b1(Z)eψ(Z) , γ′(Y ) = −b2(X,Y, Z)eη(Z)+λ(X) , η′(Z) = −c1(Z)eψ(Z) ,

λ′(X) = c2(X,Y, Z)eξ(Z)+γ(Y ) .
(3.59)

Thus

η′(Z) = − 1

b2

∂b2
∂Z

, λ′(X) = − 1

b2

∂b2
∂X

, γ′(Y ) = − 1

c2

∂c2
∂Y

, ξ′(Z) = − 1

c2

∂c2
∂Z

, ψ(Z) = ln

[
−1

b1c2

∂c2
∂Z

]
, (3.60)

where one needs to have ∂b2
∂Z = − c1b2b1c2

∂c2
∂Z and − 1

b1c2
∂c2
∂Z > 0. If we assume that b2 and c2 are separable in X, Y ,

and Z, i.e., b2 = b2X(X)b2Y (Y )b2Z(Z) and c2 = c2X(X)c2Y (Y )c2Z(Z), then

eη(Z) =
C1

b2Z(Z)
, eλ(X) =

C2

b2X(X)
, eγ(Y ) =

C3

c2Y (Y )
, eξ(Z) =

C4

c2Z(Z)
, eψ(Z) = − c2Z(Z)′

b1(Z)c2Z(Z)
, (3.61)

where Ci, i = 1, . . . , 4 are constants of integration. The compatibility conditions are written as

C1C2 b2Y (Y ) =
c′2Y (Y )

c2Y (Y )
, C3C4 c2X(X) = −b

′
2X(X)

b2X(X)
,

b′2Z(Z)

b2Z(Z)
= −c1(Z)

b1(Z)

c′2Z(Z)

c2Z(Z)
. (3.62)

Therefore, we have the material manifold (3.53) for the edge dislocation distributions with the Burgers’ vector
density (3.55). For the sake of simplicity of calculations, in the remaining of this section we consider two
simplified cases of the distribution (3.55): (i) b2(X,Y, Z) = c2(X,Y, Z) = 0, γ(Y ) = 0, λ(X) = 0, ψ(Z) = 0,
and (ii) b2(X,Y, Z) = c2(X,Y, Z) = 0, γ(Y ) = 0, λ(X) = 0, c1(Z) = 0, η(Z) = 0.

Case (i). From (3.55), the Burgers’ vector density reads b = b(Z) = b1(Z)e1 + c1(Z)e2 = b1(Z)e−ξ(Z)∂X +
e−η(Z)c1(Z)∂Y , where, using (3.59), ξ′(Z) = b1(Z) and η′(Z) = −c1(Z). The material metric (3.53) is simplified
as G = diag

{
e2ξ(Z), e2η(Z), 1

}
. Looking for solutions of the form (x, y, z) = (X,Y, αZ), the incompressibility

constraint implies that J = α
eξ(Z)+η(Z) = 1, and thus, ξ(Z) + η(Z) = lnα. This means that ξ′(Z) + η′(Z) = 0,

and hence, c1(Z) = b1(Z). Choosing orthonormal vectors N1 = e−ξ(Z)∂X , N2 = e−η(Z)∂Y , and N3 = ∂Z as the
orthotropic axes, the invariants of the energy function are obtained from (2.16) as follows

I1 = α2 +e−2ξ(Z) +
1

α2
e2ξ(Z) , I2 =

1

α2
+e2ξ(Z) +α2e−2ξ(Z) , I5 = I2

4 = e−4ξ(Z) , I7 = I2
6 =

e4ξ(Z)

α4
. (3.63)

Therefore, the non-zero components of the Cauchy stress tensor read

σ̂xx = 2e−2ξ(Z)

[
WI1 +

(e2ξ(Z)

α2
+ α2

)
WI2 +WI4

]
+ 4e−4ξ(Z)WI5 − p(Z) , (3.64)

σ̂yy =
2

α2
e2ξ(Z)

[
WI1 +

(
e−2ξ(Z) + α2

)
WI2 +WI6

]
+

4

α4
e4ξ(Z)WI7 − p(Z) , (3.65)

σ̂zz = 2α2

[
WI1 +

(
e−2ξ(Z) +

e2ξ(Z)

α2

)
WI2

]
− p(Z) . (3.66)
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Equilibrium equations imply that σ̂zz = C, where C is a constant. Vanishing of the traction vector on surfaces
parallel to the X−Y plane gives the pressure as

P (Z) = 2α2

[
WI1 +

(
e−2ξ(Z) +

e2ξ(Z)

α2

)
WI2

]
. (3.67)

Case (ii). The Burgers’ vector density is given by b = b(Z) = b1(Z)e1 = b1(Z)e−ξ(Z)∂X , where ξ′(Z) =
b1(Z). From (3.53), the material metric reads G = diag

{
e2ξ(Z), 1, e2ψ(Z)

}
. We then look for solutions of the

form (x, y, z) = (X,Y, αZ). Incompressibility implies that J = α
eξ(Z)+ψ(Z) = 1, and hence, ξ(Z) + ψ(Z) = lnα.

The orthotropic axes are N1 = e−ξ(Z)∂X , N2 = ∂Y , and N3 = e−ψ(Z)∂Z . The invariants of the strain energy
function read

I1 = 1 + e−2ξ(Z) + e2ξ(Z) , I2 = 1 + e2ξ(Z) + e−2ξ(Z) , I5 = I2
4 = e−4ξ(Z) , I6 = I7 = 1 . (3.68)

The non-zero components of the Cauchy stress are given as

σ̂xx = 2WI2 + 2e−2ξ(Z) (WI1 +WI2 +WI4) + 4e−4ξ(Z)WI5 − p(Z) , (3.69)

σ̂yy = 2WI1 + 2WI2

(
e−2ξ(Z) + e2ξ(Z)

)
+ 2WI6 + 4WI7 − p(Z) , (3.70)

σ̂zz = 2
(
WI2 + e2ξ(Z)(WI1 +WI2)

)
− p(Z) . (3.71)

The equilibrium equation and the vanishing of traction vector on surfaces parallel to X−Y plane give

p(Z) = 2
(
WI2 + e2ξ(Z)(WI1 +WI2)

)
. (3.72)

3.5 A Spherically-Symmetric Distribution of Point Defects in a Transversely Isotropic
Ball

In this section, we calculate the stress field of a spherically-symmetric distribution of point defects with the
volume density n(R)14 in a transversely isotropic ball of radius Ro. The material manifold of a medium with
distributed point defects is a flat Weyl manifold [Yavari and Goriely, 2012b]. Let us assume that the material

preferred direction is radial, i.e., N = R̂,15 where R̂ is a unit vector in the radial direction. The material
metric for the body with a radial distribution of point defects in the spherical coordinates (R,Θ,Φ) reads
G = diag

{
f2(R), R2, R2 sin2 Θ

}
, where

f(R) =
1− n(R)

1− 1
R3

∫ R
0

3y2n(y)dy
. (3.73)

We endow the ambient space with the flat Euclidean metric g = diag
{

1, r2, r2 sin2 θ
}

in the spherical coordinates
(r, θ, φ). Given an embedding of the form (r, θ, φ) = (r (R) ,Θ,Φ), the deformation gradient is written as F =

diag{r′(R), 1, 1}. The right Cauchy-Green deformation tensor reads C = diag
{
r′2(R)
f2(R) ,

r2(R)
R2 , r

2(R)
R2

}
. Assuming

incompressibility, the Jacobean is expressed as

J =

√
detg

detG
detF =

r2(R)r′(R)

R2f(R)
= 1 . (3.74)

This gives r(R) =
(∫ R

0
3ξ2f(ξ)dξ

) 1
3

. Using (2.8), the invariants are written as

I1 = tr(C) =
R4

r4(R)
+ 2

r2(R)

R2
, I2 =

1

2
(tr(C2)− tr(C)2) =

r4(R)

R4
+

2R2

r(R)2
, I5 = I2

4 =
R8

r8(R)
. (3.75)

14Note that n(R) < 0 for a distribution of vacancies, and n(R) > 0 for a distribution of interstitials.
15Note that R̂ = 1

f(R)
ER is the unit vector identifying the material preferred direction, where ER = ∂

∂R
such that 〈〈ER,ER〉〉G =

GRR.
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Using (3.74), the non-zero stress components read16

σ̂rr = 2
R4

r4(R)
(WI1 +WI4) + 4

R2

r2(R)
WI2 + 4

R8

r8(R)
WI5 − p(R) ,

σ̂θθ = σ̂φφ = 2
r2(R)

R2
WI1 + 2

R2

r2(R)
WI2 + 2

r4(R)

R4
WI2 − p(R) .

(3.77)

The non-trivial equilibrium equation is simplified to read 1
r′(R)σ

rr
,R+ 2

rσ
rr−2rσθθ = 0. This gives p′(R) = q(R),

where

q(R) =− 4

R3r19

[
f
{
R9r12 (WI1 + 4WI2I2 − 4WI2I5 +WI4) +R3r18 (WI1 − 4WI2I2)

+R7r14 [WI2 − 2 (WI1I1 +WI1I4)] + 2R13r8 (WI1I1 + 2WI1I4 +WI4I4 + 3WI5)

+ 2R11r10 (3WI1I2 − 2WI1I5 + 3WI2I4)− 2R5r16 (3WI1I2 +WI2I4) + 8R17r4 (WI1I5 +WI4I5)

+RWI2r
20 + 12R15WI2I5r

6 + 8R21WI5I5

}
− 2r3

{
R6r12 (WI1 + 2WI2I2 − 2WI2I5 +WI4)

+R4r14 (WI2 −WI1I1 −WI1I4) +R10r8 (WI1I1 + 2WI1I4 +WI4I4 + 4WI5)

+R8r10 (3WI1I2 − 2WI1I5 + 3WI2I4)−R2r16 (3WI1I2 +WI2I4) + 4R14r4 (WI1I5 +WI4I5)

− 2WI2I2r
18 + 6R12WI2I5r

6 + 4R18WI5I5

}]
.

(3.78)

Next, we assume an energy function corresponding to a radially reinforced Mooney-Rivlin spherical ball of the
following form

W (I1, I2, I4, I5) =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3) +

γ1

2
(I4 − 1)

2
+
γ2

2
(I5 − 1)

2
, (3.79)

where µ1 and µ2 are constants of the Mooney-Rivlin base material, while γ1 and γ2 are non-negative material
constants pertaining to the reinforcement strength in the radial direction. Thus, (3.78) is simplified to read

p′(R) =− 2

R2r19

[
f
{

6R12(γ1 − 2γ2)r8 +R8(µ1 − 2γ1)r12 + µ2R
6r14 + µ1R

2r18 + µ2r
20 + 28γ2R

20
}

− 2R3r3
(
4R6(γ1 − 2γ2)r8 +R2(µ1 − 2γ1)r12 + µ2r

14 + 16γ2R
14
) ]
.

(3.80)

The stress components are also simplified and read

σ̂rr =
R4

r4

[
µ1 + 2γ1

(R4

r4
− 1
)]

+ 2µ2
R2

r2
+ 4γ2

R8

r8

(R8

r8
− 1
)
− p ,

σ̂θθ = σ̂φφ = µ1
r2

R2
+ µ2

R2

r2
+ µ2

r4

R4
− p .

(3.81)

Assuming that the boundary of the ball is traction-free, one obtains

p(Ro) =
R4
o

r4(Ro)

{
µ1 + 2γ1

[
R4
o

r4(Ro)
− 1

]}
+ 2µ2

R2
o

r2(Ro)
+ 4γ2

R8
o

r8(Ro)

[
R8
o

r8(Ro)
− 1

]
. (3.82)

Thus

p(R) =2

∫ Ro

R

1

ξ2r19(ξ)

{
f(ξ)

[
6ξ12(γ1 − 2γ2)r8(ξ) + ξ8(µ1 − 2γ1)r12(ξ) + µ2ξ

6r14(ξ) + µ1ξ
2r18(ξ)

+ µ2r
20 + 28γ2ξ

20
]
− 2ξ3r3(ξ)

[
4ξ6(γ1 − 2γ2)r8(ξ) + ξ2(µ1 − 2γ1)r12 + µ2r

14(ξ) + 16γ2ξ
14
]}
dξ

+ p(Ro) .

(3.83)

16When the body is defect-free, f(R) = 1, and thus, I1 = I2 = 3 and I4 = I5 = 1. If one assumes that the stress vanishes in this
case, one has (see [Merodio and Ogden, 2003, Vergori et al., 2013] for similar conditions)(

2WI5 +WI4

)
|I1=I2=3,I4=I5=1= 0 . (3.76)
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Figure 5: σ̂rr and σ̂θθ distributions for different values of the constitutive parameters for the point defect distribution (3.84) with
Ri/Ro = 0.3 and no = −0.1.

Let us consider the following distribution of point defects in the ball

n(R) =

{
no 0 ≤ R ≤ Ri ,
0 Ri < R ≤ Ro .

(3.84)

Therefore, from (3.73)

f(R) =

{
1 , 0 ≤ R ≤ Ri ,
(1− no(Ri/R)3)−1 , Ri < R ≤ Ro ,

(3.85)

and hence

r(R) =

R , 0 ≤ R ≤ Ri ,[
R3 + noR

3
i ln (R/Ri)

3−no
1−no

]1/3
, Ri < R ≤ Ro .

(3.86)

Fig. 5 shows the stress field variation for the point defect distribution (3.84), when Ri/Ro = 0.3 and no = −0.1
for different values of the reinforcement and base material constants in (3.79).

Remark 3.8. Consider an arbitrary nonlinear incompressible transversely isotropic spherical ball of radius Ro
such that the material preferred direction is radial. Suppose that the ball is subject to a uniform pressure on
its boundary and has the point defect distribution (3.84). Then, in the ball R ≤ Ri, the stress is uniform
and hydrostatic. Interestingly, the value of the hydrostatic stress inside the ball R ≤ Ri has an explicit
dependence on the reinforcement parameters (see Fig. 5). To show this, for R ≤ Ri, f(R) = 1 and r(R) = R,
following (3.85) and (3.86), respectively. Therefore, after some simplification, (3.78) implies that p′(R) =
q(R) = 4

R (WI4 + 2WI5) |I1=I2=3,I4=I5=1= 0 using the relation (3.76). Hence, for R ≤ Ri, p(R) = C, where C is
a constant depending on the reinforcement and the base material parameters. From (3.77), σ̂rr = σ̂θθ = σ̂φφ =
2 (WI1 + 2WI2) |I1=I2=3,I4=I5=1−C for R ≤ Ri.

4 Concluding Remarks

Despite the crucial role that anisotropy plays in the overall response of materials in the presence of large strains,
the study of defects in nonlinear solids has been overwhelmingly restricted to isotropic materials to this date.
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In this paper, we presented a few analytical solutions for the stress fields induced by distributed line and
point defects in nonlinear anisotropic solids. We considered a parallel cylindrically-symmetric distribution of
screw dislocations in infinite orthotropic and monoclinic media, and also, a cylindrically-symmetric distribution
of parallel wedge disclinations in an orthotropic medium. Because the material manifold is endowed with a
nontrivial Riemannian metric that explicitly depends on the defect distribution, the material preferred directions,
and hence, the class of anisotropy of the defective body are, in general, different in the reference and current
configurations. We observed, in particular, that for a cylindrically-symmetric distribution of screw dislocations,
assuming that the body is orthotropic in its reference (current) configuration, it is monoclinic in its current
(reference) configuration. We found that for an arbitrary cylindrically-symmetric distribution of parallel screw
dislocations, and for a uniform wedge disclination distribution, the stress field is logarithmically singular on
the dislocation and the disclination axes unless the axial deformation is suppressed. These stress singularities
are inherently due to the anisotropy effects, e.g., the radial fiber-reinforcement, and do not, in particular,
arise in isotropic materials. This observation demonstrates the significance of taking material anisotropy into
consideration in the analysis of solids with distributed defects. For a single screw dislocation, we employed the
standard reinforcing model and discussed the conditions that guarantee that the energy per unit length and the
resultant axial force are finite for a fiber-reinforced material as long as the isotropic base material has a finite
energy per unit length and a finite axial force. For a distribution of edge dislocations the resulting stresses are
calculated when the medium is orthotropic. Finally, we studied a spherically-symmetric distribution of point
defects in a transversely isotropic spherical ball. We showed that for an incompressible transversely isotropic ball
with the radial material preferred direction, a uniform point defect distribution results in a uniform hydrostatic
stress field inside the spherical region the distribution is supported in. The role that anisotropy plays in the
dynamics, stability, and interactions of defects at finite strains are exciting problems that will be the subjects
of future communications.
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