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Abstract

In this paper we discuss the mechanics of anelastic bodies with respect to a Riemannian and a Euclidean
geometric structure on the material manifold. These two structures provide two equivalent sets of governing
equations that correspond to the geometrical and classical approaches to nonlinear anelasticity. This paper
provides a parallelism between the two approaches and explains how to go from one to the other. We work
in the setting of the multiplicative decomposition of deformation gradient seen as a non-holonomic change
of frame in the material manifold. This allows one to define, in addition to the two geometric structures, a
Weitzenbock connection on the material manifold. We use this connection to express natural uniformity in a
geometrically meaningful way. The concept of uniformity is then extended to the Riemannian and Euclidean
structures. Finally, we discuss the role of non-uniformity in the form of material forces that appear in the
configurational form of the balance of linear momentum with respect to the two structures.
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1 Introduction

According to Eckart [1948], anelasticity can be formulated starting from elasticity theory by relaxing the as-
sumption that for a given body a global and time-independent relaxed state always exists. This means that an
anelastic body is represented by a time-dependent non-Euclidean manifold, and hence, the theory of anelasticity
can be reduced to the elasticity problem of mapping a Riemannian material manifold to the Euclidean ambient
space. In a similar way, Epstein and Maugin [1996] defined anelasticity as the “result of evolving distributions
of inhomogeneity”, where inhomogeneity is understood in the sense of Noll [1967] and Wang [1968]. Anelasticity
is usually modeled through the multiplicative decomposition of deformation gradient, introduced by Bilby et al.
[1955], Kondo [1955a,b], and Kroner [1959]. For a short review see [Sadik and Yavari, 2017]. In a geometric
approach to anelasticity one formulates the balance laws in a Riemannian geometric structure defined on the
material manifold: distances and strains are defined with respect to a non-Euclidean material metric, densities
are defined with respect to the corresponding material volume form, and derivatives are taken using the as-
sociated Levi-Civita connection. On the other hand, in the classical approach everything is formulated in the
standard Euclidean space. In this paper we unify these two approaches. More specifically, using a geometric
formalism, we will discuss the relations between the governing equations in the two frameworks. The differences
between the two approaches are quite obscure when considered from the configurational perspective of Eshelby
[1975], Epstein and Maugin [1996], and Gurtin [2008], where the concept of uniformity, first discussed in the
works of Noll [1967], Wang [1968], and Wang and Bloom [1974], is involved. As a matter of fact, configurational
forces arise as a consequence of non-uniformity of the material, but, depending on the setting in which the
governing equations are written, these might show up as the effect of inhomogeneity even in the case of uniform
materials. It should be emphasized that in this paper we are not concerned with considering driving forces for
the evolution of the distribution of inhomogeneities. These are related to some anelastic variables (as well as to
the elastic deformations) via a specific flow rule that depends on the class of problems one is considering, such
as dislocations, growth, etc. As we are interested in investigating the geometric structures the anelastic defor-
mations induce on the material manifold regardless of the underlying dynamics, in this paper time evolutions
of distributions of inhomogeneities will be considered as given.
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Anelasticity is a general term that can refer to many phenomena. The present work does not make any
assumption on the nature of the source of anelasticity, and therefore, it applies to many different problems.
Yielding of materials and plasticity is an example [Cermelli et al., 2001; Gurtin, 2002; Gupta et al., 2007; Bennett
et al., 2016]. Plastic behavior is associated to the evolution of distribution of dislocations in a solid. In recent
years, many workers have discussed anelasticity from a configurational point of view involving the Eshelby stress
and the concept of uniformity. Epstein and Maugin [1996] provide a different perspective on the multiplicative
decomposition of deformation gradient, with a focus on the inverse of plastic deformation — the uniformity
map — representing the deformation of the reference crystal into a compatible reference configuration. In their
theory, equivalence classes of uniformity maps are defined based on the symmetry group of the reference crystal.
Evolution laws involving the inhomogeneity velocity gradient are obtained together with thermodynamical
restrictions involving Eshelby’s tensor. We point out the work by Menzel and Steinmann [2007], where different
formats of the balance of linear momentum in the framework of the multiplicative decomposition of deformation
gradient were presented. They defined different stress tensors with respect to different configurations, and
used them to express the balance of linear momentum in several different forms, some of which involve the
dislocation density tensor. Alhasadi et al. [2019] discussed material forces and uniformity in the context of
thermo-anelastic bodies. They used a geometric approach, although it is not clear whether they viewed the
multiplicative decomposition of deformation gradient as a change of frame or as a local deformation tensor.
However, their work has some similarities with the present paper, e.g., the definition of modified quantities
using the multiplication by a volume ratio, and the expression of the configurational forces in terms of the
Mandel stress and some geometric objects defined on the material manifold.

This paper is organized as follows. In §2 we define metric tensors and connections on the material manifold,
and introduce the Riemannian and the Euclidean structures with respect to which the balance laws of anelasticity
will be written. This is followed by a discussion on the natural Weitzenbock derivative. In §3 we review some
concepts related to the multiplicative decomposition of deformation gradient and define some measures of
deformation with respect to both structures. Time evolutions of the moving frame are also discussed. In §4
we define stress tensors with respect to both the Riemannian and the Euclidean structures in the context of
hyperelasticity. We also discuss uniformity with respect to the natural moving frame, and extend this concept
to the Riemannian and Euclidean structures. In §5 we derive the balance of linear momentum for an anelastic
body with respect to both the Riemannian and Euclidean structures. We discuss the role of non-uniformity in
the material forces that appear in the configurational form of the balance laws. A list of the symbols used in
this paper is given in Table 1.

2 Geometric structures on the material manifold

In this section we define two geometric structures on the material manifold of a solid body. The term geometric
material structure is inspired by the work of Wang [1968] and Wang and Bloom [1974], and with it we mean
a metric tensor with its associated volume form and the Levi-Civita connection. It should be emphasized that
for us “structure” does not have the same meaning as in [Epstein and Maugin, 1996], where it refers to a
reduction to classes of anelastic deformations based on the symmetry group of the solid. The two geometric
structures discussed here are: i) the Riemannian structure, which provides information on the distances in the
body in its natural configuration, and ii) the Euclidean structure, inherited from the ambient space. Natural
distances are provided starting from a moving frame representing the local natural state of the body. The
relation between the two structures allows one to define a distribution of local anelastic deformations. We also
define a third connection, the Weitzenbock connection that parallelizes the natural moving frame, and that
contains information about the defect content of the anelastic deformation.

2.1 The Riemannian material structure

A body is represented by a 3-manifold B called material manifold, that is embeddable in the Euclidean space S.
We indicate with {eq}a=1,23, or simply {e,}, a moving frame that represents the local natural state of the
body. This is related to the constitutive behavior of the material and will be discussed in §4. It should be
emphasized that this natural frame is not unique, as will be discussed in Remark 4.3. This moving frame is,
in general, non-holonomic, meaning that it is not necessarily induced from any coordinate chart. Its associated



Symbol Object Symbol Object

B Material manifold V,v, A, a Velocity, acceleration
S Ambient space L Rate of anelastic deformation
TB, TS Tangent spaces F Deformation gradient
{ea}, {9} Natural frame/co-frame E Elastic deformation

F* 4 Change of frame c .cc Right CG tensors

FB, F*B, PB  Tensor bundles c,c Elastic right CG tensors
{04} Cartesian frame J, J Jacobian functions
{0a} Generic frame W, W, W Energy functions
G.G, g Metric tensors W, W Energy densities

M, [ Volume forms S, S Second PK stress
u Area forms {Y.}, {Ya.} Vector stress

N, N Normal vectors Z, Z Negative Mandel stress
(S} Change of metric E E Eshelby stress

J Volume ratio P P First PK stress

A Anelastic deformation o Cauchy stress

v, [‘A BC Riemannian connection N Material isomorphisms
V, Mpe Euclidean connection M, M, M Non-uniformity forms
V, Mpe Weitzenbock connection K Kinetic energy

H K Changes of connection A Action

T Torsion tensor for V u Spatial variation

b Burgers vector b Body force

R Curvature tensor for V T, T Tractions

0o, Do, 0 Mass densities B, B Configurational forces

Table 1: List of symbols

moving co-frame field {9} is such that (9%, eg) = 63‘,1 or equivalently, e, ® 9% = I, where the summation
convention for repeated indices is used. On B one defines the material metric G as the (g)—tensor that has
components d,g in the moving frame, viz.

G =059 29", (1)

This means that the moving frame represents the state in which one observes the natural distances in the body.
Note that the moving frame {e,} is orthonormal with respect to the material metric G. The natural moving
frame {e,} and co-frame {99%} can be written in terms of the local frame {94} and co-frame {dX“*} induced
by a generic coordinate chart {X4} as

ey = (F—l)AaaA, 9° = Fo,dX4, a=1,2,3. (2)

Eq. (2) represents a passive interpretation of the multiplicative decomposition of deformation gradient in the
sense that the matrix [F* 4] is a change of frame and not a tensor. In this interpretation, anelasticity is modeled
by endowing B with just a moving frame. In the chart {X“4}, using (2), G is given by

GAB = G(@A,BB) = G (FaAea, FﬂBEﬁ) = FO‘AFBBG(ea,eB) = FaAFBB(sag . (3)
The volume form g associated with G is defined as
p=Vdet GAX' AdXZAdX3,

with components v/det G €4pc, where €4pc indicates the permutation symbol.? The Riemannian mass density
is denoted by g,. The total Riemannian volume )V and the total mass M are therefore given by

v=[u M= [on=[m
B B B

L({.,-} is the natural pairing of 1-forms and vectors.
2The permutation symbol is 1 for even permutations of (123), —1 for odd permutations, and 0 when an index is repeated.




where m = g, is the mass form. The Levi-Civita connection V associated with G has the following coefficients
1
IMpe = §GAD (0cGpp + 90pGpc — IpGre) -

By construction, VG = 0. The torsion of V vanishes, whereas its curvature is in general nonzero, meaning
that in general it is not possible to isometrically embed (B, G) into the flat ambient manifold (S, g), g being
the standard Euclidean metric in the ambient space. Such an embedding is associated with the lowest energetic
state, and hence, when this cannot be achieved residual stresses develop (see §4). We refer to the triplet
(G, pu, V) as the Riemannian structure.

2.2 The Euclidean material structure

The governing equations of anelasticity are often expressed with respect to an auxiliary reference Euclidean
structure that is inherited from the ambient space (S,g), and does not provide any information about the
anelastic frustration of the material. As was mentioned earlier, the material manifold B is globally embeddable
in the ambient space S, which is endowed with the standard Euclidean metric g. For this reason, B can in turn
be endowed with a Euclidean metric G inherited from (S, g). This can be done by considering an embedding
v : B — S (ie., a configuration of the body) and endowing B with the pulled-back geometry via v, viz.
G = 1*g. When B is defined as a subset of S, one can simply take 1/ to be the inclusion map, and hence, define
G = g|p. We fix Cartesian coordinates ¢ = {¢2} and its corresponding frame {d;} on S and take the global
chart Z = {Z4} = £ 01, so that on B a Cartesian moving frame {04} is defined using = as {95} = (T%)? 104-
Note that {04} is orthonormal with respect to G, i.e., G 45 = 045
We indicate the associated volume form with g, defined as

i =Vdet GdX* ANdX? AdX3,

with components Vdet G e4pc. The total Euclidean volume and the total mass are respectively given by

T/:/ﬁ, M:/@oﬁz/m,
B B B

where g9, denotes the Euclidean mass density, and m = g,u = g, is the mass form defined in §2.1. Note that,
unlike the volume forms, the mass form m is the same in both structures as we want the mass to be independent
of the geometric structure. Since the two structures are defined on the same material manifold B, the total mass
M is the same with respect to both structures as well. We denote with V the induced Levi-Civita connection
with the following coefficients in a coordinate chart {X4}:

_ 1. _ _ _
MMpe = §GAD (0c¢Gpp + 05Gpc — 0pGpe) - (4)

The Christoffel symbols vanish with respect to the Cartesian chart {EA}. Hence, they can be written in a
generic chart {X4} as )

- ox4  9r=A

Mpe = —svmve

0=4 0XBoXC

By construction,iﬁé = 0. Both the torsion and the curvature tensors vanish. Note that V is the Weitzenbdck
conncetion for {4} (see §2.5) and at the same time the Levi-Civita connection for G. We refer to the triplet
(G, r, V) as the Euclidean structure.

2.3 Change of material structure

A goal of this paper is to find the relation between the geometric framework of anelasticity (represented by the
Riemannian structure) and the classical framework (represented by the Euclidean structure). The first step is
to define objects that allow one to switch from one structure to the other. In particular, it is possible to switch
from one metric to the other using the (})-tensor © defined as

045 =G*Gpp, (O H4=G*PGps, (5)



so that G = GO, and G = GO~'. For the inverse metric tensors one has Gf = @~ 1G¥, and Gf = OG!. We
call ® the change of metric and will show that the tensor ® represents a measure of the anelastic deformation
seen as a local transformation of the material manifold. As for the Riemannian and the Euclidean volume forms,
they are related by the volume ratio J defined as pu = Ju, where

det G
J_\/deté_\/m. (6)

The Riemannian total volume can therefore be written as V = fB Jn. Having defined m = g,fx = o,u, the
change of volume relates the two mass densities as Jo, = 9,. Area elements inherited from the Riemannian and
the Euclidean structures are related by the area ratio. Let 2 C B be an oriented surface, with the 2-forms 7
and 7) being the area elements induced on 2 by p and i, respectively. Then, the scalar field Jg on 2 is defined
as n = Jon. Indicating with IN and N the G-normal and the G-normal unit vector fields, respectively, one can
write the material analogue of Nanson’s formula for anelasticity, viz.

JoN°* = JN?, (7)

where ()|7 indicates the lowering of indices of a vector using the corresponding metric, i.e., No = GNP, and
N4 = GapNPB. The following result defines the analogue of the Piola transformation for anelastic deformations.
We adopt the abuse of notation VU?® to indicate a tensor that acts on a vector V as VAV UBOp = VyU.
This is trivially generalized to differential forms and tensors.

Lemma 2.1. The divergence of a vector field U with respect to the Fuclidean and Riemannian connections are
related as ~
Va(JUA) = IVAUA. (8)

Proof. Since the connection V and volume form g are induced from the same metric G, one has (VU )u =
Lup for any vector field U. Using Cartan’s magic formula one writes Lyp = wwdp + d(wp) = dop),
where (pyp indicates the interior product, i.e., (typ)ap = MABcUCJ and d is the exterior derivative. Hence,

one has (VAU = d(tpyp). Similarly, the Euclidean divergence VU satisfies (V4U*)u = d(tpjn), with
(tyt) aB = iapcUC. Therefore, one can write

WV AUA p = Jd(wp) = Jd(Juwi) = Jd(upi) = IVAQUA) o=V, (JUA
and hence (8). O

As for the change of connection, covariant derivatives with respect to the Riemannian and Euclidean con-
nections are related by the (%)—tensor H defined as HU,V) = VgV — VuV, or in components, HApe =
I'pge —T4pc. Tt is straightforward to show that H” g¢’s are the components of a tensor, and hence, H is
well-defined. Moreover, H is symmetric in the two lower indices by virtue of the symmetry of both V and V.

Thus, given a tensor field T one can write
VeT4 g —VeT* g, =HYcpTP g, +..— HPop, T4 p. — ... 9)
Using Lemma 2.1, given a vector field U one writes
(A4, U) = V4(JUA) = J(V4UA) = J[(VaUA) = (VaUA)] = JHE g1 U
Therefore, the differential of the volume ratio dJ, with components 94J, can be expressed as®

Oa)=JHBp,. (10)

3 Alhasadi et al. [2019] obtain an expression similar to (10) but with the term T'B 5 4 —I'Bg, instead of HB gy =TBgs—TBpa
(for the meaning of I" see §2.5). This is due to the fact that they define the volume ratio as the determinant of the change of frame,
which depends on the coordinate functions with respect to which the natural frame is expressed, i.e., the 94’s in (2). This means
that it is not a well-defined quantity. As an example, for unimodular anelastic deformations, i.e., when the volume ratio is one, they

obtain I'B g4 = I'B g4, which disagrees with our theory. A counterexample to their result is constituted by [Feal(X) = [(1) f(lx)]7

representing a unimodular anelastic deformation, but for which one has [[B 4] = [0 f/(X)], and [[B54] =[0 0]. Another way
to look at this inconsistency is to view [Alhasadi et al., 2019] as an active approach (see §2.4). In this case the definition of the
volume ratio is well-defined. However, what is incorrect is the expression of the coefficients of the Weitzenbock connection, as will
be explained in §2.5.



2.4 Anelastic deformations

As was mentioned earlier, the introduction of the natural moving frame {e,} through the change of frame (2)
provides a passive interpretation of the multiplicative decomposition of deformation gradient, as no transfor-
mation has been defined on the material manifold yet. However, the definition of a reference structure, such
as the Euclidean structure, allows one to formulate anelasticity starting from a (%)—tensor field defined on the
material manifold that relates the natural moving frame to the Euclidean moving frame. This tensor is called
the local anelastic deformation that maps one structure to the other, i.e., an alternative interpretation to (2)
for the multiplicative decomposition of deformation gradient.

Let {04} be the orthonormal frame field with respect to G' induced from the chart = defined previously. We
define the (%)—tensor A as the linear mapping taking the natural moving frame to the Cartesian frame, viz.

AZ€1F—>51,€2H(§2,63F—>(§3, (11)

and call it the local anelastic deformation. Eq. (11) can be expressed compactly as A : e, — 5 04, where we
use the Kronecker delta 5A in order to keep the consistency of indices with their corresponding frames In terms
of co-frames one write A* : dXA 649, where A* is the dual of A.

Remark 2.2. If the body or one of its parts is allowed to fully relax, i.e., if it can be mapped to S through
an isometric embedding pushing forward G to g, then the G-orthonormal natural moving frame {e,} will be
mapped to a g-orthonormal frame in the ambient space. In the material manifold, this relaxation is represented
by A : {e,} — {6204}, where {94} is a g-orthonormal frame pulled-backed via some global map %, that can
be taken to be the aforementioned isometry. For this reason the local anelastic deformation can be seen as a
local relaxation map. Vice versa, one can interpret the natural moving frame as the one that if the body is fully
relaxed becomes orthonormal in the ambient space.

By virtue of (11) one can express the change of frame from {94} to {04} in the following two ways:

- oxA

1= 8HA 8A, and 5§ 5A = AAB(ea)BaA = AAB(Fil)BaaA.

Therefore, the components of A with respect to a frame {94} are related to [F*4] as

S A OXA
When one works with Cartesian coordinates, i.e., when a)E(Z =64 4, and ng = 5?, one has Al = 64 Fop,

which means that the components of A are given by the matrix [F*4].
Finally, from (3) and (12) one obtains

3 H B8 9=
Gap =F*AF Bdos = 6% A A(SB OXEK

o=A 9=B
K H K
ioxE A BOas = AT 4A ( - )

(hBaXHaXK

Note that since in the frame {04} the Euclidean metric G' has components & 55, in a generic frame {94} the
metric G is represented by
o= 9=B
=0AB Ay AN
ABoXH 9XK
and therefore one obtains

Gap =A",GuxA¥p, O =GN GurAF . (13)

This means that G and © are two different representations of the right Cauchy-Green tensor for the local
anelastic deformation A (see §3). Moreover, plugging (13) into (6), one obtains

J=Vdet® =detA,

recovering the change of volume defined in classical plasticity.



2.5 The Weitzenbock connection

Given the natural moving frame {e, }, one defines its Weitzenbock connection V as the connection that makes
{eq} parallel.* This means that one requires Vyuea = 0 for any vector U, a = 1,2,3. The coefficients of v
with respect to a generic coordinate chart { X4} are defined as [ pc0a = VaB Oc, and are calculated starting
from

@3580 = @3B(chew) 8BF7067 + F’ch(f)Be7 =0gF7¢ ( ) aA +F7 C'Vg;oBeAY

Since by assumption @ev = 0, the last term vanishes, and one obtains the following expression

Mpe = (F 1) 0pF. (14)
By construction, the Christoffel symbols with respect to the moving frame {e, } vanish.

Remark 2.3. In order to give an interpretation for the Weitzenbock derivative, we compute the components
of VU for a given vector field U. In general, components with respect to the moving frame will be indicated
with Greek letters, while those in coordinate charts will be indicated with Latin letters. Note that a covariant
derivative in a non-holonomic frame is calculated as VgU® = dcU*(F~1)C g4 syU7, where [ 4, = 0 following
directly from @eﬁ e, = 0. Therefore, one obtains

VaU® = 0cU(F 1), VU =05U(F 14,

This means that the Weitzenbock derivative of a vector can be calculated as the ordinary derivative of its
components in the moving frame. This result can be extended to tensors as

@77-&1'”[31.,. = 8BTQ1"'51...(F71)C'7 ’ @BTAI'”BL.. = aCTalmﬁ1---(F71)Ala1"'FﬁlBl"' . (15)

Hence, a tensor field is uniform with respect to V if and only if its components with respect to the natural
moving frame are uniform. Therefore, V can be seen as a natural connection for the body.

The torsion T' of the Weitzenbdck connection has the following components with respect to a coordinate
chart {X4}: R
T45c = (F 1) (05F%c — 0cF*B) | (16)

which, in general, is non-vanishing. Using the symmetry of both connections V and V, one can express T as
T%pe = Vpd®c — Ve p = Vpd®c — Ve p. (17)

Note that in the active approach, the coefficients of the Weitzenbdck connection cannot be written as (14) taking

Euclidean covariant derivatives of the local deformation A. The reason for this is that while (A~ )A pVeAPois

a tensor, [ 5c is not. However, this can be done for the torsion tensor T providing an alternative expression
to (16). As a matter of fact, plugging (12) and (4) into (17), one obtains

T45c = (A"1)*p (VEAP ¢ — VAP E) . (18)

The same does not hold when using the Riemannian connection. The torsion tensor associated to the Weitzenbock
connection expresses the local incompatibility of the anelastic deformation, or equivalently, the non-holonomicity
of the natural moving frame {e,}. To this extent, one defines the Burgers vector relative to the closed curve
v :[0,1] — B as the triplet of scalars

b[] = f;w = /OI(FQA o) TAds, (19)

where T is the tangent vector to v (see Appendix A). If the three scalars b®[y] vanish for any +, then the
1-forms 19° are exact. This implies the existence of charts = : B D U/ — R3 such that d=¢ = 19°, or equivalently,

4The Weitzenbock connection is called material connection by Noll [1967] and Wang [1968]. See also [Youssef and Sid-Ahmed,
2007; Yavari and Goriely, 2012].



e, = %7 a = 1,2,3. When B is simply-connected, a closed 1-form is necessarily exact, and therefore

compatibility is equivalent to d¥® = 0. On the other hand, note that

T°pc =F* 4T e = 0gF"c — 0cFp = (AV)pe, T%3,00 = [eg, €,].

Thus, holonomicity can be expressed as T = 0. The curvature of a Weitzenbock connection, instead, vanishes
by construction.

The next two lemmas are well-known results that establish the compatibility between the material metric
G and the Weitzenbock connection @, and a relation between the presence of defects and residual stresses in a
solid.

Lemma 2.4. The Weitzenbock derivative of the material metric vanishes.

Proof. By virtue of (15) one can write VeGap = 8CGQBF‘1AF53. Hence, using (3), one obtains VeGap =
FOAFPBOcSap =0. O

Lemma 2.5. If the Weitzenbick connection is torsion-free, then the curvature of the material Levi-Civita
connection, i.e., the material Riemann curvature, vanishes.

Proof. By virtue of the compatibility of V with the material metric G established in Lemma 2.4, when T=0
the Weitzenbock connection V is also the Levi-Civita connection associated to G, i.e., V.= V. On the other
hand, the curvature of V vanishes by construction. [

Note that the non-vanishing of the Riemannian curvature means that (B, G) is not isometrically embeddable
in (S,g), and therefore a non-vanishing curvature is related to the presence of residual stresses in the body,
at least from a local perspective (see Remark 4.4). Thus, Lemma 2.5 implies that when {e,} is holonomic,
the body is stress-free. The converse does not hold. As a matter of fact, there exist incompatible anelastic
deformations that leave the body stress-free, e.g., zero-stress distributions of dislocations [Mura, 2013, 1989;
Yavari and Goriely, 2012], which are called contorted aleotropy by Noll [1967].

The contorsion tensor K is defined relative to the Weitzenbock and Levi-Civita connections as K(U,V) =
@UV — VyV, and in components it reads K4 gc = f‘ABc —T4pc. Tt is straightforward to show that K4 pe’s
constitute a tensor, and that they are given by

1 ~ .
KApc = §(TABC —Tpe? —Tep™), (20)

where indices have been raised and lowered using the material metric G. By virtue of the anti-symmetry of the
torsion tensor, K satisfies the following two identities:

KBpa=TPpa, KBasp=0. (21)
Finally, Given a tensor field T one can write

VoTh g, = VeTY g, = KYopT g+ = KPop, T4 p. — .. (22)

3 Kinematics

Next we discuss kinematics of anelastic bodies. Looking at embeddings of the material manifold B in the
ambient space S, one can define measures of deformation with respect to both the Riemannian and the Euclidean
structures defined in the previous section. By extending the derivatives defined in the previous section to two-
point tensors (geometric objects with one leg in the material manifold and one leg in the ambient space) we
will be able to obtain the Piola transformation with respect to both structures. Time evolutions of the moving
frame and motions are also discussed.



3.1 Measures of deformation

Let ¢ : B — S be an embedding representing a configuration of the body with deformation gradient F', defined
as the tangent map Ty and representing a two-point tensor with components F* 4 = 9x%/0X 4 with respect to
the two charts {z%} and {X“} on S and B, respectively. We denote with C* = ¢*g the pullback of the ambient
space metric using . This metric is flat by construction. In components, Cap = F* s F?pg,,. Starting from
this object, which is independent of any material metric or connection defined on B, one can define the right
Cauchy-Green tensors C and C referred to the Riemannian and Euclidean metric tensors as

C4p =GP Cpp =GP FpgaF's, C'p=G"PCpp =GP F pgaF'p.

We indicate with F'T the adjoint of F' with respect to G, and similarly, F'T the adjoint of F' with respect to G.
In components

(FT) Aa = gabeBGAB = FaA ) (FT) Aa = C_:ABgabF‘bB = FaA . (23)
Then, one can write the right Cauchy-Green tensors as C = FTF, and C = FTF. Recalling the change of
metric tensor @ defined in (5), one has C = @C. It is possible to formally extend the previous definitions to
anelastic deformations and obtain (13), suggesting that the material metric and the change of metric represent
the pulled-back metric and the right Cauchy-Green tensor for the local anelastic deformation A. Note that C
is self-adjoint with respect to G and C is self-adjoint with respect to G, while @ is self-adjoint with respect to
both G and G.

3.2 Elastic deformations

Next we provide some insight on elastic measures of deformations in relation with the total measures previously
defined with respect to the two structures. In the active approach involving the anelastic deformation A, one can
define the elastic deformation as E = FA™!, which is equivalent to the classical multiplicative decomposition of
the deformation gradient ¥ = EA. Therefore, one has

(e} B (52000 & (Fe,y, (Froo) EL 5o ax M AL ey
where of course F* = A*E™.
Note that one can write the deformation gradient as F'%4, = F%,F*4, where F%, = F*,(F~1)4, is the

deformation gradient with respect to {es}, i.e., as it is seen from the natural moving frame. For the elastic

part, one defines the elastically pulled-back metric C’ with components Cap = E* AgabEb B, which is related to
C’ as Cup = A 4C AKX 5, or simply C° = A*C°A. This can also be written as

5268 C*(95,05) = C"(ea,ep) . (24)
The elastic right Cauchy-Green strain tensor C is defined as C4 5 = GAPCp B, for which the Euclidean metric is

used to raise one of the two indeces. From (13) one obtains C4p = (A=A xCH AK 5, or simply C' = ACA™ "
Finally, the Jacobian function associated to ¢ can be defined with respect to either G or G as

J=VdetC =VdetC, J=VdetC = Vdet®VdetC =detAvdetC =JJ.

In the decomposition of the deformation gradient, J represents the change of volume due to anelastic defor-
mations, J represents the change of volume due to elastic deformations, and J represents the total change of
volume. Using Cartesian coordinates = in the material manifold and Cartesian coordinates £ in the ambient
space, both G and g are represented by identity matrices, and thus, det C = (det F')2. Hence, one obtains the
classical relations J = det F' and J = det F/det A = det E.

3.3 The Piola transformation in the two structures

We denote with 9. the Christoffel symbols for the manifold (p(B),g), and following Marsden and Hughes
[1983] we extend the Riemannian, Euclidean, and Weitzenbock derivations to two-point tensors as

VeTA % = 0cT % +T2epTP % — TP epTp% + Fecy caT 8% — Fecy T %,
VeT28% = 0cTA % +T40pTP % — TP onTAp% + FeeyeaTA8% — Feoy @ T 5%, (25)

VoTA8% = 0cT % +TcpTP % — TP T p% + Fecy e T 8% — Fov aT 5%



One can extend (8) to two-point tensors as
JVp (Tal”'bl_,.B) = ?B (JTal'”bl__,B) , (26)

which is valid only for two-point tensors with only one material upper index, e.g., the first Piola-Kirchhoff stress
tensor. The Riemannian, Weitzenbock, and Euclidean derivatives of a two-point tensor are therefore related
through the contorsion tensors H and K operating only on the material indices as (9) and (22).

Two-point derivation can be applied to the deformation gradient F', as in the case of compatibility equations.
The deformation gradient must satisfy local compatibility equations, that are written as 94 F%p = OgF%4.%
Compatibility equations can also be written in terms of the two-point derivatives of (25) as

VaFg =VgFo, VaF'p=VgF%, VFiy—VaiF'pg=TP pFp, (27)

where the symmetry of the Levi-Civita connections in both the material manifold and in the ambient space,
and the definition of torsion tensor 7P AB = re AB — b B were used. It should be emphasized that while the
deformation gradient F' is constructed in such a way to be necessarily compatible, the anelastic deformation A
can be either compatible or incompatible (see (18)). The differential dJ = 94J dX* can be written as

1 1 1
ond = §J(C’1)D38ACBD = §J(071)DBVACBD = §J(071)BDVACBD = JFP)VaF’y, (28)

where the second equality follows from a direct computation, the third from the compatibility of the Riemannian
connection with the material metric G, and the fourth from the compatibility of the ambient space connection
with the spatial metric g. Note that FBb(@AFbB — VaF’g) = K® 4, which vanishes by virtue of (21). This
allows one to write

1 - 1 N N
OaJ = §J(071)DBVACBD = §J(071)BDVACBD = JFBbVAFbB,

where the compatibility of the Weitzenbock connection with the material metric G' established in Lemma 2.4
was used. We will see that this implies that the Jacobian is an isotropic and a naturally uniform function. Using
the Euclidean connection instead, one can write the differential d.J as

1

1- = = 1- - - = — - —
Oad = §J(071)DB(9ACBD = §J(O*1)DBVACBD = iJ(Cil)BDVACBD = JFBbVAFbB . (29)

From (28), and using the compatibility of F' one obtains
Vp(JFB,) = 0gJFB, + JVFB, = JFC¢ FBNpF°c — JFC,FB.VpFc.
The same holds in the Euclidean structure by (29), so that one has the following identities
Ve(JFB) =0, Vp(JFB) =0,

which imply o -

VaA(JFAu®) = J(Vau®)op, Va(JFAu®) = J(Veu®)op. (30)
Note that from the definition (25) of two-point derivatives, one has Vu® = Vu® = Vu?, as u® has no material
index. Egs. (30) allow one to define the Piola transformation of the spatial vector field u with respect to the

Riemannian structure as U = Jp*u, and the Piola transformation with respect to the Euclidean structure as
U = Jp*u. The two transformations are related as U = JU.

3.4 Rate of anelastic deformations

We first look at changes of the anelastic state of the body. A time evolution of the natural frame is a smooth
map ¢ — {eq(t)}, or equivalently, ¢t — {9°(t)}. We define the following ()-tensor field:

L=e,®@0% = —é, @9, (31)

5Global compatibility involves extra equations for every generator of the first homology group. These were investigated by Yavari
[2013] in both linear and nonlinear elasticity.
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mapping a natural frame to the negative of its derivative, ie., L : €4 — —é,.9 In components, one has
LAg = (FHAFYp = —(F1)A,F*5.7 From the active perspective, recalling (12) Eq. (31) can be written as

X (9= ' :
LAB = (A—l)AC T (6XD ADB) _ (A_l)ACACBa

as Al = 8)5(: F 5 because the charts {2} and {X“} do not depend on ¢. Hence, we have obtained L = A™*A,
and therefore L is called the rate of anelastic deformation. A time-dependent natural moving frame defines
a time-dependent Riemannian structure, whereas the Euclidean structure is time independent. The time-

derivative of the material metric G(¢) can be calculated by plugging (31) into (3), viz.
Gap = (FaAFﬂB + FaAFBB> Sap = GapLPp +GpplP 4.

As for the volume ratio J(¢) and Riemannian volume element p(t), using the chain rule one obtains (det G)* =
(det G)GABG 4, allowing one to write

. 1 . 1 .
J= 5JGABGAB, fo= QGABGAB ©,

as G is independent of ¢. Note that the quantity ¢ = J /J that represents the variation of the Riemannian volume
form, does not depend on the reference Euclidean structure, as dp = £u. Moreover, for the mass density one
has ¢, = —f0,. From (31), one has £ = %GABG'AB = L4, = trL. Volume-preserving (or isochoric) variations of
G are such that ug is constant for every s, and therefore / = tr L = 0. Isochoric plastic flows are very important
in plasticity [Wang and Bloom, 1974; Simo, 1988]. However, volumetric effects are key for problems involving
geomaterials [Ortiz and Pandolfi, 2004; Bennett et al., 2016].

Finally, we indicate with & the set of all embeddings B — S. A motion is a smooth curve ¢ : Rt — %,
t — ;. The velocity of a motion ¢; is a vector field V' : BxRT — T'S defined as the tangent vector to the curves
t+ ©4(X). At each time t it can be expressed as a vector field v; on ¢;(B) given by v;(z) = V(¢; ' (2),t). The
acceleration is a vector field A : B x RT — T'S defined as A = VY,V inducing a vector field a; on ¢,(B8) given
by a;(z) = A(p;*(z),t). The deformation gradient F(X,t) is defined as the tangent map Tx ;. Note that
velocities and accelerations have been defined independently of any material structure, so the evolution of the
natural moving frame is not involved in their definition.

4 Stress tensors in anelasticity

In this section we define energy functions and stress tensors with respect to both the Riemannian and the
Euclidean structures. Our goal is to compare the classical (Euclidean) formulation with the geometric (Rieman-
nian) formulation of anelasticity. Working in the context of hyperelasticity, we start by assuming the existence
of an energy function that depends only on the elastic part of the deformation, i.e., a function of distances in
the deformed configuration as they are seen by an observer in the natural frame, and deriving other energy
functions and related stress tensors from it. We discuss uniformity of the energy function with respect to the
natural moving frame, and extend this concept to the Riemannian and Euclidean structures. Finally, we discuss
stress tensors and uniformity in the case of isotropic hyperelastic materials.

4.1 Energy functions

We start by assuming the existence of an energy function that depends on distances in the deformed configuration
as they are seen by an observer in the natural frame. In particular, indicating with Pos(3) the space of symmetric
positive-definite 3 x 3 matrices, we assume the existence of a smooth function W : B x Pos(3) — R. The energy
density per unit volume W : B — R is defined by evaluating the energy function W at Cp = C’b(ea, eg),8

6The minus sign is due to the fact that everything is defined with a focus on the co-frame field.

'7With (F*I)Aa we imply the time-derivative of the inverse, i.e., ((F™!)")4,, and not the inverse of the time-derivative, i.e.,
((F)=1)44. Note that these two objects are, in general, different.

8Recalling (24), from the classical active point of view one has Cap = C’(eq, eg) = (5§ (55” c’ (04,05), where {93} is a Cartesian
frame.
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representing the length and angles between natural frame vectors according to the pulled-back metric, i.e.,
W(X) =W(X,Cys(X)). This is equivalent to assuming that the energy only depends on the elastic part of the
deformation. This also means that at each point X the function W only depends on the values of C,g at X. If
this holds, the material is called simple. We also define the energy density per unit Euclidean volume W = JW.

Remark 4.1. One assumes that at each point X the function W attains its minimum at d,3. This means
that at each point X the function Wy attains its minimum for C* = G. Therefore, the stored elastic energy
of a hyper-anelastic body is minimized by configurations that preserve the material metric G, i.e., by maps
¥ : B — S satisfying G = 9*g. In other words, the material metric is always encoded in the energy function
because it is required to attain its minimum for G-preserving configurations. However, we will see that G is
not enough to fully characterize the constitutive equations of the material, as a natural moving frame is also
needed.

We indicate with F'B the bundle of frames, made of quadruplets (X, {vg}), where {vz} indicates a triplet of
linearly independent vectors in T'x 5. In a similar way, we indicate with F*B the bundle of co-frames, made of
quadruplets (X, {\?}), where the {\?} are linearly independent 1-forms in 7% B. Finally, we indicate with PB
the tensor bundle of symmetric positive-definite (8)—tensors (e.g., metric tensors), made of all the pairs (X, A).
Then, the energy density for an anelastic body can be expressed by a smooth function W : F*B x SB — R such
that

W (X {A}, 4) = W(X, A(va, v3), (32)

with (A%, vg) = 5. We also define the energy function
W (X, A7}, 4) = J (X {A7}) W (X, {77}, 4) (33)

where the function J is simply (6) evaluated at dn5 A% ® AP in agreement with (1). The energy densities are
then recovered by evaluating W and W at the natural moving co-frame and at the pulled-back metric, viz.

W(X) = WX, {9°(X)},C° (X)),  W(X)=W(X, {9°(X)},C°(X)). (34)

Remark 4.2. In anelasticty, one may be given a material metric G representing the natural distances in the
body without specifying a natural moving frame, although such a metric tensor can be induced by infinitely
many moving frames. This is admissible for isotropic materials, whose elastic state depends only on G, see 4.5.
However, from (34) one observes that energy depends on the material coframe {19”}, meaning that in the case of
anisotropic materials, different choices of natural frames inducing the same G might induce different anisotropy
directions in the body. Thus, providing only a material metric, as suggested by Simo [1988], is not sufficient for
completely characterizing the mechanical response of an anelastic body.’

Finally, fixing a point X € B, we say that a matrix [Q“g] is a material symmetry at X if
WX, Q"aCpwQ”5) = W(X, Cag) , (35)

or equivalently, if

WX, {Q AN}, C") = W(X, {X*},C°), WX, {QsA},C°) = W(X, {A"},C"). (36)
The set of material symmetries at X forms the symmetry group and we denote it with ¥x. Note that

Q" aCwQ s = (F )% QY aCunQ¥s(F) 5, Cap=(F7)aCan(F")"s.
Thus, we define the material symmetry group & x for Tx B, made of (%)—tensors Q : TxB — TxB such that
WX, {X*},Q"C°Q) = W(X,{x*},C"), or W(X {Q"A"},C") = W(X,{A},C").

This means that Q € &x if and only if @ = Q%s e, (X) ® 97 (X) for some [Q%5] € ¥. Hence, the material
symmetry group &x for Tx B depends on the natural moving frame, as already observed in [Wang and Bloom,
1974]. For a discussion on material symmetry and defects in solids see [Golgoon and Yavari, 2018].

9Simo [1988] obtains this result as a consequence of “invariance under rigid-body motions superposed onto the intermediate
configuration”. This is equivalent to invariance under rotations of the natural moving frame. As we explain later in the paper,
this invariance requires that any proper rotation be a material symmetry for W. In other words, Simo [1988] enforces isotropy. See
also §4.5.
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Remark 4.3. The natural moving frame is interpreted as an elastic observer, i.e., the frame where W sees
deformations. However, such a moving frame is, in general, not uniquely defined. Given a material symmetry
group ¥, let us assume that two different moving frames {e.}, {€,} are related by a change of frame Qg € ¥.
Then, from (35) the energy functions built using the two moving frames are the same. Moreover, the two frames
induce the same & for the energy function. This means that there is a ¢-ambiguity in the choice of the natural
moving frame [Wang and Bloom, 1974]. In other words, the natural moving frame is not uniquely defined; it
is represented by an equivalence class that depends on the material symmetries of the body. This concept is
discussed in [Epstein and Maugin, 1996]. Note also that for solids ¥4 C SO(3), and hence, the material metric
G is not affected by this ambiguity. Finally, note that any frame {&,} = {A4” ez} gives the same Weitzenbck
connection as {e,} does as long as the A?,’s are constant.'” This means that if the symmetry group does not
change from point to point, the natural derivative is not affected by this ¥-ambiguity either.

4.2 Stress tensors

Next we look at derivatives of the energy functions W and W keeping the base point fixed, i.e., letting the
two arguments {A*} and A of (32) and (33) change. All the derivatives are evaluated at a given pair of fields
({92}, C”).*! The following stress tensors are defined:
oW oW - oW - oW
S=2——, Y,= , S=2——, Y,=—. 37
oc’ 09« ocP 09« (37)
The tensors S and S are the second Piola-Kirchhoff stresses referred to the Riemannian and Euclidean structures,
respectively, while the vectors Y, and Yy, a = 1,2, 3, represent material stresses that are dual to changes of the
corresponding natural frame co-vector.'?> The symmetry of both S and S is guaranteed by construction, and
this in turn guarantees the satisfaction of the balance of angular momentum. Since the volume ratio between
the two structures J does not depend on C”, one has
~ oW o(JW oW
S4B =2 _2UW) ) = J548.
9Cap 0Cap 9Cap
Moreover, recalling the definition (6) of J, and the relation between the material metric and the natural frame
Gap = F4FP pd,s provided by (3), one can write
— a0J oW

R AL
“ T Fa, " T oF,

1
— §JGMN(F”M6W6AN + FY 00002 M)W + JY, A
=WFA, +JV, 2.

Therefore, we have obtained the following relations between the objects that were defined in (37):

S=1JS, Y,=We,+JY,. (38)
Starting from Y,, and Y, the following material stress tensors of type (}) are defined:
_ 1~ _ _
ZaP =FUaYl, 247 =247, BaP = JEa", BaT =FUaY.U.

10A natural frame {&.} = {APseg} is induced by a change of frame similar to (2) with F*c = (A~1)*,F75. Therefore,
from (14) one obtains

Mpe = (F1)454°,0p ((Ail)o‘vlﬂc) =g — (FH)A,05A4% (AP Fo.

Hence, if the symmetry group changes continuously from point to point, then by changing the natural frame via material symmetry
one obtains a different Weitzenbock connection. However, the material metric G would not be affected as, albeit non-uniform,
the symmetry group is still everywhere a subgroup of the orthogonal group. The effect of this “change of frame according to the
non-uniform material symmetry” is therefore similar to that of a superposed distribution of stress-free dislocations. For this reason
we believe that the notion of teleparallelism for non-uniform bodies is not as insightful as it is for the uniform case.

M For the sake of clarity and simplicity, instead of indicating differentiation with generic A® and A, we will use the fields 92 and
C" at which these derivatives are evaluated, i.e., we set # = %|<ﬂg70b),_and % = 8%\@5»70.,).

12T6 our best knowledge, no interpretation of the material stresses Yy, and Y, from a geometric perspective of the type discussed

in [Kanso et al., 2007] has been provided in the literature.
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Their (%) counterparts are defined using the material metric tensors G and G, viz.

ZAB _ GACZCB , ZAB _ GACZCB _ JeACZCB ,

EAB — GACECB , EAB _ GACECB _ J@AcECB ) (39)

In component-free notation they read
Z=G' (9" ®Y;)=0ea®Ys, Z=IG"(9’2Ys) =15 (0e.) @Y}, (40)
E=1G (0’ oY) = (e, oY, B=G 0 5Y;)=0"(Oe,) 0. (41)

The (8)—tensors Z and Z are the negative of the Mandel stress referred to the Riemannian and Euclidean
structures, respectively, while E and E are the Eshelby or energy-momentum tensors. Since the energy function
W is derived from the natural energy function W through (32), using the chain rule and (40), one obtains

ZAB — FA 6045 oW a(FM’YFNVO]V[N)
B0, T oFB,

1
= FAa020 287 (—FM RN gRE, — FYMGRY,FE)Carn
_ —GANSMBOMN _ —CADSDB ,

indicating that Z is the negative of the Mandel stress. In short, from (38) and (41) we have obtained the
relation between Mandel, Eshelby, and the second Piola-Kirchhoff stresses as

Z=-CS, Z=10Z=-CS, (42)
E=WG'+Z=WGt!-CS, E=JOE=WG'+Z=WG'-CS.

Since the energy function is defined up to an additive constant, the Eshelby stress referred to either structure
is defined up to an additive multiple of the metric tensor in the corresponding structure. Finally, we define the
first Piola-Kirchhoff stress tensors P and P, and the Cauchy stress o as

_ _ 1 1 _
paB — FaASAB , PaB — FaASAB , O,ab — jFaAFbBSAB — 7FaAFbBSAB )

Note that P = JP. Recalling (23), the first Piola-Kirchhoff stress tensors allow one to express the Eshelby

tensors as

E=WG'-F'"P, E=WG'-F'P. (43)
In components, one has EAP = WGAB — F,APB and FAB = WGAB — F,APeB,

Remark 4.4. Recall that at each point the energy function attains its minimum for C” = G. This means that
in the absence of internal constraints such as incompressibility, C* = G implies S = 0. Conversely, under the
assumption of energy functions admitting no multiple minima, C® # G implies the presence of residual stresses
S # 0. In terms of the Riemannian curvature R associated to G, if it is nonzero, then for each point X there
exists no embedding of a neighborhood of X into S such that C” = G (i.e., a local isometric embedding). This
means that for those energy functions that do not admit multiple minima one should expect residual stresses
S # 0. Recalling Lemma 2.5, a vanishing torsion for V is sufficient to guarantee a vanishing curvature for V.
However, a non-vanishing torsion is not enough to ensure the non-vanishing of the curvature, and therefore, the
presence of residual stresses.

Let us consider a time evolution of the anelastic deformation, as in §3.4. The energy densities evolve in time
as W(t) = W({9(t)},C*(t)), and W (t) = W({9(t)}, C°(t)). Their rates are then calculated as

. . 1 — - — . —
W=YoPFp = 210 = 52451, W =Yo"Fp = JEA LY = Ea"Ls,

where indices are lowered according to (39). In the case of volume-preserving anelastic deformations (recall §3.4),
one has . )
W = 1242145 = —JCapSPPLAR = JW.
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Let us next consider a motion of B. One can define the functions W (t) = W({9°(¢)},C"(t)), and W (t) =
W({9*(t)}, C(t)), and write

. 1 . . - 1_ . _ .
W = 5SABCAB =PBFs, W= 5SABCAB =PBFey.

4.3 Material uniformity

According to Noll [1967] and Wang [1968], the idea of material uniformity of a simple body is related to the
existence of maps between tangent spaces at different points that leave the constitutive relation unchanged.'?
The concept of uniformity is related to the notion of configurational forces, that goes back to Griffith [1921]
and Eshelby [1951, 1975, 1999]. This notion is important in developing evolution laws for the motion of defects,
including dislocations, vacancies, interfaces, cavities, cracks, etc. Driving forces on these defects cause climb
and glide of dislocations, diffusion of point defects, migration of interfaces, changing the shape of cavities, and
propagation of cracks, to mention a few examples.

A body is said to be materially uniform if for any two points X,Y € B there exists a linear map Z : Tx B —
Ty B such that Wy = Wx o Z, or more precisely

W (K {)\(1}7 A) =W (X7 {I*)‘a}vI*AI) s

where Z* : Ty B — T% B is the dual of Z. The map T is called a material isomorphism, and in general, it is not
unique. The existence of such a map between pairs of points allows one to express the energy function as the
same function for all material points. This can be done by defining a field of frames that are related to each
other through the material isomorphisms Z. Such a moving frame is called a reference frame field.
We define a naturally uniform body as one for which the natural moving frame {e,} is a reference field, and
therefore the linear map
N: TxB — Ty B

Ve (X) s Voeq(Y), (44)

is a material isomorphism.'* This means that the function W on the space of symmetric positive-definite 3 x 3
matrices does not explicitly depend on any material point, and therefore, W(X) = W(Cq(X)). This implies

that
OW 0C,z

0Cop OXA

Since from Remark 2.3 the ordinary derivative of the components in the moving frame is the Weitzenbdck
derivative, one obtains the following identity for naturally uniform bodies:

AW =

(45)

1 1 A -
AW = §SQB8A0a5 = §SBDVAC’BD = PPV 4F'g, (46)

where the last identity uses two-point derivatives (25) and the compatibility of the ambient metric g. To this
extent, the Weitzenbock connection can be seen as the natural connection.

If for two given points X,Y € B the material isomorphism Z is different from the natural isomorphism N
defined in (44), then there exist two maps Dx : TxB — Tx B, and Dy : Ty B — Ty B such that Z = D;IJ\/'DX.
In this way a material isomorphism can be expressed in terms of the natural isomorphism and local deformations
at the two points. In particular, defining the moving frame {d,} such that {e,} = {Dd,}, one can write

7. TxB — Ty B
Vaedy(X) — Vady(Y),

so that {d,} is a reference frame for B. This means that the energy can be expressed as a function W on the
space of 3 x 3 matrices such that it does not depend on any material point explicitly, i.e., W(X,C(eq,e3)(X)) =
W(C(dy,dg)(X)). Finally, note that if the natural frame field evolves, then the natural isomorphism is subject

13We work with a C’-dependent energy function, whereas Wang [1968] assumes a constitutive model for the stress in terms of
the deformation gradient F'.

4This map is equivalent to the parallel transport induced by the Weitzenbéck connection V. On the other hand, Wang [1968]
defines a material connection as one whose induced parallel transports are always material isomorphisms.

15



to some evolution law N = N (s), where s is some parameter. We assume that the general reference frame field
{d,} follows the evolution of the natural frame field, being subject to the same anelastic deformation. This
means that we assume that D is constant, and hence, {e,(s)} = {Dd,(s)}. Therefore, the evolution law for
the material isomorphism is Z(s) = Dy 'N(s)Dx. In this way it is possible to express non-natural uniformities
in an evolving anelastic structure.

4.4 Configurational forces

As was mentioned earlier, the concept of a non-uniform energy function is related to configurational forces.
Eshelby studied inhomogeneities by considering the explicit dependence of the elastic energy density on position
in the reference configuration and defined the force on a defect as the generalized force corresponding to the
position of the defect in the reference configuration that is thought of as a generalized displacement. For
instance, the configurational force acting on a crack (the crack tip is the defect) is related to the celebrated
J-integral [Cherepanov, 1967; Rice, 1968]. However, uniformity is not a univocal concept. Imagine a body with
a holonomic natural moving frame and a uniform energy function. If it undergoes anelastic deformations it
will still look uniform by an internal observer attached to the natural moving frame. We called this natural
uniformity. Nonetheless, for an external observer it will not appear uniform anymore as the natural structure
has been deformed.
In relation to (45) and (46), we define the natural non-uniformity as the 1-form M with components

- oW

MA:W :aAW7PCB$AFCB, (47)

explicit

where by “explicit” we mean derivative of W with respect to X“ when the arguments Cyp are fixed. Note that
in the general case natural uniformity does not imply uniformity in the sense of the Levi-Civita connection V.
As a matter of fact, recalling (22), one has

P.BY A Fs — PBY A FCp = (SBDVACBD — SBD@ACBD) — SBPKH o Cup (48)

N | =

which, in general, does not vanish. Therefore, we define the Riemannian non-uniformity as the 1-form M with
components

My = 0AW — P.BV A F°p, (49)

representing a measure of the Riemannian non-uniformity of the body. We set M4 = GAZ Mp. In analogy with
the natural uniformity, when M4 = 0 the body is said to be Riemannian uniform. By virtue of (48), the two
non-uniformities M and M are related as

My = Ma = —S"P K" y5Cup = Z°PKpap, (50)
where use was made of (42), and Kpap = —Kpap from (20). In particular, when the body is naturally uniform,
one has _

My = ZPPKpap. (51)

Non-uniformity can be defined with respect to the Euclidean structure as well. It is sufficient to take the
Cartesian orthonormal frame {04} considered so far as the reference frame. Note that, unlike uniformity with
respect to V and with respect to V, the Euclidean connection V is the Levi-Civita connection for G and the
Weitzenbdck connection for {04}, so one needs to define only one uniformity. The Euclidean non-uniformity
M is defined as

My = 0aW — PPV AFp,
while we write M4 = GABMp. It should be emphasized that the Euclidean uniformity is not a physically
meaningful object, as it is built with respect to the Euclidean structure, which does not contain any information
about the anelastic frustration of the material. As a matter of fact, while it makes sense to expect uniformity in
the natural frame {e,}, and in many cases with respect to the Riemannian structure as well (e.g., for isotropic
bodies, see §4.5), there is no reason to expect uniformity in a Euclidean frame, unless the anelastic deformation
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is compatible. Nevertheless, the definition of M will turn out to be useful later in the paper. Using (10), one
can write

MA = O JW + JOAW — JPCBVAFCB — JPCBHDABFCD
= JMa+WHP 4p — GepF.“PPHP 4
= JM4 + (WGPC — F.9PP)GepHP 4,

having recovered the Eshelby tensor referred to the Euclidean structure written in (43). Therefore, we have
obtained the relation between non-uniformities in the two structures as:

MA:JMA+HDBAEDB, MA:JGABMB+GADHDBDED33 (52)

implying that, in general, material and Euclidean uniformities are different, as one can have M4 = 0 but
My # 0, and vice versa. In particular, when a body is naturally uniform, by virtue of (51) one has

MY = 1ZgP KB op + JERPHE 4p . (53)

Hence, we have shown that for a naturally uniform anelastic body, i.e., when M = 0, in general, the Riemannian
and Euclidean non-uniformities do not vanish.

4.5 Stress and uniformity in isotropic bodies

A body is isotropic if the symmetry group ¢ defined in §4.1 is the entire SO(3), meaning that it is made of
matrices [Q“g] such that (Q™1)%s = 6"Q" ,0,4. It is straightforward to see that this is equivalent to assuming
that the group & is made of ( ) tensors @ that are G-orthogonal, i.e., (Q~1)4p = GAMQN ,;Gpp. Note
that two moving co-frames {A\®}, {A®} that are related as {A*} = {QO‘ A%} belong to the same equivalence
class, and from (36), the energy functions W and W are constant on each equivalence class. Moreover, two
moving co-frames {A®}, {A®} are in the same equivalence class if and only if they induce the same metric, i.e.,
5 g A QN =6 28 A* @ AP as the orthogonality condition 0aB = 0aQ” NQBV is equivalent to 6,3Q% HQﬁ AH ®

=00 A" ® M. Therefore, each class of orthogonally related co-frames {A®} is represented by a unique
metric. Since W is constant on each equivalence class, one can define the following two energy functions
Wise Wise . PB x PB i+ R:

W (50 A @ AN, C°) = WA}, C"), Wi (5.5 A% @ NP, C°) = W({A},C%).

One recovers the energy densities W and W by evaluating W° and Wi*° at the material metric G and at the
pulled-back spatial metric C?, viz.'

W(X)=W*(X,G(X),C"(X)), W(X)=W(X,GX)C(X)).

It is straightforward to check that under the isotropy assumption the material stress tensors are simply given
by

awiso - aWiso

Z=J0Z JE=2
oG ’ 0G

Note that, as pointed out by Epstein and Maugin [1990], in the isotropic case both Z and E are symmetric
(%)—tensors. Moreover, in the isotropic case it is possible to write the energy density as a function of the right
Cauchy-Green tensor C (see §3). One can show this by defining a function W(G, C) = W*°(G, GC) and taking
its derivative with respect to G. Recalling (42), one has Z = —C'S, and hence

Z =2

., E=JOE. (54)

oW B awiso A awiso

_ _ 7AB A ogDB _ _ A _oDB A _oDB _
9Gan 8GAB+ DacDB +C”pS C*pS +C%pS 0

Therefore, W is a function of only C, and in particular, of its three invariants.

15We point out the work of Mariano [2004] in which the Eshelby tensor is associated to variations of the material metric. However,
we emphasize that this association is valid only for isotropic bodies.
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Let us consider an evolution G5 of the material metric G, such that Go = G. Then, one can define the

functions W, (X) = W(G4(X),C*(X)) and W,(X) = W(G(X), C*(X)), expressing the evolution of the energy
densities referred to the material volume and the Euclidean volume, and calculate their variations as

1

= 5JEABaGAB,

SW = %ZABéGAB, SW

where § = %|0. In the case of volume-preserving material variations one obtains

1 1
SW = 5JZABaGAB = —§JOADSD36GAB = JoW .

Finally, the following result establishes the equivalence of uniformity with respect to the connections V and V
for isotropic bodies.

Lemma 4.5. For an isotropic body, natural uniformity is equivalent to Riemannian uniformity. Moreover,

My =My.

Proof. From (48) and (50), SBPV 4Cpp — SBPV Cpp = —2ZBPKpap, with Kpap = —Kpap from (20).
Therefore, using the symmetry of Z for isotropic bodies following from (54), one obtains SEPV,Cpp =
SBPY 4Cgp, and M4 = M. Hence, for uniform isotropic bodies one has O4W = P.BV F°g. O

5 The balance of linear momentum

In this section, we use the Lagrange-d’Alembert principle [Marsden and Ratiu, 2013] and write the balance of
linear momentum for an anelastic body with respect to both the Riemannian and the Euclidean structures. The
balance of linear momentum, in either the standard or configurational form, is obtained by taking variations
about a generic motion ¢y, while the balance of angular momentum is automatically satisfied when one assumes
that W is a function of C”. We should emphasize that in anelasticity, in addition to the classical degrees of
freedom represented by the configuration mapping ¢, one must consider some set of variables )/, which are
related to the natural moving co-frame {9} via a flow rule [Reinicke and Wang, 1975], and that represent
quantities such as the density of defects, the temperature field, etc. In this paper, we are not concerned
with considering material evolutions for ). These strictly depend on the class of problems one is considering
(dislocations, growth, thermal expansion), and will be the subject of a future communication. Note also that,
as was mentioned earlier, we work in the context of hyperelasticity, and therefore no dissipation is associated
to standard motions, albeit we do not exclude dissipation phenomena associated to anelastic evolutions, whose
effect would show up in the equations corresponding to variations of ).

5.1 The Lagrange-D’Alembert principle

Using an action principle such as the Lagrange-d’Alembert principle, the inertial forces are taken into account.
In particular, we take variations about a generic motion ¢; during a time interval [t1,t5]. Let us consider a
one-parameter family of motions ¢, : B X [t1,t2] X R — S, such that for e = 0 one recovers ¢, and such that
all the trajectories agree at the endpoints, viz.

$t,0 = Pt vt, Pti,e = Pt1 s Ptae = Pty Ve. (55)

We denote with U,(t) the vector field tangent to the curves € — ¢ (X) for X and ¢ fixed. Clearly, from (55)
one has U.(t1) = 0, and U,(t2) = 0. We denote with V,(¢) the vector field tangent to the curves t — ¢ (X)
for X and e fixed. Note that Vy(t) = V(t) from (55), recovering at ¢ = 0 the velocity field for ¢, defined in §3.
Let us consider the following one-parameter families of kinetic energies and elastic energy densities

Ke(t) = %Qo||vé(t)”37 We(t) = W({9°}, C(1)), (56)

and define the action as



We denote with § the derivative with respect to € evaluated at e = 0, i.e., 6 = %| o- The Lagrange-d’Alembert

principle reads
ta
s [ oo [ | a=o. (57)
t B o8

where the 1-forms b and ¢ represent, respectively, the body and contact forces, and 7 is the area form induced
on 0B by p.

5.2 The balance of linear momentum in terms of the two structures

From the calculations in Appendix B, the Lagrange-d’Alembert principle for an anelastic body in terms of the
Riemannian structure is written as

to
/ [/ (—Qoa“ua — 0ob%Ugq — P“BVBua) o+ / Tou® n} dt=0. (58)
t B oB

Applying the divergence theorem to (58), one writes

ta
/ U (—00a" — 00b" + VPP ) uq p +/ (T* — P*PNp) u, n} dt=0.
t1 B oB

Using the arbitrariness of u, one obtains the Euler-Lagrange equations expressed in terms of the first Piola-
Kirchhoff stress P, viz.

VP8 + 0, = goa® on B, P*®Np=T" on 0B. (59)

Eq. (59) is the balance of linear momentum in local form written with respect to the Riemannian structure,
see [Marsden and Hughes, 1983]. Note that information about the anelastic deformation is contained in the
connection V, in the body forces (through the mass density), and in the G-normal vector N. Of course,
anelasticity is also hidden in the constitutive relations (32), encoded in the stress tensor P. Eq. (58) can be
written in terms of the Euclidean structure as

to
/ [/ (—Jgoaaua — Joobug — panBua) o —|—/ T, n] dt=0,
ty B oB

with T, indicating traction with respect to the Euclidean metric, i.e., T, = J5T,, where Jy is the area ratio
between the two structures (see Appendix B). Therefore, using the divergence theorem, one writes

t
[ e =0+ 9aP By ua it [ (1% PONg) o) i =0,
t1 B oB

This gives the Euclidean or classical form of the balance of linear momentum as

VP + 5,b* = g,a® on B, P*BNp=T% ondB, (60)
where g, = Jo, denotes the mass density referred to the Euclidean structure. In this case, the information about
the anelastic deformation is entirely carried by the constitutive relation that determines P. Note that (60) can
also be obtained from (59) deriving the bulk part from the generalization (26) of Lemma 8 and the boundary

conditions from the analogue of Nanson’s formula (7). In summary, the local forms of the balance of linear
momentum in the Riemannian and Euclidean structures read

VBP“B + 0,0% = 0,a® on B, ?BP“B + 0,0% = 0,a* on B,
B < o~ _
P*® Np=T°¢ on 0B, P*® Np =T on 0B,
paB = JpeB 5, = Joo, T =1,T%,
V=VE V=V® JoNs=INy4.
Finally, as it is well-known, the balance of linear momentum can be written in the ambient space in terms of
the Cauchy stress o as V0% +0b" = pa®. Note that using the two-point derivative notation (25), for a spatial

tensor the three symbols V, V and V are equivalent. Thus, there is only one form for the balance of linear
momentum when it is written in terms of the Cauchy stress.'6

16Tn the work of Menzel and Steinmann [2007] different stress tensors are defined with respect to different configurations, and
are used to express the balance of linear momentum in several different formats, including the configurational one. Some of these
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5.3 The configurational balance of linear momentum with respect to the two struc-
tures

Next we look at the balance of linear momentum from a configurational point of view [Eshelby, 1975; Gurtin,
2008]. Recalling (43) one has E4AZ = WGAP — F,AP*5 and therefore

VpEAP = 0pW GAP — VpF,A P*P — F,AV5PP
where the compatibility of G and V was used. From (49), one has

VpEA? = M4 + P.OVpF°c G'P = VFc P,°GYY — F,AV PP
_ MA + PaC<VBFaC _ VCFaB)GAB _ FaAvBPaB )

Therefore, using compatibility of the total deformation gradient (27), one obtains
VpEAP = M -~ F,AVpP*P.
Thus, defining the total configurational force referred to the Riemannian structure as
BA = — M4 — 0, F, 0% + 0, Fya®, (61)
one writes the balance of linear momentum (59) in terms of the Eshelby stress, viz.
VEAP + BA=0 on B, EABNp=WN* - FE,AT* on dB. (62)

Eq. (62) is the geometric version of the configurational form of the balance of linear momentum. Following the
same approach, one can refer everything to the Euclidean structure. By substituting (43) into (60) one obtains
the total configurational force referred to the Euclidean structure as:

BA = —M*" — 5, F, b + g, F, a”. (63)
The classical form of the configurational format of the balance of linear momentum reads
VeEAB + BA=0 on B, EABNp=WNA*—-F,AT* on dB. (64)
From (61) and (63), and using (52), one obtains the relation between the two configurational forces as
BA =104,BP — GAYEgPHB - p .

In summary, the two forms of the configurational balance of linear momentum read

EABNp = WNA — F,AT* on 8B, EABNp = WNA — F,AT* on 8B,
EAB = JOApEPB | Te=J,T°,
V=vVY V=V® JogNs=INg4,
BA — @ADBD _ GACEBDHBCD .

{VBEAB—i-B“:O on B, {?BEAB+BG=0 on B,
<

In the case of no inertial and no body forces, the configurational force is entirely given by the non-uniformity,
as the bulk parts of (62) and (64) are simplified to read

VpEAP = M4, VyEAP = M4, (65)

As was mentioned earlier, in general both the Riemannian and the Euclidean non-uniformities are different
from the one defined with respect to the natural reference frame. Therefore, it is worth pointing out that the
non-uniformities contributing to the configurational forces in both (62) and (64) are not the natural uniformity

expressions involve the dislocation density tensor. In our framework, this is justified from Remark 2.3, stating that differentiating
components with respect to the moving frame is equivalent to using the Weitzenbock derivative, and therefore, the tensors T and
K might show up.
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given by the explicit dependence of W on the point X. As a matter of fact, as shown in (51) and (53), for an
anelastic uniform body one has M # 0 and M # 0. In this case, the configurational balance (65) reads

VeEAP = ZgP KB p, VEEAP = ZgPKP ,p+ EgPHE 4p.

In particular, the Euclidean structure carries no information about the anelastic state of the body. On the
other hand, being built on the natural metric, the Riemannian structure is affected by anelastic deformations,
and hence, uniformity in the Riemannian sense is related to that in the natural sense. Moreover, for isotropic
bodies, the Riemannian non-uniformity is identical to the natural non-uniformity.

6 Conclusions

In this paper we formulated the mechanics of anelastic bodies with respect to two different material structures,
the Euclidean and the Riemannian structures. A material structure is defined as a triplet made of a metric tensor
on the material manifold with its corresponding volume form, and the Levi-Civita connection. In particular,
the Riemannian structure is built using the material metric induced from the natural moving frame, which
provides information about the distances in the body in its natural configuration, and therefore, on the anelastic
frustration of the material, and corresponds to the geometric approach to anelasticity. The Euclidean structure
on the other hand represents the classical formalism of nonlinear anelasticity. The multiplicative decomposition
of deformation gradient was approached in a geometric framework consistent with the interpretation that views
the anelastic part of the deformation gradient as a non-holonomic change of frame in the material manifold.

In the setting of hyper-anelasticity, we defined stress tensors with respect to both the Riemannian and the
Euclidean structures, and derived the balance of linear momentum for an anelastic body with respect to the two
structures. These two sets of governing equations are very similar and differ only in the use of the corresponding
derivative and of the volume ratio of the two structures. We discussed uniformity with respect to general moving
frames and, in particular, with respect to the natural moving frame. This natural uniformity is expressed via
the Weitzenbock connection, which parallelizes the non-holonomic natural frame. We extended the concept of
uniformity to the Riemannian and Euclidean structures, and discussed the role of non-uniformity in the form of
the material forces that appear in the configurational form of the balance of linear momentum. This was derived
with respect to both the Riemannian and the Euclidean structures, and it was observed that in anelasticity, even
for uniform bodies, a non-uniformity term appears in the configurational balance of linear momentum, whether
it is expressed in the classical Euclidean format or in the geometric Riemannian format. Hyperelastic isotropic
bodies are exceptional in the sense that for them uniformity in the natural sense is equivalent to uniformity in
the Riemannian sense.

Extending the present theory to material variations will be the subject of a future communication. Material
variations model evolutions of the set of variables that describe the specific nature of a particular anelastic
process, e.g., the density of defects, and that trigger the evolution of the natural moving co-frame (or local
anelastic deformation) via a flow rule. It would be interesting to see how the present theory applies to that
setting and investigate material forces dual to these changes. A further extension of the present work would
be to take into account dissipation phenomena associated to anelastic evolutions, and derive the equations
corresponding to these variations.
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Appendices

A The Burgers vector in the geometric and classical approaches

From a geometric point of view, the Burgers vector defined in (19) is not a vector but a triplet of scalars. It is a
quantity associated to a curve, so it does not belong to any particular tangent space at any point. The classical
definition of Burgers vector is formally different, and uses the fact that in a flat space it is possible to integrate
a vector field using components with respect to a Cartesian chart. It is defined using the active notation for the
multiplicative decomposition of deformation gradient, which in our framework reads

b ()] = 72 AT s, (66)

where T is the velocity vector of 7, 9 is the global embedding defining the Cartesian chart Z = £ ot on B, and
the components are with respect to Z. Using the change of variables theorem, one can write (66) as

bil(y)] = }{ 5% (AT)™ ds.
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Note that using a Cartesian chart one can write A% 5= 55 F 5. Therefore, one has
f&gAABTB ds = 7{5%6§F°‘BTB ds = }1{ aF 4T ds = 64 ]f 9 = 65b°[],
vy ¥ % v

and hence, the geometric definition of the Burgers vector coincides with the classical one.

B The Lagrange-D’Alembert principle and anelasticity

We start with the calculation of the first variation of the kinetic energy density K (t). Let us fix X € B, and
consider the surface Qx spanned by ¢, (X) for ¢ € [t1,12] and € € [—¢€,, €], €0 > 0. Note that Qp is injectively
immersed in S, and that the pair (¢,¢€) is a global coordinate system for Qx, with the basis vectors V.(t) and
U.(t). Therefore, one has 0. K = (dK, U,), and hence, evaluating at € = 0, one obtains 6K (t) as

§K = (dK,U(t)).

Therefore, recalling the definition of the kinetic energy density (56)1, one writes
1
0K =500 (d([VI5) . U) = 00 {V,VuV),,

as 04 (g VOVAU® = Vo (gpVOVOU® = 20, VPU 2V, V€. Moreover, the holonomicity of U and V on {2x implies
VvU = VyV, and hence
0K =0, (V,VvU)), .

Therefore, as VyV = A by definition, using the product rule one obtains
SK(t) = 0,Vv ((V,U)y) - 00 (A,U)),

Note that the term Vy ((V,U)),) will be omitted because once integrated over time it vanishes because of (55),

. [ Lo (won)ufa= [0, n

Hence, using the spatial representation one has
OK(t) = —0o (@, u)), -

As for the elastic energy, first note that at each time ¢, the configuration ¢, . can be written as (; . o ¢; with
Cre @ pt(B) — S generated by the field u; ., in turn related to U.(t) as us(z) = Uc(p; '(x),t). As a matter
of fact, for a fixed X and ¢, the fields u (i (X)) and U(X,t) are tangent to the same curve € — ¢y (X).
From (55), the map (; . is such that (; o = id,, (5 for any ¢, (¢, c = id,, (5) and (t,,e = id,,, (5) for any e. Thus,
for the pulled-back metric one has

aecé(t) = 0. (@Z‘ (C;eg)) = 90: (86 (Czeg)) .

Note that (/g is defined on ¢;(B), and so the expression 9.((/.g) is meaningful. The C-variation is simplified
to read

to
=0.

t1

SC(t) = 0:Cc(t)|e=0= ¢} (Lug)

where £ denotes the Lie derivative. Note that (£,9)ap = Vaup + Vg, and hence, the variation of the pulled-
back metric reads §Cap = F@AF®5(Vaup + Viyug), where u, = gq.u’. Hence, one obtains

1
SW(t) = §SAB§CAB = SABSCApF  AF gV ouy = PPV pu, .

In components, the Lagrange-d’Alembert principle (57) is written as
to
/ {/ (fgoa“ua — 0ob%u, — PGBVBua) A+ / Tau“n] dt=0. (67)
t L/B o8
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Material mass density, and the area and volume forms are time-dependent as the anelastic deformations affect
them. Equivalently, the Lagrange-d’Alembert principle (57) can be written in terms of the Euclidean structure
as

to
/ [/ (—Jgoa“ua — Joob*ug — P“BVBua) n —|—/ T, 1‘7] dt =0, (68)
ty B oB

with T, indicating tractions with respect to the Euclidean metric, i.e., T, = JoT,. Egs. (67) and (68) can be
used to derive the local form of the balance of linear momentum.
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