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Abstract

Ericksen’s problem consists of determining all equilibrium deformations that can be sustained
solely by the application of boundary tractions for an arbitrary incompressible isotropic hyperelastic
material whose stress-free configuration is geometrically flat. We generalize this by first, using a
geometric formulation of this problem to show that all the known universal solutions are symmet-
ric with respect to Lie subgroups of the special Euclidean group. Second, we extend this problem
to its anelastic version, where the stress-free configuration of the body is a Riemannian manifold.
Physically, this situation corresponds to the case where nontrivial finite eigenstrains are present. We
characterize explicitly the universal eigenstrains that share the symmetries present in the classical
problem, and show that in the presence of eigenstrains, the six known classical families of universal
solutions merge into three distinct anelastic families, distinguished by their particular symmetry
group. Some generic solutions of these families correspond to well-known cases of anelastic eigen-
strains. Additionally, we show that some of these families possess a branch of anomalous solutions,
and demonstrate the unique features of these solutions and the equilibrium stress they generate.

Keywords: Universal deformation, nonlinear elasticity, eigenstrain, residual stress, Lie group symmetry,
Riemannian geometry, material manifold, commutative algebra.
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1 Introduction

Universal deformations in nonlinear elasticity are deformations that exist for all members of a particular
class of materials in the absence of body forces. Given any member of a particular class of materials,
any universal deformation for that class can be maintained by the application of surface tractions alone.
For instance in unconstrained isotropic elastic materials, only homogeneous deformations are universal.
However, adding material constraints, i.e., restricting the class under consideration, expands the set of
universal solutions. In particular, under the imposition of incompressibility, there are five known families
of universal deformations in addition to the universal homogeneous deformations, which is now restricted
to isochoric homogeneous deformations in keeping with the material constraint.

The process of obtaining and classifying all universal solutions is a highly nontrivial task. This line of
research originates in the seminal work of Jerald Ericksen. In 1954, he made the first systematic attempt
to classify all universal deformations in isotropic incompressible elasticity [Ericksen, 1954]. His work re-
vealed four families of universal solutions in addition to homogeneous solutions. In 1955, he completely
solved the analogous problem for unconstrained elastic bodies, proving that the only compressible uni-
versal solutions are homogeneous deformations [Ericksen, 1955]. In the case of incompressible elasticity,
another family of universal solutions was then discovered by Singh and Pipkin [1965], with a special
case of this family discovered by Klingbeil and Shield [1966]. Additionally, Fosdick [1966] noted that
a different special case of this deformation represented a universal solution with constant invariants, a
special case not addressed by Ericksen’s initial work. Further contributions and specializations of this
problem were made by a number of authors [Fosdick and Schuler, 1969, Kafadar, 1972, Knowles, 1979,
Marris, 1982, Martin and Carlson, 1976] and the current conjecture is that no other solution to Ericksen’s
problem exist but a proof of it remains an outstanding open problem of rational mechanics [Antman,
1995].

Here, we are interested in generalizing Ericksen’s problem to nonlinear anelasticity. In anelasticity,
we consider geometric deformations combining both elastic deformations and an additional anelastic
component to the deformation, i.e., one that does not contribute to the strain energy. Such theories are
known to be relevant in many situations that generalize classical nonlinear elasticity [Epstein and Maugin,
1996a] such as thermal effects [Stojanović et al., 1964, Ozakin and Yavari, 2010], plastic flows [Kondo,
1949], dislocations and defects [Nye, 1953, Bilby et al., 1955, Yavari and Goriely, 2012], growth and
remodeling [Goriely, 2017, Naumov, 1994, Rodriguez et al., 1994, Takamizawa, 1991, Yavari, 2010], and
swelling [Pence and Tsai, 2006, 2005]. Such processes are characterized by the presence of eigenstrains
[Mura, 2013] that do not produce corresponding stresses or, equivalently, by changing the intrinsic
geometry of the reference configuration from Euclidean to Riemannian. These eigenstrains are generally
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incompatible, and therefore further elastic strains are typically required to embed bodies with nontrivial
eigenstrains into Euclidean space, with the resulting self-equilibrating elastic stresses generated by this
strain referred to as residual stresses.

The first step in this research program was to generalize Ericksen’s theorem for compressible isotropic
materials to anelastic deformations. By using a geometric formulation, it was proved that only covari-
antly homogeneous deformations are universal [Yavari and Goriely, 2016]. The second step, considered
here, is to extend the current classification of isotropic incompressible nonlinear elasticity to isotropic
incompressible nonlinear anelasticity. This general problem is more involved than the classical Ericksen
problem as we have to determine simultaneously both the anelastic and elastic components that render
the solutions universal.

While anelastic deformations can be modeled through a multiplicative decomposition [Sadik and
Yavari, 2017], it is equivalent but more appropriate in our context to model them as a stress-free evolution
into of a general Riemannian manifold, the material manifold, via some anelastic process [Noll, 1967,
Epstein and Maugin, 1996b, Yavari and Goriely, 2012, Goriely, 2017]. This non-Euclidean material
configuration contains all the information of the anelastic processes. It can then be mapped by an elastic
deformation into the current Euclidean configuration. Only the strain induced by the elastic component
appears in the strain-energy formulation, which models the notion that the anelastic deformation changes
the relaxed geometry of the material, and that only the further elastic deformation stores energy by
straining the material. In looking for universal solutions, both the Riemannian metric of the material
manifold and the elastic deformation are unknowns to be determined.

In this paper, we extend the currently known families of incompressible universal solutions to the
anelastic setting in an appropriately symmetric way, which will be precisely defined shortly. In the
process of doing this, we discover that under these symmetry conditions, all families exhibit a branch of
generic universal solutions that contain arbitrary functions as parameters, but some families also contain
anomalous universal solution branches outside of these, whose form is fixed up to a finite number of
constants. Additionally, we find that the six classical families of universal solutions merge into three
distinct anelastic families, characterized by their respective symmetry groups. The Cauchy deformation
tensors of the generic branches of these families can all be expressed in the forms presented here in Table
1, with the standard forms of the anomalous branches presented in section 8, as they are more involved.
In §2, we provide an overview of the geometric features of anelasticity and provide the relevant governing
equations of elasticity in this context. The known universal solution families are summarized in §3.
Then, in §4 we compute the appropriate symmetry group for each family and impose this symmetry on
the metric tensor field a priori. We then formulate the problem of extending the universal families to
the anelastic setting and outline the techniques used in our analysis in §5. In §6 we derive the form of
the generic solutions for each family and obtain the constant invariant conditions that are necessary for
anomalous solutions to exist. In §7 we present the general form of the anomalous solutions, relegating
the explicit calculations to the appendix B. In §8, we examine the overlap of these families of solutions.
Finally, we present some visualizations of the Riemannian geometry of strains and stresses induced
by these anomalous solutions in §9, and summarize our results in §10. We have provided two other
appendices, Appendix A containing summaries of the algebraic and group theoretic tools we employ in
our analysis, and Appendix C, detailing particular features of the Lie algebra se(3), which plays a key
role in our analysis.

2 Nonlinear Elasticity and Anelasticity

In the geometric formulation of nonlinear elasticity, we define the ambient space to be a Riemannian
manifold (S,m), where m is a fixed background metric. Since we are interested in universal deformations
that take place in Euclidean space we assume that the ambient space is Euclidean. Then, a body is defined
as a Riemannian manifold (B,M). We define a motion as an isotopy ϕ

ϕ : B × R→ C ⊂ S, (1)

parameterized by time t that gives a homeomorphism at each time t between the reference configuration
B and the physical configuration at time t defined by ϕ(B, t) (see Figure 1): We use coordinate charts
{XA} and {xa} for B and C, respectively. We utilize uppercase Latin letters to denote most quantities
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Family Coordinates Generic Cauchy Tensor Incompressibility

U2 Cartesian {x, y, z} [cab] =

c11 (x) 0 0
0 c22 (x) c23 (x)
0 c23 (x) c33 (x)

 det cab = 1

U3 Cylindrical {r, θ, z} [cab] =

c11 (r) 0 0
0 c22 (r) c23 (r)
0 c23 (r) c33 (r)

 det cab = r2

U4 Spherical {r, θ, φ} [cab] =

g (r)
−2

0 0
0 g (r) r2 sin2 φ 0
0 0 g (r) r2

 Identically Satisfied

Table 1: Standard forms of the Cauchy deformation tensors for the generic branches of the three sym-
metric anelastic incompressible isotropic universal deformation families.

and indices in the reference configuration, and lowercase Latin letters to denote most quantities and
indices in the physical configuration.

The homeomorphism at time t, ϕ(B, t) can be interpreted physically as determining the position of a
small piece of material at time t, given its position in B, which is interpreted as an initial position, though
the important feature of the reference configuration is that it specifies the relaxed geometry of the body;
it is not necessarily the initial configuration of the body. While in elasticity, (B,M) is Euclidean, for an
anelastic system, (B,M) may not be Euclidean and, in such case, ϕ0 ≡ ϕ(−, 0) is not the identity map.
Since ϕ0(B) and ϕ(B, t) correspond to physical configurations, we model them as subsets of Euclidean
space, and hence, we identify positions with vectors.

Since we are interested in equilibrium states, we restrict our attention to a finite time t∗ > 0 and
suppress the explicit time-dependence so that we define, with a slight abuse of notation, ϕ(B) = ϕ(B, t∗).

Figure 1: General motion from B to C; ϕ maps a point in B to its corresponding point in the current configuration ϕ(B).

2.1 Kinematics

The local properties of deformations are encapsulated in the derivative of the map ϕ that we explore
next. The tangent space of B at X ∈ B is denoted by TXB. The tangent space of the corresponding
point x = ϕ(X) in the ambient space is denoted by Tϕ(X)C. The deformation gradient F is the derivative
map of ϕ:

F(X) = Tϕ(X) : TXB → Tϕ(X)C. (2)

With respect to the coordinate charts {XA} and {xa}, F it is defined as follows

F =
∂ϕa

∂XA

∂

∂xa
⊗ dXA . (3)
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The adjoint of F is

FT(X, t) : Tϕ(X)C → TXB , g (FV,v) = M
(
V,FTv

)
, ∀V ∈ TXB, v ∈ Tϕ(X)C . (4)

In components, (FT)Aa = MABmabF
b
B . Note that the adjoint explicitly depends on the metrics M and

m. The right Cauchy-Green deformation tensor is defined as

C(X) = FT(X)F(X) : TXB → TXB. (5)

It is straightforward to see that C[ = ϕ∗m, which has components CAB = F aAF
b
Bmab [Marsden

and Hughes, 1983]. The Jacobian relates the material and spatial Riemannian volume elements as
dv(x,m) = JdV (X,M), where J is given by

J =

√
det m

det M
det F . (6)

2.2 Equilibrium Equations

The balance of linear momentum in the absence of body and inertial forces in terms of the Cauchy stress
tensor reads

divσ = 0 , (7)

where div is the spatial divergence operator, defined in components as

(divσ)
a

= σab|b =
∂σab

∂xb
+ σacγbcb + σcbγacb , (8)

and γabc is the Christoffel symbol of the Levi-Civita connection ∇m of the metric m in the coordinate
chart {xa} , defined as ∇m

∂b∂c = γabc∂a. The local form of the balance of angular momentum reads
σab = σba, i.e., the Cauchy stress is symmetric.

The first Piola-Kirchhoff stress is defined as P = JσF−?, and in components, P aA = Jσab(F−1)Ab.

F? is the deal of F, and is defined as F? = ∂ϕa

∂XA dX
A ⊗ ∂

∂xa . The balance of linear momentum in terms
of P reads Div P = 0. In components

P aA|A =
∂P aA

∂XA
+ P aBΓAAB + P cAF bAγ

a
bc = 0 , (9)

where ΓABC is the Christoffel symbol of the Levi-Civita connection∇M of the metric M in the coordinate
chart {XA} , defined as ∇M

∂B∂C = ΓABC∂A. The balance of angular momentum in terms of P reads
PFT = FPT.

2.3 Constitutive equations

In this paper we restrict ourselves to bodies that are isotropic in the absence of eigenstrains. We also
assume that the elastic deformations are incompressible. The left Cauchy-Green stretch tensor is defined
as B] =

(
ϕ−1

)
∗ (m−1) and has components BAB = (F−1)Aa(F−1)Bb m

ab, where mab are components

of m−1. The spatial analogues of C[ and B] are defined as

c[ =
(
ϕ−1

)∗
M, cab =

(
F−1

)A
a

(
F−1

)B
b MAB , and b] = ϕ∗(M

−1), bab = F aAF
b
BM

AB , (10)

where b] is called the Finger deformation tensor. The two tensors C and b have the same principal
invariants, which are denoted by I1, I2, and I3 [Ogden, 1984]. In the case of an isotropic solid the energy
function W depends only on I1, I2, and I3. If the material is incompressible (I3 = 1), W = W (I1, I2),
and the Cauchy stress has the following representation [Simo and Marsden, 1984]1

σ =

(
−p+ 2I2

∂W

∂I2

)
m−1 + 2

∂W

∂I1
b] − 2

∂W

∂I2
c], (12)

where p is a Lagrange multiplier that is associated with the incompressibility constraint J = 1.

1As p is a scalar field to be determined the stress representation can equivalently be written as

σ = −pm−1 + 2
∂W

∂I1
b] − 2

∂W

∂I2
c], (11)

5



2.4 Ericksen’s problem

The classical elastic Ericksen problem is stated as follows: Determine all equilibrium deformations ϕ :
B → C with B, C ⊂ E3 that can be sustained by an arbitrary incompressible isotropic hyperelastic solid
with suitable boundary tractions.

The emphasis of the classical problem is that both configurations are Euclidean. Here, we consider
a generalized version of this problem applicable to anelastic systems. The anelastic Ericksen problem
relaxes the requirement that B ⊂ E3 and is stated as follows: Determine all Riemannian manifolds
(B,M), and all maps ϕ : B → C with C ⊂ E3 that can be sustained by an arbitrary incompressible
isotropic hyperelastic solid with suitable boundary tractions.

These problems are treated locally in the sense that the equilibrium equations are locally satisfied
by these deformations for arbitrary incompressible isotropic hyperelastic materials. We do not address
non-local problems such as self-intersection or self-contact beyond requiring that our solutions be locally
homeomorphisms, which is guaranteed by the condition det F > 0. This condition ensures that over
some domain our solution is an embedding, rather than an immersion.

3 The Known Universal Deformations

We begin with the known families of incompressible universal solutions in the absence of eigenstrains.
We merely present them and direct the reader to the original papers for their derivation [Ericksen, 1955,
1954, Klingbeil and Shield, 1966, Singh and Pipkin, 1965]. The corresponding deformation gradients
are derived explicitly in Goriely [2017]. The emphasis and novelty here is in the particular type of
symmetry associated to each family as they will play a key role in the generalization of the problem
to anelastic systems. Expressed in terms of the standard Cartesian coordinates {x, y, z}, cylindrical
polar coordinates {r, θ, z}, or spherical polar coordinates {r, θ, φ} (letting capital letters denote reference
configuration coordinates, and lower case letters denote current configuration coordinates), we have the
following six universal families.

Family 0: Homogeneous Deformations. Using the Cartesian coordinates {xa} = {x, y, z} and
{XA} = {X,Y, Z}, this family is most compactly expressed as

xa = F aAX
A + ca, (13)

where F aA is a constant tensor with detF aA = 1, and ca is a constant vector. A deformation of this type
is depicted in Figure 2. The form of equation (13) immediately reveals that the deformation gradient
is F aA , as evidenced by the induced tangent map dxa = F aA dX

A. Since the deformation gradient F is
spatially constant, F aA (XA) = F aA , the transformation

XA → X̄A = XA + CA, ∀CA ∈ R, (14)

leaves the deformation gradient unchanged, and hence, CAB remains unchanged. In terms of symmetry
group, we notice that the action XA → XA + CA is precisely the action of T(3) ⊂ SE(3) on E3.

Figure 2: All homogeneous deformations amount to a combination of stretching, shearing, and rotation. The shearing
vanishes on a specific set of principal basis vectors by virtue of the polar decomposition of Fa

A .
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Family 1: Bending, Stretching, and Shearing of a Rectangular Block. When expressed using
cylindrical polar coordinates {r, θ, z} and Cartesian coordinates {X,Y, Z} in the current and reference
configurations, respectively, universal deformations in this family take the form

r =
√
A (2X +D), θ = B (Y + E) , z =

Z

AB
−BCY + F, (15)

though the parameters E and F only correspond to rigid motions, and hence, can be safely disregarded.
These parameters generate rotation around and translation along the r = 0 axis, as seen in Figure 3.
We can compute the deformation gradient, which when expressed on mixed orthonormal frames, takes
the form

F =
A

r
er ⊗EX +Breθ ⊗EY −BCez ⊗EY +

1

AB
ez ⊗EZ , (16)

or in terms of a mixed coordinate bases, we have the components

[
F aA =

∂xa

∂XA

]
=

Ar =
√

A
2X+D 0 0

0 B 0
0 −BC 1

AB

 . (17)

Working in terms of the mixed bases will often be advantageous when computing symmetries and the
components of arbitrary metric tensors, as these bases are automatically induced by the coordinate map.
Additionally, we demand AB 6= 0 to ensure the deformation is invertible; the incompressibility condition
is automatically satisfied. We compute CAB as

[CAB ] =

 A
2X+D 0 0

0 B2
(
A (2X +D) + C2

)
−CA

0 −CA
1

A2B2

 , (18)

and note that this remains unchanged under the transformation

Y → Ȳ = Y + C1, Z → Z̄ = Z + C2, ∀C1, C2 ∈ R. (19)

This is precisely the action of T(2) ⊂ SE(3) on E3.

Figure 3: The stretching, shearing, and bending of a rectangular block around a cylinder.

Family 2: Straightening, Stretching, and Shearing of an Annular Wedge. Deformations in
this family are most naturally expressed using Cartesian and cylindrical polar coordinates {x, y, z} and
{R,Θ, Z} in the current and reference configurations respectively, and take the form

x =
1

2
AB2R2 +D, y =

Θ

AB
+ E, z =

Z

B
+
CΘ

AB
+ F. (20)

An example of one of these deformations is depicted in Figure 4. The corresponding deformation gradient
is

F = AB2Rex ⊗ER +
1

ABR
ey ⊗EΘ +

C

ABR
ez ⊗EΘ +

1

B
ez ⊗EZ , (21)
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or, in terms of the induced coordinate bases

[F aA ] =

AB2R =
√

2AB2 (x−D) 0 0
0 1

AB 0
0 C

AB
1
B

 . (22)

We demand AB 6= 0 to ensure the deformation is invertible, and as in the previous case, the incompress-
ibility condition is automatically satisfied. Thus

[CAB ] =

A2B4R2 0 0

0 1+C2

A2B2
C
AB2

0 C
AB2

1
B2

 . (23)

The transformation
Θ→ Θ̄ = Θ + Φ, Z → Z̄ = Z +K, ∀Φ,K ∈ R, (24)

leaves these components unchanged. This is the action of SO(2)× T(1) ⊂ SE(3) on E3.

Figure 4: Straightening and subsequent stretching and shearing of an annular wedge.

Family 3: Torsion, Extension, and Shearing of an Annular Wedge. When expressed in cylin-
drical polar coordinates, deformations in this family take the form

r2 = AR2 +B, θ = CΘ +DZ +G, z = EΘ + FZ +H, (25)

and an example of a deformation from this family is depicted in Figure 5. The deformation gradient can
be naturally expressed on orthonormal cylindrical polar bases as

F =
AR

r
er ⊗ER +

Cr

R
eθ ⊗EΘ +Dreθ ⊗EZ +

E

R
ez ⊗EΘ + Fez ⊗EZ , (26)

or equivalently on the coordinate bases, it has components

[F aA ] =


√

A(r2−B)
r2 =

√
A2R2

AR2+B 0 0

0 C D
0 E F

 . (27)

We have the incompressibility condition A (CF −DE) = 1, which also ensures invertibility. Thus, CAB
is written as

[CAB ] =

 A2R2

AR2+B 0 0

0 C2
(
AR2 +B

)
+ E2 CD

(
AR2 +B

)
+ EF

0 CD
(
AR2 +B

)
+ EF D2

(
AR2 +B

)
+ F 2

 , (28)

and notice that CAB does not depend on Θ or Z.
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Figure 5: The twisting, extension, and axial shearing of a cylindrical sector.

Family 4: Inflation/Eversion of a Sphere. In spherical polar coordinates {r, θ, φ} and {R,Θ,Φ},
deformations in this family take the form

r3 = ±R3 +A3, θ = ±Θ, φ = Φ. (29)

An example of one of these deformations is depicted in Figure 6. The deformation gradient on orthonor-
mal bases reads

F = ±R
2

r2
er ⊗ER +

r

R
(eφ ⊗EΦ ± eθ ⊗EΘ) . (30)

or, in terms of the coordinate bases, we have the components

[F aA ] =

 R2

(±R3+A3)
2
3

=
(±r3∓A3)

2
3

r2 0 0

0 ±1 0
0 0 1

 . (31)

Incompressibility and invertibility are trivially satisfied. Thus

[CAB ] =


R4

(±R3+A3)4/3
0 0

0
(
±R3 +A3

)2/3
sin2 Φ 0

0 0
(
±R3 +A3

)2/3
 . (32)

We can then represent this tensor on an orthonormal spherical basis (using the standard Euclidean
metric) as

C(X) =
R4

(±R3 +A3)
4/3

ER ⊗ER +

(
±R3 +A3

)2/3
R2

(I−ER ⊗ER) , (33)

where I is the identity tensor, and ER = X
|X| . This obeys the symmetry transformation

C (QX) = QC(X)QT, ∀Q ∈ SO(3), (34)

which is symmetry under the prolonged action of SO(3) ⊂ SE(3) on TE3 ⊗ T∗E3.

Figure 6: Inflation of a spherical cap.
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Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge.
When expressed in cylindrical polar coordinates {r, θ, z} and {R,Θ, Z}, deformations in this family take
the form

r = AR, θ = B logR+ CΘ +D, z = EZ + F. (35)

An example of one of these deformations is presented in Figure 7. The deformation gradient expressed
on orthonormal bases is written as

F = Aer ⊗ER +ABeθ ⊗ER +ACeθ ⊗EΘ + Eez ⊗EZ , (36)

or, on the coordinate bases

[F aA ] =

A 0 0
B
R C 0
0 0 E

 =

 A 0 0
AB
r C 0
0 0 E

 . (37)

In order to satisfy incompressibility, we have A2CE = 1. This family is peculiar, as the stretch generated
by the other inhomogeneous families has an eigenvector along the direction of inhomogeneity, but this
one does not. Additionally, the invariants of b for this family are spatially constant.

Figure 7: The inflation, bending, extension, and azimuthal shearing of an annular wedge.

When we generalize these deformations to include an anelastic component, we have to change the
incompressibility condition from det F = 1 to

J =

√
det m

det M
det F = 1, (38)

to reflect the fact that we are only constraining the elastic component of the deformation to be isochoric.
It is easier however, to consider square of this equation in the form

det b = 1, (39)

which in components reads
det
(
F aAM

ABF bB
)

= detmab. (40)

This is because when we move to the anelastic setting, the stretch b is a more natural object to work
with, since it captures geometric data about the material manifold, but itself lives in Euclidean space.
The right Cauchy-Green strain reads

[CAB ] =

A2 +A2B2 A2BCR 0
A2BCR A2C2R2 0

0 0 E2

 , (41)

which is invariant under changes in Z or Θ.

3.1 Summary of the symmetry groups.

The symmetries we have calculated are all generated by the usual action of Lie subgroups of the special
Euclidean group on the reference configuration. For each family, there is some continuous family of
rotations and/or translations, which once prolonged, leaves the right Cauchy-Green stretch tensor field
unchanged. In a similar manner, we can compute symmetries of the left Cauchy-Green stretch tensor
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Family C[ =
(
FTF

)[
Dimension b = FFT Dimension

0 T(3) 3 T(3) 3
1 T(2) 2 SO(2)× T(1) 2
2 SO(2)× T(1) 2 T(2) 2
3 SO(2)× T(1) 2 SO(2)× T(1) 2
4 SO(3) 3 SO(3) 3
5 SO(2)× T(1) 2 SO(2)× T(1) 2

Table 2: Symmetry of the universal stretch tensor fields; these are subgroups of SE(3) = SO(3) n T(3).

field, which also happen to be Lie subgroups of the special Euclidean group but, acting now on the
current configuration. These groups are summarized in Table 2, expressed in terms of the group of
n-dimensional rotations SO(n) and the group of n-dimensional translations T(n).

Interestingly enough, for each family, the symmetry group of C does not necessarily match the
symmetry group of b, but the dimensions of these two groups do match, as their actions are related
through the maps relating the coordinates in the two configurations. Additionally, when we impose the
symmetries of C on the material manifold, families with 3-dimensional Lie symmetries automatically
satisfy the equilibrium conditions, but those only containing a 2-dimensional Lie symmetry require
additional constraints to satisfy equilibrium. This seems to suggest that the dimension of the symmetry
group plays a role in constraining the material response, and sufficiently high dimensional symmetries
are sufficient for guaranteeing equilibrium.

These symmetries can be summarized as a single key property, namely that for a given universal
deformation and its associated deformation gradient F and right Cauchy-Green tensor, C = FTF =
M−1ϕ∗m, we have that C[ = ϕ∗m is invariant under the prolonged action of a Lie subgroup of the special
Euclidean group acting on the reference configuration. We will use this key property when studying the
anelastic Ericksen problem, and accordingly refer to the symmetries of C[ as ‘universal symmetries’.

4 General construction

The previous section demonstrated a remarkable symmetry property of the known universal solutions in
the absence of eigenstrain. We can use these symmetries to generalize Ericksen’s problem to anelastic
systems. The problem is then to find a suitable metric on the material manifold that preserves both the
symmetry and the general functional form of the universal deformations. The eigenstrains and metric
associated with this new metric are referred to as ‘universal’. This can be achieved by the following
construction:

• First, in the absence of eigenstrains, the body is embedded in the ambient space with an induced
metric M̄. The material manifold is the flat Riemaniann manifold (B, M̄) and the deformation is
a map from this manifold to the ambient space.

• Second, in the presence of eigenstrains the natural configuration of the body is a Riemannian
manifold (B,M), where M has non-vanishing curvature [Yavari and Goriely, 2013, 2015, Golgoon
and Yavari, 2018]. In this case, the deformation is a map from (B,M) to the ambient space (S,m).

• Third, we choose curvilinear coordinates {XA} on B and curvilinear coordinates {xa} on C ⊂ S.
These coordinates are not necessarily associated with the metrics M̄ and M. We know of the
previously presented classes of universal deformations xa = ϕ(XA) for (B, M̄). We fix these
functional dependences ϕ on the coordinates and determine the the metrics M compatible with
these solutions.

• Fourth, we pull back m under the deformation ϕ, and consider the three manifolds: (B, M̄), (B,M),
and (B, ϕ∗m). We have two candidates for determining the symmetry to apply to M: M̄ and ϕ∗m.
We use ϕ∗m since it captures information about the deformation. We compute its symmetries,
and demand M to have these same symmetries. Explicitly, since both M̄ and m are Euclidean
metrics, both are invariant under the full action of SE(3) acting on their respective base spaces. By
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Figure 8: Here we have prescribed the coordinate transformations for each family at every stage of the motion. The
unknown quantity to be determined is the metric tensor field M of the material manifold, which dictates the stress-free
geometry.

considering Euclidean symmetries of ϕ∗m, we are identifying Euclidean symmetries in the current
configuration that are mapped to Euclidean symmetries in the reference configuration when pulled
back under the classical universal deformation in question.

• Fifth, we compute the deformation mapping (B,M) to (C,m), where now M is restricted by the
derived symmetries, and compute the specific metrics M that generate universal eigenstrains.

4.1 Universal equilibrium equations

We fix the coordinate labels for the anelastic component of the local deformation; if XA are coordinates
for the material manifold, we write the anelastic deformation in terms of coordinates as

XA = δAĀX̄
Ā, (42)

where δA
Ā

is the Kronecker delta, and use the metric tensor field to reflect the change in geometry (see
Figure 8). In other words, we convect the referential coordinates along with the anelastic motion onto
the intermediate configuration. This allows us to trivially pull the material metric tensor back to the
reference configuration using

MĀB̄ = δAĀ MAB δBB̄ , (43)

and treatM
ĀB̄

as our unknown quantity. SinceM
ĀB̄

and C
ĀB̄

live in the same space, we can immediately
impose the symmetry of C

ĀB̄
on M

ĀB̄
, which naturally imposes a symmetry on MAB via (43).

After determining the most general form of a metric tensor field obeying these symmetries, we can
compute the general form of the elastic left Cauchy-Green tensor

bab = F aAM
ABF bB , (44)

and its inverse in terms of the undetermined components of the metric tensor field. Both of these appear
in the Cauchy stress of an incompressible isotropic elastic solid, which has the following representation

σab = −pmab + 2W1b
ab − 2W2c

ab, (45)

in terms of Wi = ∂W/∂Ii, where I1 and I2 are the two non-trivial invariants of b, and p is the Lagrange
multiplier corresponding to the incompressibility constraint. We seek equilibrium solutions, hence we
must satisfy

∇bσab = −mab∇bp+ 2∇b
(
W1b

ab
)
− 2∇b

(
W2c

ab
)

= 0. (46)
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We wish to eliminate the pressure field from the analysis, so we take a second covariant derivative,
lower the upper free index, and compute the antisymmetric part. This operation eliminates the pressure
identically and yields the condition

ma[d∇c]∇bσ
ab =

1

2
mad∇c∇bσab −

1

2
mac∇d∇bσab = 0, (47)

which must be satisfied for arbitrary choices of the strain energy function W . Because W is arbitrary, we
can freely vary its partial derivatives independently, so in order to satisfy (47) for any W , we require each
of the terms multiplying a partial derivative of W to vanish independently. This yields nine independent
conditions that must be satisfied, corresponding to the nine independent mixed partial derivatives of
W that appear: W1, W2, W11, W12, W22, W111, W112, W122, and W222. These universal equilibrium
equations are

mad∇c∇bbab −mac∇d∇bbab = 0, (48)

mad∇c∇bcab −mac∇d∇bcab = 0, (49)

mad∇bbab∇cI1 +mad∇cbab∇bI1 +madb
ab∇c∇bI1

−mac∇bbab∇dI1 −mac∇dbab∇bI1 −macb
ab∇d∇bI1 = 0,

(50)

mad∇bbab∇cI2 −mad∇bcab∇cI1 +mad∇cbab∇bI2
−mad∇ccab∇bI1 +madb

ab∇c∇bI2 −madc
ab∇c∇bI1

−mac∇bbab∇dI2 +mac∇bcab∇dI1 −mac∇dbab∇bI2
+mac∇dcab∇bI1 −macb

ab∇d∇bI2 +macc
ab∇d∇bI1 = 0,

(51)

mad∇bcab∇cI2 +mad∇ccab∇bI2 +madc
ab∇c∇bI2

−mac∇bcab∇dI2 −mac∇dcab∇bI2 −macc
ab∇d∇bI2 = 0,

(52)

madb
ab∇cI1∇bI1 −macb

ab∇dI1∇bI1 = 0, (53)

madb
ab∇cI2∇bI1 +madb

ab∇cI1∇bI2 −madc
ab∇cI1∇bI1

−macb
ab∇dI2∇bI1 −macb

ab∇dI1∇bI2 +macc
ab∇dI1∇bI1 = 0,

(54)

madb
ab∇cI2∇bI2 −madc

ab∇cI2∇bI1 −madc
ab∇cI1∇bI2

−macb
ab∇dI2∇bI2 +macc

ab∇dI2∇bI1 +macc
ab∇dI1∇bI2 = 0,

(55)

madc
ab∇cI2∇bI2 −macc

ab∇dI2∇bI2 = 0. (56)

Each of these nine equations is antisymmetric in the two free indices. Therefore, each equation has
three independent components providing an overdetermined system of 27 scalar conditions that must be
satisfied. Imposing the universal symmetries lead to two different situations depending on the symmetry:

Case I: For two universal families (the homogeneous and spherical deformations) these equations
are trivially satisfied and do not lead to any new conditions.

Case II: For the other families, these equations will either require particular off-diagonal components
of the metric tensor to vanish2 (Case IIa) or the invariants to be constant (Case IIb). For Case IIa the
equilibrium equations are trivially satisfied. This is the so-called generic case for all the remaining
families analysed in Chapter 7. Case IIb corresponds to the anomalous solutions. In this case the
symmetry condition generates a set of ordinary differential equations constraining these components in
terms of a single independent variable. In addition to satisfying these, we also must satisfy three algebraic
constraints, namely that the invariants of b are spatially constant. This leaves us with an overdetermined
system of four linear differential equations, one linear algebraic equation and two nonlinear algebraic
equations for the six unknown components of the metric tensor field. We can integrate the differential
equations, and use the linear algebraic equation to express the other two algebraic equations in terms of
the following 15 ≤ n ≤ 18 variables: a single unknown component of the metric tensor, the remaining
independent variable in space (e.g. radius), the integration constants introduced by our integration of the

2More precisely, in Family 5 one off diagonal component vanishes, and another becomes fully determined by the other
metric components; it does not vanish, but its indeterminacy is eliminated nonetheless.
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ordinary differential equations, the deformation parameters, and the two constant invariants. Therefore,
the remaining algebraic conditions are polynomial equations in these n variables that are quadratic in
the unknown component of the material metric tensor field. We compute the resultant (see appendix
A.1) of these polynomials in this component, and demand it vanish for the two equations to have a
common solution, since our metric tensor must simultaneously satisfy both. This resultant is itself a
polynomial in the dependent variable that must vanish. Because we seek solutions that are universal
over an open set, we can send each of the coefficients of the resultant to zero identically. This leaves
us with a set of algebraic equations relating the integration constants, the deformation parameters, and
the invariants that must be necessarily satisfied in order for these anomalous solutions to exist. These
algebraic equations are solved in Chapter 8.

5 Symmetries of the Material Metric

Family 0: Homogeneous Deformations. Recall that the action XA → XA + CA is the action of
T(3) ⊂ SE(3) on E3. We seek to impose this symmetry on the material metric tensor field, and hence
demand

MAB

(
X̄D

)
= MAB

(
XD + CD

)
= MAB

(
XD

)
. (57)

Taking the derivative of this with respect to CD gives

∂MAB

∂CD
=
∂MAB

∂X̄E

∂X̄E

∂CD
=
∂MAB

∂X̄D
= 0, (58)

and hence, we consider constant metric tensor fields. It is however, more useful to express this condition
in terms of the current configuration variables, which we can do via the chain rule

∂MAB

∂XD
=
∂MAB

∂xa
∂xa

∂XD
=
∂MAB

∂xa
F aD = 0. (59)

Since F is invertible, this implies that MAB is constant when expressed in terms of the current config-
uration coordinates as well. Additionally, it is more useful to consider the inverse metric tensor field
MAB , which also must be constant in order for the identity

MABM
BC = δAC , (60)

to hold.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block. Recall, that the sym-
metry associated with this deformation is the action of T(2) ⊂ SE(3) on E3. We therefore require the
same invariance for MAB :

MAB (X,Y + C1, Z + C2) = MAB (X,Y, Z) . (61)

Taking the derivative with respect to C1 and C2 independently gives the conditions

∂MAB

(
X, Ȳ , Z̄

)
∂C1

=
∂MAB

(
X, Ȳ , Z̄

)
∂Ȳ

∂Ȳ

∂C1
=
∂MAB

(
X, Ȳ , Z̄

)
∂Ȳ

= 0, (62)

∂MAB

(
X, Ȳ , Z̄

)
∂C2

=
∂MAB

(
X, Ȳ , Z̄

)
∂Z̄

∂Z̄

∂C2
=
∂MAB

(
X, Ȳ , Z̄

)
∂Z̄

= 0. (63)

Therefore, we assume that the metric tensor is of the form MAB (X), which because of the form of the
deformation, can be recast into the form MAB (r), and equivalently MAB(r).

Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylinder. Here, we require
that the metric is invariant under the action of SO(2)× T(1) ⊂ SE(3) on E3:

MAB (R,Θ + Φ, Z +K) = MAB (R,Θ, Z) , (64)
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and hence, by the same reasoning as before one finds

∂MAB

(
R, Θ̄, Z̄

)
∂Θ̄

=
∂MAB

(
R, Θ̄, Z̄

)
∂Z̄

= 0. (65)

Note that this does not imply ∂M
∂Θ = 0, since the basis vectors of C do change with Θ. Rather, the

components MAB do not change with Θ when M is represented with respect to a cylindrical polar basis.

We can use the equation MABM
BC = δCA to show that

∂MAB

∂Θ =
∂MAB

∂Z = 0. Hence, we write MAB(R)
or equivalently MAB(x). This symmetry of MAB is precisely the action SO(2)×T(1) ⊂ SE(3) prolonged
to TE3⊗TE3, with ⊗ denoting the tensor product bundle, the bundle formed by taking fiberwise tensor
products.

Family 3: Inflation, Bending, Torsion, Extension, and Shearing of an Annular Wedge. As
with Family 2, we demand that MAB be invariant under the transformation

Θ→ Θ̄ = Θ + Φ, Z → Z̄ = Z +K, ∀Φ,K ∈ R, (66)

which renders the conditions

∂MAB

(
R, Θ̄, Z̄

)
∂Θ̄

=
∂MAB

(
R, Θ̄, Z̄

)
∂Z̄

= 0. (67)

So we consider metric tensor fields of the form MAB (R), or equivalently, MAB(r).

Family 4: Inflation/Eversion of a Sphere. Here, we demand the invariance of M(X) under the
prolonged action of SO(3) ⊂ SE(3) on T∗E3 ⊗ T∗E3. We then seek the most general positive-definite
symmetric tensor field that satisfies

M (QX) = QM(X)QT, ∀Q ∈ SO(3). (68)

Because M(X) is positive-definite and symmetric, we can represent it in spectral form on an orthonormal
basis {ua} as

M(X) =

3∑
i=1

m2
i (X)ui(X)⊗ ui(X). (69)

We then consider the subgroup of rotations leaving X fixed. Under this one-parameter family, we have
the symmetry condition

M(X) = QM(X)QT, ∀Q such that QX = X. (70)

This implies that (suppressing the X dependence)

m2
iui = Mui = QMQTui ⇒ m2

iQ
Tui = MQTui, (71)

i.e., the rotated vector QTui lies in the same eigenspace as the eigenvector ui. For this to hold for all Q
in this one-parameter family, the eigenspaces of M at the point X must be unchanged by these rotations,
i.e., the swept vector QTui remains in the eigenspace. Generally, a rotating vector sweeps out a cone,
which not being an affine space, cannot be the eigenspace of a linear operator, as depicted in Figure 9.

However, there are two degenerate cases where cones become affine spaces, where the rotation axis
and swept vector are coincident, and where they are perpendicular, which means that the eigenspaces of
M at X must contain the axis of the rotation, and the plane orthogonal to it, as depicted in Figure 10,
forcing M(X) to be of the form

M(X) = m2
1(X)ER(X)⊗ER(X) +m2

2(X) (I−ER(X)⊗ER(X)) , (72)

because for each X, the axis of rotation is ER(X). Imposing the more general symmetry condition (68),
on this spectral form, we get the condition

m2
1 (QX) ER(X)⊗ER(X) +m2

2 (QX) (I−ER(X)⊗ER(X))

= m2
1(X)ER(X)⊗ER(X) +m2

2(X) (I−ER(X)⊗ER(X)) ,
(73)
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Figure 9: The set of orthonormal eigenspaces at a point X are affine spaces that must be preserved under all rotations
fixing the origin and X, but these swept areas are generally not affine spaces, but rather cones.

Figure 10: When the eigenspaces are parallel and perpendicular to the position vector of X, they can remain invariant
under these rotations, provided that the eigenvalues of the two orthogonal eigenvectors are equal.

which implies that

m2
1 (QX) = m2

1(X), m2
2 (QX) = m2

2(X), ∀Q ∈ SO(3). (74)

This ultimately requires that m1 and m2 depend on X solely through its norm, R = |X|, since for any
two points, X1 = Rn1, and X2 = Rn2, where n1 and n2 are unit vectors, we can construct orthogonal
transformations such that n2 = Qn1. Hence, because the functions m1 and m2 take on the same values
whenever their arguments have the same norm, these functions must only depend on their argument
through its norm, as shown in Figure 11. We then have

M(X) = m2
1(R)ER(X)⊗ER(X) +m2

2(R) (I−ER(X)⊗ER(X)) , (75)

which is the general form of the pullback of our material metric tensor.3 Computing the components of
MAB then gives

[MAB (R)] =

m2
1(R) 0 0
0 m2

2(R)R2 sin2 Φ 0
0 0 m2

2(R)R2

 . (76)

Since m1 and m2 are arbitrary, and R is only a function of r, this can be rewritten as

[MAB (R)] = [MAB (R(r))] =

m2
1(r) 0 0
0 m2

2(r) sin2 φ 0
0 0 m2

2(r)

 , (77)

3The methodological difference in the symmetry calculation for this family is due to the topology of SO(3). This group
is not the product of Lie groups, and hence, we cannot express its action by independently varying coordinates as we do
in the other families; while Θ→ Θ + Ψ1 is a rotation, Φ→ Φ + Ψ2 is not.
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and equivalently [
MAB(r)

]
=

m
2
1(r) 0 0

0
m2

2(r)
sin2 φ

0

0 0 m2
2(r)

 . (78)

Figure 11: As we rotate the point X, we see that the eigenspaces are unchanged when expressed on an orthonormal
spherical basis, i.e., they rotate with X, hence their associated eigenvalues must be constant on concentric spherical surfaces.

These metrics are precisely the form considered by Ben Amar and Goriely [2005], and Yavari and
Goriely [2013], though the first represents this tensor on an orthonormal spherical basis, and the second
works with the components of the metric tensor rather than its inverse, as we have done.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge.
As in other cases, we have the following symmetry relations for M:

∂MAB

(
R, Θ̄, Z̄

)
∂Θ̄

=
∂MAB

(
R, Θ̄, Z̄

)
∂Z̄

= 0, (79)

so we ultimately consider inverse metric tensor fields of the form MAB(r).

In conclusion, we note that the application of the symmetry condition leads to a reduction of the
independent variables to a single one (either the radial variable r in cylindrical or spherical coordinates,
or x for the deformation of rectangular blocks).

6 Generic Universal Solutions

Having established the symmetry conditions on the material metric, we can express the universal equi-
librium equations under these restrictions. For all families (Case I and IIa), these equations will have
generic solutions, and in some cases, these solutions are the only ones satisfying the symmetry conditions.
Other families also have anomalous solutions (Case IIb)) outside of these generic branches that occur
only when the invariants of the tensor b, or equivalently C, are constant; these will be addressed in the
next section. The nature of the anomalous solutions differs markedly from the generic solutions found
here: generic solutions contain arbitrary functions as free parameters, while the form of the anoma-
lous solutions is determined up to a finite number of undetermined constants. Additionally, for generic
solutions, the eigenvectors of b are contained within or perpendicular to the span of the infinitesimal
generators of the symmetry group, while for anomalous solutions, this alignment does not occur. While
the invariants, and hence, their gradients could be calculated explicitly in terms of the unknown inverse
metric components, it is easier to keep these functions unevaluated at the moment, because we will
ultimately show that they must be constant for the anomalous solution to exist.

We then fix an orthonormal frame on these constructed intermediate configurations, and express the
anelastic deformation required to generate these intermediate configurations in terms of these frames. We
note that since we are in reality only determining the elastic component of these motions, the factor A
corresponds to the universal motion, while the factor G corresponds to the stretch required to obtain the
universal intermediate configurations from the classical reference configurations, which play no dynamic
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role. Hence after computing A = FG−1, so long as the geometry of the intermediate configuration is
retained, the factor G can be discarded, which corresponds to the fact that we can prepend an arbitrary
compatible anelastic deformation onto our universal deformations. As this is supplementary to our main
results, we will simply give G on some orthonormal anholonomic frame, leaving further computations to
interested readers.

Family 0: Homogeneous Deformations. The deformation mapping written in Cartesian coordi-
nates is given by (13), and the deformation gradient F aA is constant. We compute the left Cauchy-Green
tensor as

bab = F aAM
ABF bB , (80)

which is also constant, and hence its invariants are constant. The Cauchy stress takes the form

σab (x, y, z) = −p (x, y, z)mab + 2W1b
ab − 2W2c

ab, (81)

and the equilibrium equations read

∇bσab = −mab∇bp (x, y, z) = 0. (82)

Because mab is invertible, this implies that p is constant, and the equilibrium equations are satisfied
simply because of the assumed form of MAB . The only remaining condition is the incompressibility
condition which, in the chosen coordinate systems, reads

det bab = detmab = 1. (83)

We can express this constraint as a condition on MAB , or as a condition on F aA . In reality, these
conditions are equivalent, since we have

(detF aA )
2

detMMN = 1, (84)

and one can be freely transformed into the other by changing coordinates. However, for the other families,
it will be easier to express this condition as a restriction on the inverse metric tensor, so for consistency
we choose the invertible tensor F aA and then enforce

detMAB =
1

(detF aA )
2 , (85)

which ensures that the volume form in the material manifold agrees with that in the current configuration.
Because the material metric is constant, its Levi-Civita connection produces no curvature, and thus

the material manifold is Euclidean. This is useful when using a multiplicative decomposition of the
deformation gradient into elastic and anelastic factors F = AG, as we can choose a Cartesian frame
{eα} in the material manifold and its corresponding coframe {ϑα}, in which case the anelastic factor must

satisfy GαAG
β
Bδαβ = MAB . Since the matrix of components MAB is positive definite and symmetric,

we can take the matrix of components GαA to be its unique positive-definite symmetric square root,

in which case we satisfy GαAG
β
Bδαβ = MAB . Alternatively, we may prescribe the anelastic factor in

such a way that the induced material metric is valid. In this case, since MAB is constant, any constant
invertible anelastic factor will furnish a valid material metric. The incompressibility constraint becomes
det(AaαA

b
βδ
αβmbc) = 1, which furnishes a differential equation constraining the volume in the current

configuration to agree with that in the material manifold.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block. The deformation for this
family is given in (15) with the deformation gradient (16). We compute the quantity ma[l∇k]∇bσ

ab = 0,
which for this family, only has two independent nonzero components, and we take the coefficients of
the partial derivatives of W to vanish independently. The W111 coefficient of this equation gives the
conditions [

ABrM12(r)
B(M13(r)−ACM12(r))

r

]
I ′1(r)2 =

[
0
0

]
. (86)
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The first equation implies that either M12(r) = 0, or I1 is constant, because AB 6= 0 to ensure the
invertibility of the deformation. If I1 is not constant, we have M12(r) = 0. The second component then
becomes M13(r) = 0. Therefore, if I1 is not constant, we have that M12(r) = M13(r) = 0.

If I1 is constant, we can examine the W122 component, which implies the conditions[
ABrM12(r)

B(M13(r)−ACM12(r))
r

]
I ′2(r)2 =

[
0
0

]
. (87)

Therefore, I2 is constant, or M12(r) = M13(r) = 0 and we have established that either M12(r) =
M13(r) = 0, or all the invariants of b are constant, which is the condition for the anomalous solution.
Hence, in this section, we take M12(r) = M13(r) = 0 and we consider the constant invariant case in the
next section. With M12(r) = M13(r) = 0, we have the equilibrium equation satisfied, i.e., all of its
terms identically vanish. We only have to satisfy incompressibility. Demanding det bab = detmab, we
have the condition

M11(r)
[
M22(r)M33(r)−

(
M23(r)

)2]
= 1. (88)

Since M11(r) 6= 0, and M22(r) 6= 0, the relation

M33(r) =
1

M11(r)M22(r)
+

(
M23(r)

)2
M22(r)

, (89)

ensures that the incompressibility is satisfied. Hence, we have the generic solution

[
MAB(r)

]
=

M
11(r) 0 0
0 M22(r) M23(r)

0 M23(r) 1
M11(r)M22(r) +

(M23(r))
2

M22(r)

 , (90)

which, by writing MAB(X) = MAB (r(X)), can finally be written in terms of the referential variables as

[
MAB(X)

]
=

M
11(X) 0 0
0 M22(X) M23(X)

0 M23(X) 1
M11(X)M22(X) +

(M23(X))
2

M22(X)

 . (91)

The current form of MAB automatically captures incompressibility because we imposed a particular
form of r(X). If we leave this unspecified, we can simply say that MAB is of the form

[MAB (X)] =

M11 (X) 0 0
0 M22 (X) M23 (X)
0 M23 (X) M33 (X)

 , (92)

and use the incompressibility constraint to determine r(X). This is equivalent to introducing a change
in coordinates rescaling X.

When using a multiplicative decomposition, F = AG, we can choose an orthonormal frame {eα}
and its coframe {ϑα} in the material manifold, and require GαAG

β
Bδαβ = MAB . Since MAB is block

diagonal, positive definite, and symmetric, we can take GαA to be its unique positive definite symmetric
square root. Because the components MAB are arbitrary functions of X, we can take GαA to be of the
form

[GαA(X)] =

G1
1(X) 0 0
0 G2

2(X) G2
3(X)

0 G2
3(X) G3

3(X)

 , (93)

which will yield a suitable MAB . Additionally, we can multiply G by an arbitrary local rotation Q
yielding QG, which may be more useful depending on the particular problem.4 This is equivalent to
choosing a different orthonormal frame in the material manifold, which being non-Euclidean in general,
does not possess a preferred orthonormal frame to begin with.

4For example, if the eigenstrain corresponds to anelastic simple shear, it may be more natural to express G in an upper
triangular form, rather than a symmetric form.
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Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylinder. Recall that any
deformation in this family is given by (20) with deformation gradient (21). We compute the equilibrium
condition ma[l∇k]∇bσ

ab = 0, and to aid computations, we use the incompressibility constraint det bab =

detmab by evaluating cab as cab det (bnm) = cab det
(
bnpmpm

)
.

The W111 coefficient of the equilibrium equation has two independent components giving the condi-
tions √

2 (x−D)

A

[
M12(x)

CM12(x) +AM13(x)

]
I ′1(x)2 =

[
0
0

]
. (94)

If I1 is constant, we satisfy these equations, but if I1 is not constant, we have M12(x) = M13(x) = 0,
since A (x−D) 6= 0.

If I1 is constant, we then consider the W122 component of the equilibrium condition to obtain√
2 (x−D)

A

[
M12(x)

CM12(x) +AM13(x)

]
I ′2(x)2 =

[
0
0

]
, (95)

which again implies that either M12(x) = M13(x) = 0, or I2 is constant. Therefore, unless the invariants
of b are constant, we have M12(x) = M13(x) = 0. Setting these components to 0 satisfies equilibrium,
and so we compute the incompressibility condition det bab = detmab. This becomes

2 (x−D)

AB2
M11(x)

[
M22(x)M33(x)−

(
M23(x)

)2]
= 1, (96)

which implies that

M33(x) =
AB2

2 (x−D)M11(x)M22(x)
+

(
M23(x)

)2
M22(x)

. (97)

Bringing all of these together we have

[
MAB(x)

]
=

M
11(x) 0 0
0 M22(x) M23(x)

0 M23(x) AB2

2(x−D)M11(x)M22(x) +
(M23(x))

2

M22(x)

 , (98)

or in terms of referential coordinates, writing MAB(R) = MAB (x(R)),

[
MAB(R)

]
=

M
11(R) 0 0
0 M22(R) M23(R)

0 M23(R) 1
R2M11(R)M22(R) +

(M23(R))
2

M22(R)

 . (99)

This is the generic solution, and we have set up the conditions for the anomalous solution, namely that
the invariants of b must be constant.

As before, we can introduce a coordinate rescaling, treating x as an unknown function of R, which
allows the tensor MAB to take the form

[
MAB(R)

]
=

M11(R) 0 0
0 M22(R) M23(R)
0 M23(R) M33(R)

 , (100)

and turns the incompressibility constraint into a differential equation that can be integrated to determine
x(R). If a multiplicative decomposition of F = AG is used, we can express G on an orthonormal frame
in the form

[GαA(R)] =

G1
1(R) 0 0
0 G2

2(R) G2
3(R)

0 G2
3(R) G3

3(R)

 , (101)

which guarantees that MAB = GαAG
β
Bδαβ is of the proper form. As before, an arbitrary local rotation

Q can be imposed yielding the factor QG, where G is as above, and this new factorization will yield a
material metric of the proper form.
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Family 3: Inflation, Bending, Torsion, Extension, and Shearing of an Annular Wedge. This
family of deformations can be written using cylindrical polar coordinates in both configurations as given
in (25) with deformation gradient (26).

As before, we compute the W111 coefficient of the equilibrium equation and obtain√
A (r2 −B)I ′1(r)2

[
Cr Dr
E
r

F
r

] [
M12(r)
M13(r)

]
=

[
0
0

]
. (102)

The matrix on the left-hand side is invertible, since its determinant, CF − DE, being a factor of the
determinant of F, is nonzero to ensure invertibility. Therefore, we have either I1 being constant, or both
M12(r) and M13(r) must be 0.

If I1 is constant, we examine the W122 coefficient of the equilibrium equation and obtain√
A (r2 −B)I ′2(r)2

[
Cr Dr
E
r

F
r

] [
M12(r)
M13(r)

]
=

[
0
0

]
, (103)

which as before implies that M12(r) = M13(r) = 0, or I2 is constant. Therefore, to satisfy equilibrium,
we must have all of the invariants of b being constant, or M12(r) = M13(r) = 0. The latter of these
conditions is also sufficient to guarantee equilibrium. We only have to satisfy incompressibility, which
amounts to the equation

A (CF −DE)
2 (
r2 −B

)
M11(r)

[
M22(r)M33(r)−

(
M23(r)

)2]
= 1, (104)

which we can do by setting

M33(r) =
1

A (CF −DE)
2

(r2 −B)M11(r)M22(r)
+

(
M23(r)

)2
M22(r)

. (105)

This gives the generic solution

[
MAB(r)

]
=

M
11(r) 0 0
0 M22(r) M23(r)

0 M23(r) 1
A(CF−DE)2(r2−B)M11(r)M22(r)

+
(M23(r))

2

M22(r)

 , (106)

or in referential variables, writing MAB(R) = MAB(r(R)),

[
MAB(R)

]
=

M
11(R) 0 0
0 M22(R) M23(R)

0 M23(R) 1
A2R2(CF−DE)2M11(R)M22(R)

+
(M23(R))

2

M22(R)

 . (107)

As in the other families, we can introduce a coordinate rescaling to express the material metric in the
form

[MAB (R)] =

M11 (R) 0 0
0 M22 (R) M23 (R)
0 M23 (R) M33 (R)

 , (108)

which means that on some orthonormal frame, the anelastic factor of a multiplicative decomposition
F = AG takes the form

[GαB(R)] =

G1
1(R) 0 0
0 G2

2(R) G2
3(R)

0 G2
3(R) G3

3(R)

 . (109)

Doing this turns the incompressibility condition into a differential equation for the unknown function
r(R), and as before, any other compatible anelastic factor can be expressed as QG, where Q is an
arbitrary local rotation and G is as above.
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Family 4: Inflation/Eversion of a Sphere. For this family, the symmetry enforced on the met-
ric tensor automatically satisfies the universal equilibrium equations without additional restrictions.
Demonstrating this, under this symmetry, the left Cauchy-Green tensor reads

[
bab
]

=


(±r3∓A3)

4
3

r4 m2
1(r) 0 0

0
m2

2(r)
sin2(φ)

0

0 0 m2
2(r)

 , (110)

and its inverse is

[
cab
]

=


r4

(±r3∓A3)
4
3m2

1(r)
0 0

0 1
m2

2(r)r4 sin2(φ)
0

0 0 1
m2

2(r)r4

 . (111)

We can compute the invariants of b as

I1 =

(
±r3 ∓A3

) 4
3

r4
m2

1(r) + 2r2m2
2(r),

I2 =
m2

2(r)
[
2
(
±r3 ∓A3

) 4
3 m2

1(r) + r6m2
2(r)

]
r2

,

I3 =
(
±r3 ∓A3

) 4
3 m2

1(r)m4
2(r) = 1.

(112)

Notice in particular, that these invariants only depend on r. The Cauchy stress is diagonal with compo-
nents

σ11 = −p+
2
(
±r3 ∓A3

) 4
3 m2

1(r)W1

r4
− 2r4W2

(±r3 ∓A3)
4
3 m2

1(r)
, (113)

σ22 =
2r4m4

2(r)W1 − 2W2 − r2m2
2(r)p

m2
2(r)r4 sin2 (φ)

, (114)

σ33 = − p

r2
+ 2m2

2(r)W1 −
2W2

r4m2
2(r)

. (115)

Taking the divergence of this tensor and setting it equal to zero gives

∇bσ1b =
4W2

r3m2
2(r)

+
4r4m′1(r)W2

(±r3 ∓A3)
4
3 m3

1(r)
− 4rm2

2(r)W1 −
∂p

∂r
(116)

−
2r3

((
±2r2 ∓ 6A3

)
W2 + r

(
±r3 ∓A3

)
(I ′2(r)W22 + I ′1(r)W 12)

)
(±r3 ∓A3)

7
3 m2

1(r)

±
2
(
r3 −A3

) 1
3 m2

1(r)
(
2
(
r3 +A3

)
W1 ± r

(
r3 −A3

)
(I ′2(r)W12 + I ′1(r)W 11)

)
r5

+
4
(
±r3 ∓A3

) 4
3 m1(r)m′1(r)W1

r4
= 0,

∇bσ2b = − 1

r2 sin2 φ

∂p

∂θ
= 0, (117)

∇bσ3b = − 1

r2

∂p

∂φ
= 0. (118)

Therefore, the undetermined pressure must only depend on r, and the components of ∇bσab only depend

on r. Using ∂p
∂θ = 0 and ∂p

∂φ = 0, and defining va = ∇bσab, we can compute V ac = ∇cva. For simplicity,
we will only compute the off-diagonal components of this tensor. Note that

va =

v1(r)
0
0

 , (119)
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and V ac = ∂cv
a + vdγ a

cd . Computing the off-diagonal components, we get

V 1
2 =

∂v1

∂θ
+ v1γ 1

21 = 0, V 2
3 =

∂v2

∂φ
+ v1γ 2

31 = 0, V 3
1 =

∂v3

∂r
+ v1γ 3

11 = 0,

V 2
1 =

∂v2

∂r
+ v1γ 2

11 = 0, V 3
2 =

∂v3

∂θ
+ v1γ 3

21 = 0, V 1
3 =

∂v1

∂φ
+ v1γ 1

31 = 0.

(120)

Therefore, V ac is diagonal. Because mab is also diagonal, we conclude that Vbc is diagonal, and hence, is
identically symmetric. Recognizing Vbc as mbaV

a
c = mba

(
∇c∇dσad

)
, this means that the equilibrium

equations are automatically satisfied for an appropriate pressure field, because the antisymmetric part
of mba

(
∇c∇dσad

)
vanishes simply due to the symmetry of the tensor field MAB .

We now only need to satisfy the incompressibility condition det b = 1. Computing this yields(
±r3 ∓A3

) 4
3 m2

1(r)m4
2(r) = 1, (121)

or in referential variables, writing m1(R) = m1(r(R)), R4m2
1(R)m4

2(R) = 1. Therefore, the final form of
the inverse material metric tensor for this family is

[
MAB

]
=

m2
1(R) 0 0
0 1

m1(R)R2 sin2 Φ
0

0 0 1
m1(R)R2

 . (122)

Alternatively, introducing a coordinate rescaling as before, the material metric tensor takes the form

[MAB ] =

m1(R) 0 0
0 m2(R) sin2 φ 0
0 0 m2(R)

 , (123)

and we obtain a differential equation that can be integrated to determine r(R). Then, taking a mul-
tiplicative decomposition of F = AG, we can express G using an orthonormal frame in the material
manifold yielding

[GαA] =

G1(R) 0 0
0 G2(R) sin Φ 0
0 0 G2(R)

 , (124)

which again can be left multiplied by an arbitrary local rotation Q if desired.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge.
For this family, we have the deformation as given in (35) with deformation gradient (36). Again, we
compute the equilibrium condition ma[l∇k]∇bσ

ab = 0, and look at the W111 coefficient. This contains
two independent equations: [

AEM13(r)
Ar
(
ABM11(r) + CrM12(r)

)] I ′1(r)2 =

[
0
0

]
. (125)

If I1 is constant, this equation is satisfied, and if I1 is not constant, we require M13(r) = 0, and

M12(r) = −ABM
11(r)

Cr . If I1 is constant, we examine the W122 coefficient in the equilibrium equation and
obtain [

AEM13(r)
Ar
(
ABM11(r) + CrM12(r)

)] I ′2(r)2 =

[
0
0

]
, (126)

which implies either I2 is constant, or M13(r) = 0 and M12(r) = −ABM
11(r)

Cr . Hence, we either have all

of the invariants of b constant, or we have M13(r) = 0 and M12(r) = −ABM
11(r)

Cr , which characterizes
the generic solution.

The conditions on the components of the metric are sufficient to satisfy equilibrium, so we only have
to satisfy incompressibility. The incompressibility condition in this case reads

A2E2M11(r)
[(
C2r2M22(r)−A2B2M11(r)

)
M33(r)− C2r2M23(r)2

]
= 1. (127)
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We solve this for M22(r) to obtain

M22(r) =
1

A2C2E2r2M11(r)M33(r)
+

(
M23(r)

)2
M33(r)

+
A2B2M11(r)

C2r2
, (128)

which gives the generic solution

[
MAB(r)

]
=

 M11(r) −ABM
11(r)

Cr 0

−ABM
11(r)

Cr

1+A2C2E2r2(M23(r))
2
M11(r)

A2C2E2r2M11(r)M33(r) +
A2B2M11(r)

C2r2 M23(r)

0 M23(r) M33(r)

 , (129)

or in referential variables, writing MAB(R) = MAB(r(R)),

[
MAB(R)

]
=

 M11(R) −BM
11(R)
CR 0

−BM
11(R)
CR

1+A4C2E2R2(M23(R))
2
M11(R)

A4C2E2R2M11(R)M33(R) +
B2M11(R)
C2R2 M23(R)

0 M23(R) M33(R)

 . (130)

Unlike the other families, the standard Euclidean inverse metric MAB(R) = diag{1, R−2, 1} is not
a member of the generic solution branch for this family. This is because this Euclidean metric yields a
special case of the anomalous solution, having constant invariants.

In principle, we can rescale our coordinates and compute the form of the anelastic factor in a multi-
plicative decomposition for a member of this family as we have done for the previous families. However
we will not concern ourselves with the multiplicative decomposition for this family, because its generic
solution branch does not contain the solution without eigenstrain. As such, any continuous process
based on this family beginning with zero eigenstrain will not lie in this solution branch, but rather on
the anomalous branch, and so the multiplicative decomposition associated with this generic branch is of
limited use.

7 The Anomalous Universal Solutions

As we have covered cases I and IIa in the previous section, we turn our attention to case IIb. The
groundwork for this case, namely the spatial constancy of the strain invariants has already been laid in
our analysis of case IIa in section 6. The analysis for each family follows the same general pattern, so
we will merely outline these steps here in an example appearing in Family 5, then present the results.
Details are given in Appendix B.

Step 1: For the anomalous solution, we start with the equations derived from the equilibrium con-
ditions: four second-order linear differential equations for each family, involving the six undetermined
components of the inverse metric tensor. By integrating the equilibrium conditions, up to two of these
components can be expressed in terms of the other variables.

We take, as an example the deformation

r = R, θ = logR+ Θ, z = Z, (131)

for which we compute the components of bab as

[
bab
]

=

 M11 M12 +
M11

r M13

M12 +
M11

r M22 + 2
M12

r +
M11

r2 M23 +
M13

r

M13 M23 +
M13

r M33

 . (132)

The first universal equilibrium equation is ma[l∇k]∇bb
ab = 0, which in these coordinates amounts to the

two equations

M13(r)′′ +
M13(r)′

r
− M13(r)

r2
= 0, (133)
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r
(
5M12(r)′ +M11(r)′′ + rM12(r)′′

)
+ 3M12(r) + 3M11(r)′ = 0. (134)

The general solution of these equations is

M13(r) = α1r +
α2

r
, M12(r) =

γ1

r
+
γ2

r3
− M11(r)

r
. (135)

Step 2: After integrating these equations, we have the three constant invariant conditions for each
family to solve. The constant trace condition is linear in the unknown components of the inverse metric,
so we can use it to solve for one undetermined inverse metric component in exchange for introducing the
trace of b as a parameter.

For the purposes of our example, we will take γ2 = 0, γ1 = 0, and M13(r) = r. With this, bab becomes

[
bab
]

=

M11 0 r

0 M22 − M11

r2 M23 + 1
r M23 + 1 M33

 . (136)

Next, we compute the equilibrium condition ma[l∇k]∇bc
ab = 0, which is simplified by multiplying cab by

the condition det b = 1. This condition puts the remaining two ODEs in the form

r
(
r2M23(r)′′ + 7rM23(r)′ + 8M23(r) + 8

)
= 0, (137)

3M12(r) + 3M11(r)′ + r
(
5M12(r)′ +M11(r)′′ + rM12(r)′′

)
= 0. (138)

Integrating these equations gives the solutions

r4M23(r) = r2µ1 + µ2 − r4, r6M22(r) = r4M11(r) + r4β1 + r2β2, (139)

which gives bab as [
bab
]

=

M11 0 r

0 β1

r2 + β2

r4
µ1

r2 + µ2

r4

r µ1

r2 + µ2

r4 M33

 . (140)

We have the constant trace condition

I1 = babmab = M11 +M33 + β1 +
β2

r2
, (141)

hence,

M33 = I1 −M11 − β1 −
β2

r2
. (142)

The incompressibility condition det b = 1 then can be written as(
β1r

6 + β2r
4
)
M11(r)2 +

[(
r2µ1 + µ2

)2
+
(
r3β1 + rβ2

)2 − I1 (β1r
6 + β2r

4
)]
M11(r)

+ r6
(
1 + β1r

2 + β2

)
= 0,

(143)

and the constant second invariant condition can be written as

r6M11(r)2 − r4
(
I1r

2 − β1r
2 − β2

)
M11(r) +

(
r2µ1 + µ2

)2
+
(
β1r

3 + β2r
)2

+ r8 + I2r
6 − I1r4

(
β1r

2 + β2

)
.

(144)

Step 3: We are left with two nonlinear algebraic equations. The first is the incompressibility condition
det b = 1, and the second is the constancy of the second invariant of b. Both are quadratic equations
in the remaining component of the inverse metric tensor, which creates an overdetermined system. We
compute the resultant of these two equations in this component, and demand this resultant vanish to en-
sure that these two equations have a common root. The resultant of these equations is itself a polynomial
in the other undetermined integration constants: the invariants of b, and the remaining independent
spatial coordinate.
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Even in our simplified example, the resultant of these equations in M11(r) yields the condition a rela-
tively lengthy polynomial equation p(r) = 0. It can be immediately simplified by noticing that one of
the coefficients is simply µ6

2, so µ2 = 0 is a necessary condition for there to be a common solution to
these two equations. It can be further simplified by noting that after using µ2 = 0, one of the coefficients
becomes β6

2 , so we demand β2 = 0. With this, a different coefficient becomes µ6
1, and hence µ1 = 0 as well.

Step 4: Therefore, the resultant is a polynomial equation of the form p (q) = 0, which must hold for all
values of the independent variable q (which is either r or x depending on the family). Accordingly, we
set each coefficient to zero independently, and obtain an overdetermined system of nonlinear polynomial
equations for the undetermined constants. We wish to find all the solutions to these equations, and so
we compute a primary decomposition of the radical ideal generated by these equations. These equations
are simple enough that this can be done with the assistance of a symbolic algebra package, though even
then the computations are rather cumbersome (see appendix B). After we have done this, we are left
with a set of conditions on the undetermined constants that are necessary and sufficient for the existence
of a common root of the original quadratic equations in the undetermined inverse metric component
over an open set. We substitute these constants into these equations and use them to solve for the final
component of the inverse metric tensor, which gives us the general form of the anomalous solution. In
all of these cases, despite encountering branching conditions in the course of analyzing the conditions on
the constants, the separate branches ultimately are redundant, and we are left with a single anomalous
solution branch for each family.

For our example, using the conditions µ2 = 0, β2 = 0, and µ1 = 0, the polynomial simply becomes(
β3

1 − I1β2
1 + I2β1 − 1

)2
r18 = 0, which demands β3

1 − I1β2
1 + I2β1 − 1 = 0, because r > 0. We recognize

that this is the eigenvalue equation for the tensor b, so we require β1 to be an eigenvalue of b. We can
satisfy this by writing I1 = β1 + e1 and I2 = β1e1 + 1

β1
, where e1 = λ1 + λ2 is the sum of the other two

eigenvalues of b and we have used incompressibility in the form λ1λ2β1 = 1. When we substitute these
conditions back into the original equations for M11, they both become (up to some nonzero constant)

β1M
11(r)2 − e1β1M

11(r) + r2β1 + 1 = 0. (145)

This equation can be solved for M11 and we obtain

M11(r) =
1

2

(
e1 ±

√
e2

1 − 4

(
r2 +

1

β1

))
, (146)

which gives one example of MAB as[
MAB

]
=

1

2


e1 ±

√
e2

1 − 4R2 − 4
β1

− 1
R

(
e1 ±

√
e2

1 − 4R2 − 4
β1

)
2R

− 1
R

(
e1 ±

√
e2

1 − 4R2 − 4
β1

)
1
R

(
e1 ±

√
e2

1 − 4R2 − 4
β1

)
+ β1

R2 −2

2R −2 e1 ∓
√
e2

1 − 4R2 − 4
β1

 . (147)

This lets us compute the corresponding elastic left Cauchy-Green stretch tensor as

[
bab
]

=


1
2

(
e1 ±

√
e2

1 − 4
(
r2 + 1

β1

))
0 r

0 β1

r2 0

r 0 1
2

(
e1 ∓

√
e2

1 − 4
(
r2 + 1

β1

))
 . (148)

We can verify that bab satisfies the equilibrium conditions and the constant invariant conditions.
Completely determining the universal anelastic extensions of these families amounts to doing a similar

analysis for each of the remaining families, but in full generality, i.e., not assuming particular values for
the parameters appearing in the deformation, nor selecting values for the integration constants a priori.
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These computations are included in the Appendix B, only the results are presented next. As we are
considering the case where the strain invariants are constant, the set of universal equilibrium equations
reduces to (48) and (49). Ordinarily these equations have three independent components, but in our case,
one of these components vanishes identically for each equation, hence we have four ordinary differential
equations to solve for each anomalous branch, together with the three algebraic equations constraining
the strain invariants to be constant.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block. Integrating the equilib-
rium equations (48) and (49) and solving the constant invariant conditions gives the following anomalous
solution branch for this family:

M12(r) =
α1

r2
+ α2, (149)

M13(r) =
AB2Cα1

r2
+ γ1r

2 + γ2, (150)

M11(r) =
e1r

2

2A2
±
r

√
B2e2

1r
2 − 4

(
B2r2 (e2 +A2B2M12(r)2) + (AB2CM12(r)−M13(r))

2
)

2A2B
, (151)

M22(r) =
A2B4e2

(
e1r

2 −A2M11(r)
)
M12(r)2 +

[
AB2CM12(r)−M13(r)

]2
B2e2r2

[
(AB2CM12(r)−M13(r))

2
+ r2M12(r)2

] , (152)

M23(r) =
AC

(
AB2CM12(r)−M13(r)

)2
e2r2

[
(AB2CM12(r)−M13(r))

2
+ r2M12(r)2

]
+
A2B2

(
e1e2r

2 − r2 −A2e2M
11(r)

)
M12(r)M13(r)

e2r2
[
(AB2CM12(r)−M13(r))

2
+ r2M12(r)2

] , (153)

M33(r) =
A2B2

e2r2

[
AB2

(
C2 + r2

)
M12(r)− CM13(r)

]2
+ e2

(
e1r

2 −A2M11(r)
)
M13(r)2

(AB2CM12(r)−M13(r))
2

+ r2M12(r)2
. (154)

Here the constants e1 and e2 are the elementary symmetric polynomials in two of the three free eigenvalues
of b

e1 = λ1 + λ2, e2 = λ1λ2, (155)

with the incompressibility condition determining the third eigenvalue as λ3 = 1
λ1λ2

. The parameters e1

and e2 must be positive with e2
1 > 4e2, since b is positive definite. The remaining constants, α1, α2, γ1,

and γ2 are arbitrary, subject to the condition that the choice of e1, e2, α1, α2, γ1, and γ2 must yield a
positive-definite metric tensor. One can explicitly verify that the invariants of b generated by this metric
are

I1 = e1 +
1

e2
= λ1 + λ2 + λ3,

I2 =
e1

e2
+ e2 = λ1λ2 + λ2λ3 + λ3λ1,

I3 = λ1λ2λ3 = 1.

(156)

Additionally, we can express this in terms of the referential variables by expressing r in terms of X by
the relation r =

√
A (2X +D).

Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylinder. With this
family, it is prudent to make the substitution ξ = x − D, which allows us to express the anomalous
solution branch as

M12(ξ) =
α1ξ + α2√

ξ
, (157)

M13(ξ) =
γ1ξ + γ2√

ξ
, (158)
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M11(ξ) =

√
Ae1 ±

√
Ae2

1 − 4
[
Ae2 + 2ξ

(
(AM13(ξ) + CM12(ξ))

2
+M12(ξ)2

)]
4A

3
2B2ξ

, (159)

M22(ξ) =
A2B2

[(
CM12(ξ) +AM13(ξ)

)2
+ e2

(
e1 − 2AB2ξM11(ξ)

)
M12(ξ)2

]
e2

[
M12(ξ)2 + (AM13(ξ) + CM12(ξ))

2
] , (160)

M23(ξ) = −
AB2

[
C
(
CM12(ξ) +AM13(ξ)

)2
+ CM12(ξ)2

]
e2

(
M12(ξ)2 + (AM13(ξ) + CM12(ξ))

2
) ,

−
AB2

[(
A− e1e2 + 2AB2e2ξM

11(ξ)
)
M12(ξ)M13(ξ)

]
e2

[
M12(ξ)2 + (AM13(ξ) + CM12(ξ))

2
] , (161)

M33(ξ) =
B2

e2

((
1 + C2

)
M12(ξ) +ACM13(ξ)

)2
+A2e2

(
e1 − 2AB2ξM11(ξ)

)
M13(ξ)2

M12(ξ)2 + (AM13(ξ) + CM12(ξ))
2 . (162)

Alternatively, we can express this in terms of referential variables using the equation ξ = 1
2AB

2R2. As
in the previous case, e1 and e2 are the elementary symmetric polynomials in the free eigenvalues of b,
λ1 and λ2.

e1 = λ1 + λ2, e2 = λ1λ2. (163)

With this, the third eigenvalue is determined via the incompressibility condition λ3 = 1
λ1λ2

. This ensures
that the invariants of b are

I1 = e1 +
1

e2
= λ1 + λ2 + λ3,

I2 =
e1

e2
+ e2 = λ1λ2 + λ2λ3 + λ3λ1,

I3 = λ1λ2λ3 = 1.

(164)

The constants e1, e2, α1, α2, γ1, γ2 are largely arbitrary, apart from the condition that e1 > 0, and
e2

1 > 4e2 > 0, and that the constants are chosen such that the metric tensor is positive definite.
Alternatively, we have the case where the anelastic strain is compatible, and we have

[MAB (R)] =

M11R
2 M12R M13R

M12R M22 M23

M13R M23 M33

 , (165)

where {M11 ,M12 ,M13 ,M22 ,M23 ,M33 } are constants and detMAB (R) = R2. At first glance this case
appears slightly more general than the previous one under the special case α1 = γ1 = 0, because for a
fixed overall deformation, there are five independent parameters determining this solution, while setting
α1 = γ1 = 0 in the other family yields a special case of (165) depending on the free parameters α2, γ2, e1,
and e2. However, this case causes the stretch tensor bab to be constant, which requires that the material
manifold be Euclidean, and a constant isochoric stretch only depends on two independent stretches, with
the remaining degrees of freedom representing a global rotation, which we can freely add or remove. This
case appears to not be a special case of the previous branch, because once we eliminate the dependence
on ξ, we not longer have a preferred direction, and hence we spontaneously gain additional rotational
degrees of freedom that can be removed by the choice of the orientation of our current configuration
Cartesian coordinates.

Physically, this amounts to the reference configuration deforming anelastically into a parallelepiped,
which can be elastically deformed into the desired block, as that elastic deformation is homogeneous.
Indeed, the stress required to accomplish this is always constant, and hence equilibrium conditions are
trivially satisfied. One can easily verify that the only nonzero Christoffel symbol generated by this metric
is Γ1

11 = 1
R , which generates a vanishing curvature tensor R = 0. In fact, the anelastic strain can be

integrated up to an arbitrary rigid rotation and translation to obtain the position vector

xA =
R2

2
ε1 + Θε2 + Zε3, (166)
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where εa is an arbitrary right-handed set of linearly independent vectors spanning a parallelepiped with
unit volume. With this, the constants Mab = εa ·εb, i.e., the arbitrary constants appearing in the metric
tensor are given by the Euclidean inner products of the constant basis vectors.

Family 3: Inflation, Bending, Torsion, Extension, and Shearing of an Annular Wedge. For
this solution, it is prudent to define the functions

p(r) = γ1 +
γ2

r2
, q(r) = α1r

2 + α2. (167)

With these definitions, we have the following anomalous solution branch

M12(r) =
Dq(r)− Fp(r)√

r2 −B
, (168)

M13(r) =
Ep(r)− Cq(r)√

r2 −B
, (169)

M11(r) = r2

e1 ±
√
e2

1 − 4
[
e2 +A (CF −DE)

2
(
p(r)2 + q(r)2

r2

)]
2A (r2 −B)

, (170)

M22(r) =

(
Dr2p(r) + Fq(r)

)2
+ e1e2r

2 (Dq(r)− Fp(r))2

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

−
Ae2 (Fp(r)−Dq(r))2 (

r2 −B
)
M11(r)

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

, (171)

M23(r) =
Ae2 (Ep(r)− Cq(r)) (Fp(r)−Dq(r))

(
r2 −B

)
M11(r)

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

− e1 (Cq(r)− Ep(r)) (Dq(r)− Fp(r))
(CF −DE)

2
(q(r)2 + p(r)2r2)

−
(
Cp(r)r2 + Eq(r)

) (
Dp(r)r2 + Fq(r)

)
e2 (CF −DE)

2
r2 (q(r)2 + p(r)2r2)

, (172)

M33(r) =

(
Cr2p(r) + Eq(r)

)2
+ e1e2r

2 (Cq(r)− Ep(r))2

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

−
Ae2 (Ep(r)− Cq(r))2 (

r2 −B
)
M11(r)

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

. (173)

As with the other families, we can use the deformation equation r =
√
AR2 +B, to recast this into the

referential variables. Additionally, the parameters e1 and e2 are the same as the previous families, and
other than demanding that the eigenvalues they determine be positive, we also demand that the choice
of variables α1, α2, γ1, γ2, e1, and e2 leaves the metric tensor positive definite.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge.
To facilitate the analysis of this family, it is useful to define the function f(r) = γ1 + γ2

r2 . With this, we
have

M13(r) = α1r +
α2

r
, (174)

M11(r) =
e1 ±

√
e2

1 − 4 (e2 +A2f(r)2 +A2E2M13(r)2)

2A2
, (175)

M12(r) =
f(r)−ABM11(r)

Cr
, (176)

M22(r) =
e2f(r)2

(
e1 +A2

(
B2 − 1

)
M11(r)

)
C2r2e2 (f(r)2 + E2M13(r)2)

+
E2
(
1 +A2B2e2M

11(r)
)
M13(r)− 2ABe2f(r)

(
f(r)2 + E2M13(r)2

)
C2r2e2 (f(r)2 + E2M13(r)2)

, (177)
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M23(r) = −ABM
13(r)

Cr
−
M13(r)f(r)

(
1− e1e2 +A2e2M

11(r)
)

Ce2r (f(r)2 + E2M13(r)2)
, (178)

M33(r) =
f(r)2 + E2e2

(
e1 −A2M11(r)

)
M13(r)2

E2e2 (f(r)2 + E2M13(r)2)
. (179)

Again, the constraints on the constants appearing are as before, and are only necessary to ensure the
positive definiteness of b and the metric tensor. We can recast this into referential variables using
r = AR, if desired.

8 Merging of Universal Solution Families

After obtaining the previous results, it is natural to ask if solutions in one family correspond to solutions
in another, and if so, to what extent? It is possible that the material manifolds, and the corresponding
elastic deformations from two different families differ only by a change of coordinates, or equivalently, by
a compatible anelastic deformation connecting the reference configurations of the two total deformations.

8.1 Equivalent Universal Solutions

Two universal deformations, ϕ1 :
(
M1

R,M
1
)
→
(
M1

c ,m
1
)
, and ϕ2 :

(
M2

R,M
2
)
→
(
M2

c ,m
2
)

are said to

be equivalent if there exist two isometries Ψ :
(
M1

R,M
1
)
→
(
M2

R,M
2
)
, and ψ :

(
M1

c ,m
1
)
→
(
M2

c ,m
2
)

such that
ψ ◦ ϕ1 = ϕ2 ◦Ψ, (180)

or, equivalently, the following diagram commutes:(
M1

R,M
1
) (

M1
c ,m

1
)

(
M2

R,M
2
) (

M2
c ,m

2
)

ϕ1

Ψ ψ

ϕ2

(181)

For general manifolds, this is a difficult task, as we not only have to determine whether or not two
isometries exist, i.e., solve the Riemannian manifold equivalence problem twice, but also whether or not
they satisfy equation (180). However, in our case, the current configurations of the universal deformations
are both Euclidean, and hence ψ must be an element of SE(3). Additionally, ϕ1 and ϕ2 are invertible
and in principle known, so if we can find ψ, we can solve for Ψ = ϕ−1

2 ◦ψ ◦ϕ1. It is then a simple matter
of checking whether or not Ψ is an isometry.

We choose coordinates for all of these manifolds, writing current configuration coordinates as {xa},
and material manifold coordinates as {XA}, with each set numbered by the universal deformation per-
taining to it. In terms of these coordinates, these maps are

x a
1 = ϕ1

(
X A

1

)
,

x a
2 = ϕ2

(
X A

2

)
,

x a
2 = ψ

(
x b

1

)
,

X A
2 = Ψ

(
X B

1

)
,

(182)

where we have used different indices on the different sides of the equations to emphasize that in principle
each new coordinate depends on all of the old coordinates. These maps prolong to tangent maps (F1)

a
A,

(F2)
a
A, hab, H

A
B , satisfying

dx a
1 = (F1)

a
A dX

A
1 ,

dx a
2 = (F2)

a
A dX

A
2 ,

dx a
2 = habdx

b
1 ,

dX A
2 = HABdX

B
1 .

(183)
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In terms of these tangent maps, we then have the isometry conditions(
M1
)
AB

= HDAH
E
B

(
M2
)
DE

, (184)(
m1
)
ab

= hcah
d
b

(
m2
)
cd
, (185)

and the prolongation of equation (180) as

hab (F1)
b
A = (F2)

a
B HBA. (186)

Because both current configurations are Euclidean, we can trivially satisfy equation (185) by choosing
ψ to be an element of SE(3), and we can then use equation (186) to express equation (184) in terms of
hab as (

M1
)
AB

= (F1)
a
A hba

(
F−1

2

)D
b

(
M2
)
DE

(F1)
c
B hcd

(
F−1

2

)E
d
. (187)

We can write this expression in terms of the inverse of bab = F aAF
b
BM

AB for each deformation and
obtain

(c1)ab = hca (c2)cd h
d
b, (188)

and hence
(b2)

ab
= hach

b
d (b1)

cd
. (189)

8.2 Relationships Between the Six Universal Families

We would like to identify which families are likely to contain overlap, and take note of Table 2. Specifically,
the left Cauchy-Green tensor of each family is symmetric with respect to the prolonged action of a
subgroup of SE(3). Therefore, if two universal deformations are equivalent, their corresponding strain
tensors should have isomorphic symmetry groups. Denoting the symmetry group of b1 as K1 ⊂ SE(3),
and the symmetry group of b2 as K2 ⊂ SE(3), we seek ψ ∈ SE(3) such that

ψK1 = K2ψ. (190)

This immediately identifies a possible correspondence between Families 1, 3, and 5, because their sym-
metry groups are isomorphic. Additionally, we expect that there might be some universal solutions in
Family 2 that are also in Family 0, since the symmetry group of Family 2 is a subgroup of that of Family
0, though we can immediately recognize that there are solutions in Family 2 that are not equivalent to
any in Family 0, because not all solutions in Family 2 are invariant under the action of the full symmetry
group of Family 0.

This observation immediately reveals that, up to an element of these symmetry groups, ψ must be
the obvious one implied by our choice of coordinates in each family, because it must send invariant sets
of K1 to invariant sets of K2. We recall that if a (sub)group K acts on a manifold M, an invariant set
of K is a set SK ⊂ M such that ∀x ∈ SK , and ∀k ∈ K, k • x ∈ SK . Here we consider the smallest
nonempty invariant sets: the orbits of a single point under the action of the subgroup Ki. The invariant
sets of the symmetry groups of Families 1, 3, and 5 are concentric cylinders, hence any potential ψ
connecting these two families must map a family of concentric cylinders to another. The coordinates for
each family were chosen such that this family of cylinders is centered on the z axis, hence we require ψ
to be a Euclidean isometry mapping the z axis to itself. Apart from rotations and translation that leave
the left Cauchy-Green tensor fields unchanged, this restricts ψ to either be the identity, or a rotation
reversing the orientation of the z axis. We will see that we can freely take ψ to be the identity.

We first show that Family 0 is contained within Family 2. To do this, we must find an equivalent
deformation in Family 2 for any choice of deformation in Family 0. Identifying our coordinate systems
(i.e., taking ψ to be the identity), we can express the left Cauchy-Green tensor field for any deformation
in Family 0 as [

bab(x, y, z)
]

=

b11 b12 b13

b12 b22 b23

b13 b23 b33

 . (191)
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We choose a universal solution in Family 2 with material inverse metric of the form

[
MAB(R)

]
=


M̃11

R2

M̃12

R
M̃13

R
M̃12

R M̃22 M̃23

M̃13

R M̃23 M̃33

 , (192)

with M̃AB being appropriate constants, which is one of the cases where the material manifold is Eu-
clidean. Pushing this forward to the current configuration, we obtain the equationsb11 b12 b13

b12 b22 b23

b13 b23 b33

 =

 A2B4M̃11 BM̃12 CBM̃12 +ABM̃13

BM̃12 M̃22

A2B2

CM̃22

A2B2 +
M̃23

AB2

CBM̃12 +ABM̃13 CM̃22

A2B2 +
M̃23

AB2

C2M̃22

A2B2 +
2CM̃23

AB2 +
M̃33

B2

 . (193)

Therefore, for any given element of Family 0, the choices

M̃11 =
b11

A2B4
, (194)

M̃12 =
b12

B
, (195)

M̃13 =
b13 − Cb12

AB
, (196)

M̃22 = A2B2b22, (197)

M̃23 = AB2
(
b23 − Cb22

)
, (198)

M̃33 = B2
(
b33 − 2Cb23 + C2b22

)
, (199)

yield an equivalent member of Family 2. Also we note that these compatible material manifolds are
contained as special cases of the non-homogeneous branch of Family 2 via the same argument presented
in section 7. Denoting UA to be the set of universal deformations corresponding to family A, we conclude
that

U0 ⊂ U2. (200)

We then seek to establish similar correspondences between the sets U1, U3, and U5. First, we consider
an element of U5 lying in its generic branch. The left Cauchy-Green tensor field of this element is fully
determined by specifying three functions of R, hence implicitly of r through R = A

r , namely M11(r),

M23(r), and M33(r), along with values for the constants A, C, and E. Labeling these choices M̃11(r),
M̃23(r), M̃33(r), Ã, C̃, and Ẽ, we seek elements in Families 1 and 3 that generate the same stretch
tensor field.

The left Cauchy-Green tensor field for the generic branch of Family 1 depends on three arbitrary

functions of X(r) = r2

2A −
D
2 , M11(X(r)), M22(X(r)), and M23(X(r)) as well as the constants A, B, C.

If we select the functions and constants such that

M11(X(r)) =
Ã2r2M̃11(r)

A2
, (201)

M22(X(r)) =

(
Ã2Ẽ2r2M̃11(r)

)−1

+ C̃2M̃23(r)2

B2M̃33(r)
, (202)

M23(X(r)) = A

C
[
Ã2Ẽ2r2M̃11(r)

]−1

+ C̃2M̃23(r)2

M̃33(r)
+ C̃ẼM̃23(r)

 , (203)

it is straightforward to verify that the stretch tensor fields generated coincide. Therefore, the generic
solution branch of Family 5 is contained in the generic solution branch of Family 1, since we can find
universal solutions in Family 1 that are equivalent to any universal solution in Family 5.
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Similarly, the generic branch of Family 3 depends on three functions of r through R(r) = r2−B
A :

M11(R(r)), M22(R(r)), and M23(R(r)) as well as the constants A, B, C, D, E, and F . The choice

M11(R(r)) =
Ã2r2M̃11(r)

A (r2 −B)
, (204)

M22(R(r)) = −
EF + Ã2Ẽ2r2M̃11(r)

[
CẼM̃33(r)− C̃EM̃23(r)

] [
DẼM̃33(r)− C̃FM̃23(r)

]
Ã2Ẽ2 (CF −DE)

2
r2M̃11(r)M̃33(r)

, (205)

M23(R(r)) =
F 2 + Ã2Ẽ2r2M̃11(r)

[
C̃FM̃23(r)−DẼM̃33(r)

]2
Ã2Ẽ2 (CF −DE)

2
r2M̃11(r)M̃33(r)

, (206)

also generates an identical stretch field, hence the generic branch of Family 5 is also contained in the
generic branch of Family 3.

We have shown that the generic branch of Family 5 is contained in those of both Family 1 and Family
3. To examine the opposite direction, suppose we take an arbitrary member of the generic branch of
Family 1, defined by parameters M̃11(X(r)), M̃22(X(r)), M̃23(X(r)), Ã, B̃, and C̃, and seek to find a
solution in Family 5 that generates the same stretch tensor field. Elements in Family 5 depend on the
parameters M11(R(r)), M23(R(r)), M33(R(r)), A, C, and E, and the choice

M11(R(r)) =
Ã2M̃11(X(r))

A2r2
, (207)

M23(R(r)) =
M̃23(X(r))

ÃCE
− B̃2C̃2M̃22(X(r))

CE
, (208)

M33(R(r)) =
1 + M̃11(X(r))

[
M̃23(X(r))− ÃB̃2C̃M̃22(X(r))

]2
E2Ã2B̃2M̃11(X(r))M̃22(X(r))

, (209)

generates the same stretch tensor fields as the member of Family 1. Hence, the generic solution branch of
Family 1 is contained in the generic branch of Family 5. Coupled with the previous result, we conclude
that the generic solution branches for Families 1 and 5 are equivalent, in that every universal solution in
one of these branches has at least one equivalent universal solution in the other.

Next, choosing an arbitrary universal solution in the generic branch of Family 3, we seek a universal
solution in Family 5 that is equivalent. Choosing parameters M̃11(r), M̃22(r), M̃23(r), Ã, B̃, C̃, D̃, Ẽ,
and F̃ determining an arbitrary solution in Family 3, we can choose an element of Family 5 by specifying
the parameters A, C, E, M11(R(r)), M23(R(r)), and M33(R(r)), where R(r) = r

A . If we choose these
such that

M11(R(r)) =
Ã(r2 − B̃)M̃11(r)

A2r2
, (210)

M23(R(r)) =
1

CEM̃22(r)

[
D̃F̃

Ã
(
C̃F̃ − D̃Ẽ

)2 (
r2 − B̃

)
M̃11(r)

(211)

+
(
C̃M̃22(r) + D̃M̃23(r)

)(
ẼM̃22(r) + F̃ M̃23(r)

)]
, (212)

M33(R(r)) =
1

E2M̃22(r)

 F̃ 2

Ã
(
C̃F̃ − D̃Ẽ

)2

(r2 − B̃)M̃11(r)
+
(
ẼM̃22(r) + F̃ M̃23(r)

)2

 , (213)

we obtain a universal solution that is equivalent to the specified solution in Family 3. Hence, the generic
solution branch of Family 3 is contained within that of Family 5. Coupled with our previous results, this
result means that the generic solution branches of Families 1, 3, and 5 are all equivalent to each other.

Next we consider the anomalous solution branches for these families. First, we select an arbitrary
member of Family 3 anomalous solution branch by specifying the parameters Ã, B̃, η̃ = D̃Ẽ − C̃F̃ ,5 ẽ1,

5While the anomalous branch for Family 3 depends on the parameters C, D, E, and F , they only appear in the
combination DE − CF , hence it is sufficient to only specify this value.
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ẽ2, α̃1, α̃2, γ̃1, and γ̃2. We seek to find solutions in Family 1 anomalous solution branch, and Family 5
solution branches that generate equivalent solutions.

First examining Family 1, we can select values for constants α1, α2, γ1, γ2, e1, e2, A, B, and C. It
is straightforward to verify that the choice

α1 = γ̃2, α2 = γ̃1, γ1 = α̃1, γ2 = α̃2 + Cγ̃1, B =
1

η̃
√
Ã
, A = Ãη̃2, e1 = ẽ1, e2 = ẽ2, (214)

generates an equivalent solution. Likewise for Family 5, we can choose values for the parameters α1, α2,
γ1, γ2, e1, e2, A, and E, where the specific choices

A = η̃
√
Ã, E = 1, α1 = α̃1, α2 = α̃2, γ1 = γ̃1, γ2 = γ̃2, e1 = ẽ1, e2 = ẽ2, (215)

generate a solution that equivalent to the arbitrary solution from Family 3. Hence the anomalous branch
from Family 3 is contained in both that of Family 1 and Family 5.

Conversely, we select an arbitrary member of the anomalous branch of Family 5 by specifying the
parameters α̃1, α̃2, γ̃1, γ̃2, ẽ1, ẽ2, Ã, and Ẽ. We can verify that the choice of parameters

A = Ã, η =
√
Ã, e1 = ẽ1, e2 = ẽ2, α1 = Ẽα̃1, α2 = Ẽα̃2, γ1 = γ̃1, γ2 = γ̃2, (216)

yields a solution from Family 3 that is equivalent to the arbitrary one from Family 5.
Finally, we select an arbitrary member of the anomalous branch of Family 1 by specifying the param-

eters α̃1, α̃2, γ̃1, γ̃2, ẽ1, ẽ2, Ã, B̃, and C̃, and seek an equivalent solution in Family 3. The parameter
choices

A = Ã2, B = B̃, η = 1, e1 = ẽ1, e2 = ẽ2,

α1 =
γ̃1

ÃB̃
, α2 =

γ̃2

ÃB̃
− B̃C̃α̃2, γ1 = B̃α̃2, γ2 = B̃α̃1,

(217)

generate such a solution. Hence, we deduce that the anomalous branches of Families 1 and 5 are contained
in that of Family 3, which combined with our previous results implies that the anomalous branches of
all the three families are the same.

Therefore, having examined both the generic and anomalous branches of these families, we conclude
that U1 = U3 = U5. Hence, in the anelastic setting, our initial six families of universal solutions have
collapsed into three families U2, U3, and U4, one corresponding to each of the three surfaces with constant
principal curvatures in 3D Euclidean space: planes, cylinders, and spheres, respectively. These surfaces
are the invariant sets of the symmetry groups of the left Cauchy-Green tensor fields, and they played
a central role in [Ericksen, 1954], being the level sets of the strain invariants. Here, we see that not
only are the invariants of b constant on these surfaces, but b itself is symmetric with respect to these
surfaces in the manner induced by the action of the special Euclidean group. This symmetry is present
even in the degenerate case when the invariants of b are constant, which is why we can identify the
symmetry groups even in the anomalous solution branches. In the classical problem, similar surfaces can
be identified in the material manifold, since in the absence of eigenstrains, the material manifold and
the reference configuration coincide. These surfaces are invariant sets of the symmetry groups of the
right Cauchy-Green tensor fields, and prevent the identification of the classical families with each other,
since the only two classical families with matching invariant sets in both configurations are Families 3
and 5. These however cannot be identified with each other because solutions in Family 5 have constant
invariants, while those in Family 3 do not. Hence, it is only after the addition of eigenstrains that many
of the classical families become redundant.

8.3 Standard Forms of the Three Distinct Universal Families

We note that there is some redundancy in the parameterizations we currently have, which is exhibited
by observing that the parameter selections we have used to identify the families with each other are not
mutual inverses. We can reparametrize to eliminate this redundancy and have a single representation
for strain field of each family. Concretely, we can express the left Cauchy-Green stretch field for the
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anomalous branches of U3 in the following standard form:

b11 = m±
√
m2 −

[
p+ (b13)

2
+ (b12r)

2
]
,

b22 =

(
b13
)2 − p (b12r

)2 (
b11 − 2m

)
pr2

[
(b13)

2
+ (b12r)

2
] ,

b33 =

(
b12r

)2 − p (b13
)2 (

b11 − 2m
)

p
[
(b13)

2
+ (b12r)

2
] ,

b12 =
γ2

r3
+
γ1

r
, b23 = −

b12b13
(
1 + b11p− 2pm

)
p
[
(b13)

2
+ (b12r)

2
] , b13 = rα1 +

α2

r
,

(218)

where p is the product of the two free eigenvalues of b, and m is the mean of the two free eigenvalues.
The inverse of this, cab, is the push forward of the material metric, and has components

c11 =
2m− b11

p
, c22 =

(
prb13

)2
+ b11

(
r2b12

)2
p
[
(rb12)

2
+ (b13)

2
] , c33 =

b11
(
b13
)2

+
(
prb12

)2
p
[
(rb12)

2
+ (b13)

2
] ,

c12 = −r
2b12

p
, c13 = −b

13

p
, c23 =

b12b13
(
b11 − p2

)
r2

p
[
(rb12)

2
+ (b13)

2
] . (219)

The generic branch of this family likewise has a standard expression:

[
bab(r)

]
=

b11(r) 0 0
0 b22(r) b23(r)
0 b23(r) b33(r)

 , (220)

with the incompressibility condition det b = 1 taking the form r2b11(r)
[
b22(r)b33(r)−

(
b23(r)

)2]
= 1.

The inverse of this form then takes the form

[
cab(r)

]
=

c11(r) 0 0
0 c22(r) c23(r)
0 c23(r) c33(r)

 , (221)

with the incompressibility condition being c11(r)
[
c22(r)c33(r)− (c23(r))

2
]

= r2. The positive definite-

ness condition is equivalent to c11 (r) > 0, c22(r) > 0, and c33(r) > 0 in addition to the incompressibility
condition (221), or in the anomalous solution, requiring m > 0, and 0 < p < m2. An example of one
of these generic solutions was investigated by Yavari and Goriely [2015], with the parameter choices

c11 (r) = λ2, c22 (r) = λ2r2, c23 (r) = r2 (ψ (λr)− τ), and c33 (r) = 1+λ2r2(ψ(λr)−τ)2

λ4 .
Similarly, the left Cauchy-Green tensor field for the anomalous branch of the family U2 takes the

standard form

b11 = m±
√
m2 −

[
p+ (b12)

2
+ (b13)

2
]
,

b22 =

(
b13
)2 − p (b12

)2 (
b11 − 2m

)
p
[
(b12)

2
+ (b13)

2
] ,

b33 =

(
b12
)2 − p (b13

)2 (
b11 − 2m

)
p
[
(b12)

2
+ (b13)

2
] ,

b12 = α1x+ α2, b23 = −
b12b13

(
1 + pb11 − 2pm

)
p
[
(b12)

2
+ (b13)

2
] , b13 = γ1x+ γ2,

(222)
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with p and m defined as previously. Inverting this to obtain cab, one obtains

c11 =
2m− b11

p
, c22 =

b11
(
b12
)2

+
(
pb13

)2
p
[
(b12)

2
+ (b13)

2
] , c33 =

b11
(
b13
)2

+
(
pb12

)2
p
[
(b12)

2
+ (b13)

2
] ,

c12 = −b
12

p
, c13 = −b

13

p
, c23 =

b12b13
(
b11 − p2

)
p
[
(b12)

2
+ (b13)

2
] . (223)

The left Cauchy-Green tensor for the generic branch of this family also has a standard form

[
bab(x)

]
=

b11(x) 0 0
0 b22(x) b23(x)
0 b23(x) b33(x)

 , (224)

with the incompressibility condition becoming b11(x)
[
b22(x)b33(x)−

(
b23(x)

)2]
= 1. The inverse of this

then takes the standard form

[
cab(x)

]
=

c11(x) 0 0
0 c22(x) c23(x)
0 c23(x) c33(x)

 , (225)

with the incompressibility condition

c11(x)
[
c22(x)c33(x)− (c23(x))

2
]

= 1. (226)

The positive-definiteness condition is equivalent to requiring c11(x) > 0, c22(x) > 0, and c33(x) > 0,
in addition to the incompressibility condition (226), or in the anomalous case, requiring m > 0, and
0 < p < m2.

Finally, the spherically-symmetric family U4 can be expressed in the standard form through its left
Cauchy-Green tensor [

bab
]

=

g(r)2 0 0
0 1

g(r)r2 sin2 φ
0

0 0 1
g(r)r2

 , (227)

which has the inverse [
cab
]

=

g(r)−2 0 0
0 g(r)r2 sin2 φ 0
0 0 g(r)r2

 . (228)

The incompressibility condition and positive definiteness is automatically satisfied for arbitrary functions
g(r) satisfying g(r) > 0. In terms of parameters defined by Goriely [2017] in Chapter 15.1.1, this function
is g(r) = αr = α−2: it is the radial stretch.

These standard forms make it clear that universal solutions in anelasticity can be categorized by
computing the tensor c[, and comparing the result with the standard forms here. As a consequence
of this, the symmetry of the elastic strain in the current configuration determines which family any
particular universal solution belongs to, as it is this symmetry that is reflected in c[.

We have examined particular symmetry groups, namely T(2), T(1)×SO(2), and SO(3). All of these
are Lie subgroups of SE(3), and specifically they are generated by two independent generators; choosing
two translational generators yields T(2), choosing a rotation and a translation about the axis of that
rotation yields T(1)×SO(2), and choosing two rotations fixing a common point yields SO(3). We show in
Appendix C that any Lie subgroup of SE(3) generated by two arbitrary independent generators contains
at least one of these groups by necessity, hence we have the following theorem:

Theorem 8.1 (Classification of Symmetric Universal Solutions). Any universal solution that is equiv-
ariant under the action of two independent 1-dimensional Lie subgroups of SE(3) is contained in one of
the three universal families U2, U3, or U4.

This allows us to precisely state our conjecture regarding the completeness of our classification in
terms of symmetry:
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Conjecture 8.1 (Symmetry Necessity). A deformation must be equivariant with respect to the action of
two independent 1-dimensional Lie subgroups of SE(3) in order to be universal, hence our classification
is complete.

9 Graphic Representation

Because the material manifolds are generally non-Euclidean, visualizing them is difficult. A way to
overcome this difficulty is to approximate their geometry as “piecewise Euclidean” and examine the
deformation of each piece. This approach is similar to the three-dimensional version of approximating a
curved surface with a polyhedron, and then representing that polyhedron in the plane by its net. The
original surface can then be build up by connecting appropriate edges, but because of the curved nature
of the surface, these edges cannot all be connected without distorting the pieces, or lifting them out of
the plane. To demonstrate this technique, we will first start with a two-dimensional example, and then
move on to a Euclidean three-dimensional example, and then finally apply the techniques to examples
of material manifolds obtained from our analysis.

9.1 A two-dimensional example

We know that representing spherical geometry in the plane isometrically is an egregiously impossible
task [Gauss, 1828]. To get around this, we only do this approximately, and allow for incompatibility by
partitioning and separating our domain in multiple pieces. We can then stretch each piece in such a way
that the deformed pieces can be approximately recombined in three-dimensional space to form an upper
hemisphere. The deformed pieces are individually flat, so they can all be placed in the plane, but not in
a way such that they can be pieced together without gaps (see Figure 12).

Figure 12: We start with a disk, partition it, and separate the resulting pieces to allow for room for each piece to
strain without overlapping its neighbors. We then strain each piece, and recombine the deformed cells to create an
approximation of an upper hemisphere. Here each cell [Ri−1, Ri] × [Θj−1,Θj ] is positioned so both the position of the
point (r, θ) = ((Ri−1 +Ri)/2, (Θj−1 + Θj)/2), and the orientation of its tangent plane match that of the exact map from
the disk to the hemisphere.

Explicitly, we want to take the region r ∈ [0, 1], θ ∈ [0, 2π), where r and θ are polar coordinates in
the plane, and map it to the surface z =

√
1− r2 in three-dimensional space. The stretch induced by

this map is described by the metric tensor with cylindrical components[
Mαβ

]
=

[
1

1−r2 0

0 r2

]
, (229)

which we can approximate as constant on each piece, while keeping each piece in the plane, by evaluating
the metric at r∗ = (rmax − rmin)/2. The deformed pieces can then be rigidly translated and rotated in
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Figure 13: As the partitioning gets finer, the resulting approximation of the anelastic strain becomes more and more
accurate.

three-dimensional space to approximate the desired spherical surface, with the approximation becoming
better as the partition becomes finer (see Figure 13).

This two-dimensional example allows one to see the correspondence between the deformed partitioned
approximation and the recombined non-Euclidean configuration, which is important because once we
move up to three-dimensional examples, we are no longer able to recombine the strained pieces; we must
deduce properties of its geometry from the deformed partitioned approximation alone. Additionally, while
we assembled the resulting deformed pieces into a hemisphere by lifting them into a higher dimensional
Euclidean space, we could have assembled them into any number of other surfaces that are isometric
to the hemisphere. Because we only determine the intrinsic geometry of the material manifold, there
is no preferred isometric embedding in some higher dimensional Euclidean space, unless as above, we
explicitly specify the embedding.

9.2 A three-dimensional Euclidean example

Just as in the two-dimensional example, we can partition a flat three-dimensional body, explode it, and
approximate strains on each piece to represent the non-Euclidean geometry of our deformations. The
only difference is that, in general, we cannot recombine the distorted pieces into a cohesive whole, because
the resulting shape is not globally flat. However, if the strain that we impose is actually induced by a
map between Euclidean spaces, we can apply this procedure to the partitioned pieces, and observe the
local strain, while separately observing the global deformation. We can then compare the two results
to see which features are preserved by this local partitioning approach to better interpret the results of
applying this procedure to our derived material metrics.

Consider the following map given in cylindrical polar coordinates

r = R, θ = νΘ, z = Z + µνΘ. (230)

This map produces azimuthal shear and angular stretching. Choosing µ = 2 and ν = 1
2 , and mapping the

domain R ∈ [2, 3], Θ ∈
[
0, 2π

3

]
, Z ∈ [0, 1], we obtain a transformation shown in Figure 14. If we instead

compute the strain tensor, and use it as a material metric for the current configuration, we obtain

[MAB ] =

1 0 0
0 ν2

(
r2 + µ2

)
µν

0 µν 1

 . (231)
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Figure 14: Angular stretching and azimuthal shear of an annular wedge. Elements of this body have been artificially
separated to better show the deformation of the internal elements.

Applying this stretch to our partitioned domain, we obtain the depiction shown in Figure 15. This
side-by-side comparison shows what is happening when we do this piecewise transformation, namely we
capture the strain of each piece, but we do not capture any local rotation that is present in the global
deformation. This is because local rotations produce no strain, so they do not contribute to the strain
tensor, and hence, we cannot expect to be able to capture them through this reconstruction.

Figure 15: With just knowledge of the strain at each point, we cannot recover the local rotation necessary to piece the
elements together, nor the global rotation present in the overall deformation.

9.3 Anomalous anelastic strains

For the anomalous families, we will use the partitioning technique to attempt to visualize the deforma-
tions. We note that not all choices of parameters are valid over arbitrary domains. In particular, the
parameters must be chosen such that the metric is positive definite over the chosen domain, in addition
to making sure that the strain tensor b is positive definite, a much simpler task as this requires e1

and e2 to be positive with e2
1 > 4e2. We also depict the total overall deformation, coloring the current

configuration by the trace of the Cauchy stress required to maintain it for a Mooney-Rivlin solid with
strain energy of the form

W =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3) , (232)

both in the presence and absence of anelastic strain. Because the invariants of the left Cauchy-Green
tensor are constant for the anomalous universal eigenstrains, any choice of strain energy is indistin-
guishable from a Mooney-Rivlin energy, and the only invariant of the Cauchy stress that can potentially
vary spatially is the pressure generated due to the constraint stress. Here we choose the two material
parameters in the Mooney-Rivlin energy to each be equal to 1, though different choices of parameters
would yield qualitatively similar results.

Family 1. For this family we choose the reference domain X ∈ [0, 1] , Y ∈ [0, 6], and Z ∈ [0, 4], and
take the deformation parameters A = 3

2 , B = 1, C = 1
4 , D = 2, E = 0, F = 0. To examine the effects

of anomalous universal eigenstrain on the equilibrium stress distribution, we consider the same overall
deformation, and contrast the stress generated in the presence of eigenstrain with that generated in the
absence of eigenstrain. For the anelastic strain parameters, we use

α1 = −1, α2 =
1

8
, γ1 = −1

8
, γ2 =

6

11
,

e1 = 9
4 ,

e2 = 9
8 ,
⇔ λ1 = 3

2 ,
λ2 = 3

4 .
(233)

One can verify that this ensures that M is positive definite over the chosen domain. To visualize the
anelastic strain, we subdivide the domain, separate the pieces, and approximate the anelastic strain on
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each (see Figure 16). This anelastic strain is generally not compatible, i.e., the deformed pieces cannot
be reassembled in Euclidean space without further deformation. We map the body into the current
configuration, and color it to denote the spherical part of the Cauchy stress generated by a Mooney-
Rivlin solid. This requires us to integrate the indeterminate constraint pressure field, both with and
without eigenstrain. Without eigenstrain, we have the following differential equations for the constraint
pressure

∂p

∂r
=

1
B2 +A2

(
B2C2 − 1

)
−
(
B2 + 3

A2

)
r4

r3
,

∂p

∂θ
= 0,

∂p

∂z
= 0, (234)

which can be easily integrated to obtain

p(X) = p(R) = −
1
B2 +A2

(
B2C2 − 1

)
2r2

−
B2 + 3

A2

2
r2. (235)

Notice in particular that p does not vary with z or θ. Additionally, only the gradient of p affects the
motion, which allowed us to ignore the integration constant when integrating the above equations.

Figure 16: A depiction of the anomalous anelastic strain for one element of Family 1.

When there is eigenstrain, we obtain a different set of differential equations determining p(X):

∂peig

∂r
= k(R),

∂peig

∂θ
=

2AB (1 + e2)

e2
α2,

∂peig

∂z
=

2 (1 + e2)

e2
γ1, (236)

where k(R) is an algebraic function of r alone. We can in principle integrate these to obtain

peig(X) = peig (r, θ, z) =

∫ r

r0

k (r̂) dr̂ +
2AB (1 + e2)

e2
α2θ +

2 (1 + e2)

e2
γ1z. (237)

In contrast with the ordinary case, when we have eigenstrain, we can generate pressure gradients that
vary with θ and z. Interestingly enough, even the generic universal eigenstrain cannot generate pressure
gradients in these directions; the anomalous universal eigenstrain is the only universal eigenstrain that
can create pressure gradients in these directions. This suggests that the measurement of these pressure
gradients can be used to partially measure the eigenstrain, and conversely these anomalous solutions
can be used to generate pressure gradients in these directions to, for example, counteract the pressure
generated by body forces. We then compute the first stress invariant, the trace of the Cauchy stress, or
equivalently its spherical part, for the material both in the absence and presence of eigenstrain, and plot
the resulting stress invariant in Figure 17.

Family 2. For this family, we choose the reference domain R ∈ [2, 3], Θ ∈ [0, 5], and Z ∈ [0, 4], and
take the deformation parameters A = 1, B = 3

4 , C = 1
4 , D = 0, E = 0, F = 0. These parameters

define the total deformation, allowing us to examine the effects of eigenstrain on the Cauchy stress. In
particular, we take the parameters appearing in the anelastic strain to be

α1 =
1

8
, α2 = −2

5
, γ1 =

1

8
, γ2 = − 3

13
,

e1 = 21
10 ,

e2 = 9
10 ,
⇔ λ1 = 3

2 ,
λ2 = 3

5 .
(238)
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Figure 17: Without eigenstrain (top), only radial pressure gradients can be sustained. With the imposition of the
anomalous eigenstrain (bottom), linear pressure gradients with z and θ can also be sustained.

This ensures that the metric is positive definite over the chosen domain. We subdivide and explode the
domain, and apply our anelastic strain to each piece, as shown in Figure 18. We are then left with a set

Figure 18: A depiction of the anomalous anelastic strain for Family 2.

of differential equations determining the constraint stress. In the absence of eigenstrain, we have

∂p

∂x
= 2AB2 +

1

2AB2 (x−D)
2 ,

∂p

∂y
= 0,

∂p

∂z
= 0. (239)

Upon integration, we obtain

p(X) = p(x) = 2AB2 (x−D)− 1

2AB2 (x−D)
. (240)

In contrast, when we consider eigenstrain, we have the equations

∂peig

∂x
= k(x),

∂peig

∂y
=

√
2 (1 + e2)√
Ae2

α1,
∂peig

∂z
=

√
2 (1 + e2)√
Ae2

(Cα1 +Aγ1) , (241)

where as before k(x) is an algebraic function of x. We can integrate these equations to obtain

peig(X) = peig (x, y, z) =

∫ x

x0

k (x̂) dx̂+

√
2 (1 + e2)√
Ae2

α1y +

√
2 (1 + e2)√
Ae2

(Cα1 +Aγ1) z. (242)

As before, the presence of this anomalous universal eigenstrain generates pressure gradients in directions
that are not possible in their absence, in this case, the y and z directions. Again, even the generic branch
of universal eigenstrains cannot generate pressure gradients in these directions, further highlighting the
unique nature of the anomalous solutions. We then compute the trace of the Cauchy stress, and plot the
resultant distributions both in the absence and presence of eigenstrain (see Figure 19).
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Figure 19: Without eigenstrain (top), the pressure generated by this deformation only varies with x. When we impose
the anomalous eigenstrain (bottom), the pressure generated can also vary with both y and z.

Family 3. For this family, we choose the domain R ∈ [2, 3], Θ ∈ [0, 5], and Z ∈ [0, 4], and the
deformation parameters A = 1, B = 0, C = 5

4 , D = 1
6 , E = 1

4 , F = 5
4 , G = −π

4 , H = 0. This completely
defines the total deformation, allowing us to examine the stress generated with eigenstrain in contrast
with that generated without eigenstrain. We take

α1 =
1

8
, α2 = −2

5
, γ1 =

1

8
, γ2 = − 3

13
,

e1 = 21
10 ,

e2 = 9
10 ,
⇔ λ1 = 3

2 ,
λ2 = 3

5 ,
(243)

as our anelastic parameters. Over the defined domain, these choices ensure that the anelastic metric
tensor is positive definite. We then partition and explode the domain, approximating the eigenstrain on
each piece, depicting the result in Figure 20. As before, we obtain differential equations for p, yielding
in the elastic case

∂p

∂r
=

E2

(DE − CF )
2
r3
−D2r +

B − BF 2

(DE−CF )2
+ r2 + F 2r2

(DE−CF )2

Ar3
+
A
[
B
(
3 + C2

)
r −

(
1 + C2

)
r3
]

(r2 −B)
2 ,

∂p

∂θ
= 0,

∂p

∂z
= 0,

(244)
which can be integrated to obtain

p(X) = p(R) =
1

2

[
2
[
(DE − CF )

2
+ F 2

]
log(R)

A (DE − CF )
2 − 2AB

r2 −B
−D2r2 − E2

(DE − CF )
2
r2

−
B
[
(DE − CF )

2 − F 2
]

A (DE − CF )
2
r2

−A
(
1 + C2

)
log
(
B − r2

) ]
.

(245)

In contrast, in the presence of eigenstrain, we have the differential equations

∂peig

∂r
= k(R),

∂peig

∂θ
=

2
(
A2 + e2

)
(DE − CF )

√
Ae2

γ1,
∂peig

∂z
=

2
(
A2 + e2

)
(DE − CF )

√
Ae2

α1, (246)

with k(R) an algebraic expression in r as in other families. This pressure can be integrated to obtain

p(X) = p (r, θ, z) =

∫ r

r0

k (r̂) dr̂ +
2
(
A2 + e2

)
(DE − CF )

√
Ae2

γ1θ +
2
(
A2 + e2

)
(DE − CF )

√
Ae2

α1z. (247)

42



Figure 20: A depiction of the anomalous anelastic strain for Family 3.

We compute the first invariant of the Cauchy stress and color the deformation according to it in Figure
21. As in other families, the presence of this anomalous branch of universal eigenstrain can generate
pressure gradients in directions that do not occur otherwise, specifically pressure that varies with θ and z.
This property would allow one to indirectly measure the eigenstrain by measuring the pressure variation
required to sustain this deformation. Likewise, if we can specify the eigenstrain, we can create specific
pressure gradients that would otherwise be impossible for the generic branch.

Figure 21: Without eigenstrain (top), the pressure only varies radially. With the anomalous eigenstrain (bottom), the
pressure can vary linearly with z and θ.

Family 5. For this final family, we choose the same domain as in Family 3, i.e., R ∈ [2, 3], Θ ∈ [0, 5],

and Z ∈ [0, 4], and we take the deformation parameters to be A =
√

4
5 , B = 1, C = 1, D = −π4 , E = 5

4 ,

F = 0. Choosing the anomalous eigenstrain parameters as

α1 = −1

8
, α2 =

1

2
, γ1 = − 1

10
, γ2 =

1

4
,

e1 = 9
4 ,

e2 = 9
8 ,
⇔ λ1 = 3

2 ,
λ2 = 3

4 ,
(248)

we subdivide and explode our domain, then approximate the eigenstrain on each piece. The result of
this is depicted in Figure 22. As with the other families, we are left with a set of differential equations
determining the constraint stress. When eigenstrain is absent, we have the equations

∂p

∂r
= −

(
B2 + C2 − 1

) (
1 +A4C2

)
A2C2r

,
∂p

∂θ
=

2B
(
A4 + 1

C2

)
A2

,
∂p

∂z
= 0, (249)

which can be integrated to obtain

p(X) = p (r, θ, z) = −
(
B2 + C2 − 1

) (
1 +A4C2

)
A2C2

log(R) +
2B
(
A4 + 1

C2

)
A2

θ. (250)
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Figure 22: A depiction of the anomalous anelastic strain for Family 5.

When we consider the anomalous solution, we have the equations

∂p

∂r
= k(R),

∂p

∂θ
=

2A (1 + e2)

e2
γ1,

∂p

∂z
=

2AE (1 + e2)

e2
α1, (251)

in terms of an algebraic function k(R) which can be integrated to obtain

p(X) = p (r, θ, z) =

∫ r

r0

k (r̂) dr̂ +
2A (1 + e2)

e2
γ1θ +

2AE (1 + e2)

e2
α1z. (252)

When we compute the pressure gradient in the case of the generic universal solution, we obtain a pressure
that only varies with r. We see that the anomalous branch generates pressure gradients that vary with θ
and z, unlike the generic solutions. We can compute the trace of the Cauchy stress, both with eigenstrain
and without eigenstrain, and use this to color the deformed configurations in Figure 23. Notice that unlike
other families, the constraint pressure in the absence of eigenstrains can vary in a direction different than
in the generic anelastic situation, specifically, for an eigenstrain in the generic solution branch, we have
∂p/∂θ = 0, but in the absence of eigenstrain, we have ∂p/∂θ = 2B

(
A4 + 1

C2

)
/A2. This is due to the

fact that the standard Euclidean metric in terms of cylindrical polar coordinates lies on the anomalous
solution branch, not within the generic branch. In the elastic case, when the azimuthal shearing term
does not vanish, corresponding to B 6= 0, we have a pressure variation in θ that is necessarily nonzero. In
the anomalous case, we can determine the pressure variation in both θ and z by adjusting our choices for
γ1 and α1, allowing us to determine the pressure variation in these directions independently of the overall
total deformation by choosing the anelastic strain appropriately. Specifically, we can have arbitrarily
large azimuthal shearing, while also causing the azimuthal pressure variation to vanish. While the other
families also allow us to select the ordinarily absent components of the pressure gradient in a similarly
arbitrary way, this family is unique in having one of these pressure gradients present without eigenstrain,
so the anomalous universal eigenstrain allows us to both create pressure variations in these directions,
but also remove pressure variations that are ordinarily necessary to maintain the overall deformation.

Additionally, with the anomalous anelastic solution branch, the azimuthal pressure variation ∂p/∂θ =
2A (1 + e2)γ1/e2 does not depend on the degree of azimuthal shearing, i.e., it is independent of B. While
the anomalous eigenstrain itself does depend explicitly on B, if the eigenstrain and the total deformation
are simultaneously varied by changing B, the azimuthal pressure gradient should not change. Doing this
in practice would be difficult, because fundamentally the parameter B partially determines the overall
deformation, hence both the overall deformation and the eigenstrain would have to be simultaneously
controlled in precise ways to realize this thought-experiment. Thankfully, this does not have to be done
dynamically; a new value of B could be selected, the overall deformation could be controlled, and once it is
established, fixed. Then the eigenstrain could be controlled until the universal eigenstrain corresponding
to the chosen value of B is obtained. After this is done, the pressure variation could be measured, and
this process can be repeated to establish the independence of the azimuthal pressure gradient.

10 Conclusions

We have generalized the universal solutions of Ericksen’s problem to the case of anelasticity. The main
idea was to first indentfy the symmetry group associated with each solution of the classical Euclidean
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Figure 23: Without eigenstrain (top), this family allows for pressure gradients in both the radial and azimuthal directions.
With eigenstrain (bottom), an axial pressure gradient can also be sustained.

problem and use this symmetry group in a non-Euclidean setting by finding the possible metrics that
guarantee each symmetry group. We used both the structure of existing universal solutions for a given
M̄ and their symmetries to find possible material metrics M. This was done by interpreting the classical
universal deformations passively as coordinate changes. Then all local changes in geometry can be
captured by changing the metrics. In this way, once we moved away from M̄ to the general M, we
recognized that any homeomorphism can be expressed by the particular coordinate maps for each family,
since the coordinates themselves no longer hold any specific interpretation. By identifying an appropriate
symmetry to impose on M for each family a priori, we accomplished the following:

• First, we constrained this problem to a point where it is still nontrivial, but solvable in a systematic
algorithmic way.

• Second, because this symmetry depends on the classical family of universal solutions, our construc-
tion provided a direct extension and classification of the new anelastic solutions consistent with
the elastic ones.

• Third, it is likely that these symmetries play a fundamental role in constraining the classical
problem; the known classes of universal deformations all have particular symmetries. Identifying
the relevant symmetries to impose on M highlights this explicitly and we conjecture that all possible
cases of anelastic universal solutions possess such symmetry. Specifically, all known universal
solutions are preserved under the induced action of subgroups of the special Euclidean group.
These subgroups are precisely those having two-dimensional invariant sets, which are either parallel
planes, concentric cylinders, or concentric spheres.

It should also be noted that the generic solution branches and the anomalous solution branches differ
largely in character. The generic solution branches contain arbitrary functions, and as such are infinite
dimensional, while the anomalous solution branches are entirely determined up to a handful (∼ 10)
of arbitrary constants, 6 of which are not redundant, and have a highly nontrivial structure. In all
cases, the different branches of the analysis ultimately yield the same family of anomalous solutions.
These anomalous branches also allow for the pressure required to sustain these deformations to vary in
directions that would otherwise not be supported, even on the generic anelastic branch. This suggests
possible applications of these anomalous branches in manipulating the surface tractions required to
sustain these deformations, as well as a way to indirectly measure some of the eigenstrain parameters.

Additionally, symmetry appears to play an important role in these universal solutions. The right
Cauchy-Green stretch tensor field for every family is invariant under some subgroup of SE(3), the group
of orientation preserving isometries of 3D Euclidean space. The dimension of the Lie symmetry seems to
play an important role as well; equilibrium conditions for families with three-dimensional Lie symmetries
(Families 0 and 4) are trivially satisfied by imposing that symmetry on the material manifold, while
families containing two-dimensional Lie symmetries require further restrictions.
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While we have framed this problem in the context of an anelastic deformation from Euclidean space
with the usual metric in the chosen coordinates to some Riemannian manifold, and a further elastic
deformation back to Euclidean space, we do not make use of the initial Euclidean space in our analysis,
nor do we detail any specific mechanism driving the anelastic deformation. The Euclidean reference con-
figuration appears in the initial presentation of these universal solutions in nonlinear elasticity, therefore
we use it as a comparison when displaying the elastic stress generated by these deformations, but there is
no need for it to be the initial state of our undefined anelastic process. Provided our anelastic evolution
arrives at the material manifolds derived here, the remainder of the deformation can be accomplished
elastically. Therefore, the anelastic deformation can in principle map from any configuration; there is no
need for a Euclidean reference. Even if the reference is Euclidean (as we tend to model physical space
as Euclidean), there is no need for the coordinates used to be the typical Cartesian, cylindrical polar,
or spherical polar coordinates used in the elastic case; they can be curvilinear coordinates, dramatically
broadening the range of anelastic deformations to which our results are applicable.

Finally, we remark that neither the classical Ericksen’s problem, nor the anelastic Ericksen’s problem
presented here has been proved to be fully solved and there may still be universal solutions unaccounted
for. However, our conjecture, based on the correspondence between solution families and their sym-
metry groups, is that both classifications are actually complete. An additional work demonstrating
that the strain fields of these universal solutions must by necessity be symmetric with respect to two
one-dimensional Lie subgroups of SE(3) would prove that this classification is complete.
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A Methods and Tools

In the course of our analysis, we shall use a few tools that are infrequently used in nonlinear elasticity.
Here we present a brief summary of these tools, and provide references to further sources for interested
readers.

A.1 Algebraic tools

Some techniques from elimination theory [Cox et al., 1992] will be used in our analysis of universal
solutions. Chiefly among these is the method of resultants. We will not use resultants in their full
generality, but rather will only need to compute the resultant of two quadratic polynomials, and as such
will only provide the details necessary to substantiate our usage. Consider two polynomials

p1(x) =

k∑
i=0

aix
i, and p2(x) =

r∑
j=0

bjx
j . (253)

The resultant of p1 and p2 is a multivariate polynomial in {a0, ..., ak, b0, ..., br} that vanishes if and only
if there exists a common solution to the equations p1(x) = 0, and p2(x) = 0. This will be useful to
us because we will consider multivariate polynomials recursively as single variable polynomials, with
coefficients in some extended field, and the method of resultants gives us a way of reducing the number
of necessary equations that must be satisfied, while reducing the number of variables we must consider.

As an example, consider two quadratic polynomials p1(x) = a1x
2 +b1x+c1, and p2(x) = a2x

2 +b2x+
c2. We seek a condition on {a1, b1, c1, a2, b2, c2} such that there exists x̂ satisfying p1 (x̂) = p2 (x̂) = 0.
Taking the linear combination a2p1 (x̂)− a1p2 (x̂) = 0 gives us a linear condition on x̂, namely

(a2b1 − a1b2) x̂ = a1c2 − a2c1. (254)

Then taking the combination b1p2 (x̂)−b2p1 (x̂) = 0 gives the condition (a2b1 − a1b2) x̂2 +b1c2−b2c1 = 0,
which under the above linear restriction becomes

(a1c2 − a2c1) x̂ = b2c1 − b1c2. (255)

Cross multiplying and subtracting the two linear equations (254) and (255) gives a necessary condition
on the coefficients of p1 and p2 for there to be a common solution, namely

(a1c2 − a2c1)
2 − (b2c1 − b1c2) (a2b1 − a1b2) = 0. (256)

48



The left hand side is precisely the resultant of two quadratic polynomials, and so we denote

Resx
(
a1x

2 + b1x+ c1, a2x
2 + b2x+ c2

)
≡ (a1c2 − a2c1)

2 − (b2c1 − b1c2) (a2b1 − a1b2) . (257)

The vanishing of the resultant is a necessary condition for the existence of a common root of the two
quadratic equations in x.

Additionally, we will repeatedly use the fact that if a polynomial p(x) vanishes on an open set U ,
i.e., p(x) = 0 , ∀x ∈ U , then, by the fundamental theorem of algebra, all its coefficients vanish identically,
i.e., p(x) is the zero polynomial.

A.2 Group action on manifolds

Symmetry will play an important role in our construction. As group theory lies at the heart of any
discussion of symmetry, we present some definitions from the theory of Lie groups, and reference the
reader to Gorbatsevich et al. [2013] for a full treatment. We recall that a semi-direct product is a
generalization of a direct product, where only one factor must be a normal subgroup of the result. For
instance, T(n), the group of translations of Euclidean space, is a normal subgroup of the special Euclidean
group SE(n), while the group of rotations, SO(n) is not, hence SE(n) 6= SO(n) × T(n), but rather
SE(n) = SO(n)nT(n). The special Euclidean group, denoted SE(n), consists of all orientation preserving
global isometries of Euclidean space, and is a semi-direct product of SO(n), and T(n). Therefore, an
element of SE(n) can be identified with a tuple (Q|c) consisting of an element Q of SO(n), and an
element c of T(n). The defining feature of SE(n) being how it acts on En, we must now express this
action, and hence the natural group operation of SE(n) on En in terms of (Q|c).

The action of a group (G, ?) on a manifold M, informally, is a map ρ : G×M→M that preserves
the group structure of G. Denoting this action for g ∈ G and x ∈ M as ρ (g,x) = g • x, this demands
(m2 ? m1) • x = m2 • (m1 • x) for all m1, m2 ∈ G, and all x ∈ M. Additionally, denoting the identity
of G as e, we demand ρ (e,x) = e • x = x, ∀x ∈ M. Concisely, a group G acts on an object M via a
homomorphism ρ : G→ Aut (M).

Example A.1

Treating En as a vector space, i.e., fixing an origin, the action of SE(n) on En in terms of the tuple (Q|c)
sends the point x ∈ En to the point Qx+c. One can easily verify that this is an isometry. The action of
the element (Q1|c1) followed by the action of the element (Q2|c2) is then x 7→ Q2Q1x+Q2c1+c2, hence,
in this representation, the product of the special Euclidean group, ?, takes the form (Q2|c2) ? (Q1|c1) =
(Q2Q1|Q2c1 + c2). We will eventually see that the right Cauchy-Green stretch tensor for each of the
known families of universal solutions is preserved under the prolonged action of some Lie subgroup of
SE(3).

The action of a group on a manifold can then be prolonged to its tangent bundle. This prolonged
action can be determined by fixing an arbitrary group element g̃, and considering the action of this
element as a map ρ(g̃) : M →M. The existence of inverse elements in G guarantees that this map is
invertible, since ρ(g̃)−1 = ρ(g̃−1). ProvidedM has a smooth structure, and ρ(g̃) is a smooth function of
x, this map can then be differentiated to obtain the corresponding induced tangent map, i.e., the push
forward map, which then determines the action of g̃ on the tangent bundle of M. The invertibility of
ρ(g̃) then provides a group action on the cotangent bundle via the pull-back induced by the inverse map.
Notice that, generally, we consider the prolonged action of a group on bundles over M, not merely on
individual tangent spaces, because underlying points in the base space are not generally fixed, i.e., the
base space and the total space are transformed together. Additionally, even if certain points in the base
space are fixed points under the action of a group element, this does not guarantee that the tangent
spaces at these points are similarly preserved. For example, in E3, a rigid rotation preserves the position
of the points on its axis, but rotates the tangent spaces at those points.

B Explicit Calculations of the Anomalous Solutions

For families containing anomalous solution branches, we have the necessary (but not sufficient) condition
that the invariants of b are constant, with det b = 1 for incompressibility. For each of these families,
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we have four linear differential equations, one linear algebraic equation, and two nonlinear algebraic
equations for the six unknown functions comprising the components of MAB . We will use the linear
equations to solve for five of these unknown functions in terms of the sixth, and then characterize the
common solutions to the remaining two equations to determine the final component.

Family 1

For this family, we consider the case where the invariants of b are constant. This gives the equation

ma[l∇k]∇bσ
ab = 0, (258)

which, when applying the constant invariant condition and forcing this to hold for all energy functions
requires

ma[k∇l]∇bb
ab = 0, ma[k∇l]∇bc

ab = 0. (259)

The first of these has two nonzero components after substituting the form of MAB . One of these
components yields the differential equation 3M12(r)′+rM12(r)′′ = 0. This equation is readily integrated
to obtain

M12(r) =
α1

r2
+ α2. (260)

Applying this to the second nonzero component of the condition on the divergence of b yields the
differential equation r4M13(r)′′ − r3M13(r)′ − 8AB2Cα1 = 0, which again can be integrated to obtain

M13(r) =
AB2Cα1

r2
+ γ1r

2 + γ2. (261)

After this, we must compute the condition on c, which we can simplify first by noting that det b = 1, so
we can utilize c = (det b) c, which gives

[cab] =

b22b33 −
(
b23
)2

b13b23 − b12b33 b12b23 − b13b22

b13b23 − b12b33 b11b33 −
(
b13
)2

b12b13 − b23b11

b12b23 − b13b22 b12b13 − b23b11 b11b22 −
(
b12
)2
 , (262)

i.e., the cofactor tensor of b equals the inverse of b. When we use this, we obtain the two differential
equations, which can be expressed as(

rα1 + r3α2

)
M23(r)′′ −

(
α1 − 3r2α2

)
M23(r)′ −

(
AB2Crα1 + r5γ1 + r3γ2

)
M22(r)′′

+
(
AB2Cα1 − 7r4γ1 − 3r2γ2

)
M22(r)′ − 8r3γ1M

22(r) = 0, (263)

and(
A2B4C2rα1 +AB2Cr5γ1 +AB2Cr3γ2

)
M22(r)′′ + 8AB2Cr3γ1M

22(r)

+
(
−2AB2Crα1 −AB2Cr3α2 − r5γ1 − r3γ2

)
M23(r)′′ − 8r3γ1M

23(r)

+
(
−A2B4C2α1 + 7AB2Cr4γ1 + 3AB2Cr2γ2

)
M22(r)′ +

(
rα1 + r3α2

)
M33(r)′′

+
(
2AB2Cα1 − 3AB2Cr2α2 − 7r4γ1 − 3r2γ2

)
M23(r)′ +

(
−α1 + 3r2α2

)
M33(r)′ = 0. (264)

These equations can be integrated to obtain the conditions(
α1 + r2α2

)
M33(r)−

(
AB2Cα1 + r4γ1 + r2γ2

)
M23(r) = β1 + r2β2, (265)(

AB2Cα1 + r4γ1 + r2γ2

)
M22(r)−

(
α1 + r2α2

)
M23(r) = µ1 + r2µ2. (266)

We also have the constant trace condition on b, which becomes

A4B2M11(r) +A2B4r2
(
C2 + r2

)
M22(r)− 2AB2Cr2M23(r) + r2M33(r) = A2B2r2I1. (267)

We can express this system of equations, linear in M22(r), M23(r), and M33(r), as the matrix equation 0 −r2M13(r) r2M12(r)
r2M13(r) −r2M12 0

A2B4r2
(
r2 + C2

)
−2AB2Cr2 r2

M22(r)
M23(r)
M33(r)

 =

 β1 + r2β2

µ1 + r2µ2

A2B2r2I1 −A4B2M11(r)

 , (268)
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which is invertible, because the determinant of the matrix on the left hand side is

r6
[(
M13(r)−AB2CM12(r)

)2
+
(
AB2rM12(r)

)2]
> 0, (269)

since M12(r) and M13(r) cannot simultaneously vanish. We invert these equations to obtain expressions
for these components of the inverse metric in terms of M11(r), r, and various constants.

M22 =
A2B2

(
I1r

2 −A2M11
) (
M12

)2
+
(
µ1 + r2µ2

)
M13 −

(
β1 + 2AB2Cµ1 + r2

(
β2 + 2AB2Cµ2

))
M12

r2
[
(M13 −AB2CM12)

2
+ (AB2rM12)

2
] ,

(270)

M23 = −
(
β1 + r2β2

)
M13 +A2B2M12

[
B2
(
C2 + r2

) (
µ1 + r2µ2

)
+
(
A2M11 − I1r2

)
M13

]
r2
[
(M13 −AB2CM12)

2
+ (AB2rM12)

2
] , (271)

M33 =
A2B2

r2
×(

β1 + r2β2

) [
B2
(
C2 + r2

)
M12 − 2CAM

13
]
−M13

[
B2
(
C2 + r2

) (
µ1 + r2µ2

)
+
(
A2M11 − I1r2

)
M13

)
(M13 −AB2CM12)

2
+ (AB2rM12)

2 .

(272)

We then have the other two restrictions, the constancy of the second invariant of b and the incompress-
ibility constraint. After substituting the above expressions into these conditions, they become

p1 = A6B2
[
A2B4

(
α1 + r2α2

)2
+ r2

(
r2γ1 + γ2 −AB2Cα2

)2]
M11(r)2

+A4B2r2

[
B2
((
α1 + r2α2

) (
β1 + r2β2

)
+ r2

(
r2γ1 + γ2 −AB2Cα2

) (
µ1 + r2µ2

))
+AB4C

(
α1 + r2α2

) (
µ1 + r2µ2

)
−A2B4I1

(
α1 + r2α2

)2 − I1r2
(
r2γ1 + γ2 −AB2Cα2

)2 ]
M11(r)

+A6B8
(
α1 + r2α2

)4
+B2r4

(
β1 + r2β2

)2
+A4B4r2

(
α1 + r2α2

)2 [
B2I2r

2 + 2
(
r2γ1 + γ2 −AB2Cα2

)2]
−A3B6CI1r

4
(
α1 + r2α2

) (
µ1 + r2µ2

)
+ 2AB4Cr4

(
β1 + r2β2

) (
µ1 + r2µ2

)
+A2r4

[
B2I2r

2
(
r2γ1 + γ2 −AB2Cα2

)2
+
(
r2γ1 + γ2 −AB2Cα2

)4
+B6

(
C2 + r2

) (
µ1 + r2µ2

)2
−B4I1

((
α1 + r2α2

) (
β1 + r2β2

)
+ r2

(
r2γ1 + γ2 −AB2Cα2

) (
µ1 + r2µ2

)) ]
= 0, (273)

and

p2 = A4B2
((
α1 + r2α2

) (
β1 + r2β2

)
+
(
r4γ1 + r2γ2 +AB2Cα1

) (
µ1 + r2µ2

))
M11(r)2

+ r2

[ (
β1 + r2β2

)2
+A2B4

(
C2 + r2

) (
µ1 + r2µ2

)2 −A2B2I1
(
AB2Cα1 + r4γ1 + r2γ2

) (
µ1 + r2µ2

)
+AB2

(
β1 + r2β2

) (
2C
(
µ1 + r2µ2

)
−AI1

(
α1 + r2α2

)) ]
M11(r)

+
[
A2B4

(
α1 + r2α2

)2
+ r2

(
r2γ1 + γ2 −AB2Cα2

)2]
×
[
r4 +

(
β1 + r2β2

) (
α1 + r2α2

)
+
(
µ1 + r2µ2

) (
r4γ1 + r2γ2 +AB2Cα1

)]
= 0. (274)

We then compute6 the resultant of these two equations in M11(r), yielding a polynomial in r that
must identically be equal to zero. In order for this to be satisfied, each of its coefficients must vanish
independently. This can be shown by repeatedly taking derivatives of the equation in r, which will
ultimately require each of the coefficients to vanish independently. Computing this resultant we obtain

ResM11(r) (p1, p2) = A6B2r8
[
A2B4

(
α1 + r2α2

)2
+ r2

(
r2γ1 + γ2 −AB2Cα2

)2]
(...) . (275)

6Symbolic computations were done with Mathematica Version 12.0.0.0, Wolfram Research, Champaign, IL.
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The factors explicitly shown are identically nonzero, since A and B are nonzero for the deformation to
be invertible, r > 0, and the other factor only vanishes if both M12(r) and M13(r) vanish, in which
case we are no longer on the anomalous solution branch. Therefore, we take (...) = 0. This factor
is massive, being approximately 8000 terms, so it it far too large to list here, but enough information
has been provided to compute it explicitly if the reader desires. We next take its coefficients to vanish
independently, and factor each coefficient. The shortest of these factors is

A6B2
(
B6µ3

2 −B4I1γ1µ
2
2 +B2I2γ

2
1µ2 − γ3

1

)2
= 0, (276)

which can be satisfied in one of two ways. Either both µ2 and γ1 are zero, or ν = B2µ2

γ1
is an eigenvalue

of b. In the first case, after simplification of the other coefficients, we obtain another equation

B2
(
β3

2 − I1β2
2A

2B2α2 + I2β2A
4B4α2

2 −A6B6α3
2

)2
= 0, (277)

which implies either α2 = β2 = 0, or ν = β2

A2B2α2
is an eigenvalue of b.

Taking α2 = β2 = 0, we obtain another similar eigenvalue equation that implies γ2 = µ1 = 0 or

ν = B2µ1

γ2
is an eigenvalue of b.

Taking γ2 = µ1 = 0, we obtain another eigenvalue equation, but this equation demands ν = β1

A2B2α1
,

because we already have α2 = γ1 = γ2 = 0; α1 = 0 would result in both M12(r) = 0 and M13(r) = 0, a
contradiction. This condition is sufficient for solving all of the necessary conditions.

Backing up a branch, we can take ν = B2µ1

γ2
as an eigenvalue of b. We then perform the substitutions

I1 = e1 + 1
e2

and I2 = e1
e2

+e2 with ν = 1
e2

, which expresses the invariants of b in terms of the elementary

symmetric polynomials in the other two eigenvalues. This reveals an equation with β1 − A2B2α1−ACγ2
e2

as a factor. If this factor is zero, we satisfy all of the necessary equations. If this factor is not zero, we
have either e3

2 − e2e1 + 1 = 0, or α1 (e2β1 +ACγ2) = 0. In the later case, plugging in α1 = 0 we obtain
β1 = −ACγ2

e2
, which corresponds to the vanishing of the other factor. Likewise, if we take e2β1+ACγ2 = 0,

we obtain α1 = 0 as a condition. Both of these together however imply that β1 − A2B2α1−ACγ2
e2

= 0,
which is a contradiction.

If e3
2 − e1e2 + 1 = 0, this implies that λ1 = 1

λ2
2

or λ2 = 1
λ2
1
. In either case we can express the

remaining equation in terms of only one remaining eigenvalue. This equation has one factor that we

know is nonzero because it corresponds to β1 = A2B2α1−ACγ2
e2

, which would yield a contradiction. So
we take the remaining factor to vanish. This factor is quadratic in α1. Taking the discriminant of this
equation in α1, we obtain

∆α1 = −4A6B6γ4
2λ

4
a, (278)

where λa is the repeated eigenvalue. This discriminant must be non-negative in order for the factor to
vanish with real values of α1. However, this discriminant is identically non-positive, which means it must
be zero. However, the only way for this to happen would be for γ2 = 0, which is a contradiction.

Having exhausted the options corresponding to α2 = β2 = 0, we consider ν = β2

A2B2α2
as an eigenvalue

of b, and perform the substitutions on the invariants to express the invariants in terms of elementary
symmetric polynomials in λ1 and λ2. Doing this gives five remaining polynomial equations, which are still
rather long and complicated. Ordering these equations by their length, and taking the second shortest
one, we note that this equation is quadratic in e1. Taking the discriminant of this equation in e1, and
demanding it be non-negative, we obtain

∆e1 = −4A6B6e2
2α

2
1

(
β1 +AB2Cµ1

)2 (
A2B2α1 − e2β1 −AB2Ce2µ1

)2
×
(
AB2Cα2β1 − β1γ2 +A2B4α1µ1 +A2B4C2α2µ1 −AB2Cγ2µ1

)4 ≥ 0. (279)

This quantity is identically non-positive, and so the only way we can have solutions with real values
for e1 is if this quantity is zero. There are four factors that can possibly be zero: α1, β1 + AB2Cµ1,
A2B2α1 − e2β1 −AB2Ce2µ1, and AB2Cα2β1 − β1γ2 +A2B4α1µ1 +A2B4C2α2µ1 −AB2Cγ2µ1.

First consider α1 = 0. Inserting this, many of the remaining equations have a factor β1 + AB2Cµ1.
If this factor vanishes, the remaining equations both contain the factor AB2Cα2 − γ2 + B2e2µ1. The
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vanishing of this factor satisfies all of the equations. If this factor does not vanish, we can take the
resultant of the remaining factors in e1, and obtain

A2B6α2
2

(
AB2Cα2 − γ2

)2
µ2

1

(
AB2Cα2 − γ2 +B2e2µ1

)2
= 0. (280)

Only two factors here can vanish, namely µ1 and AB2Cα2 − γ2. If we take µ1 = 0 and insert it into
the remaining two equations, one simplifies to imply AB2Cα2 − γ2 = 0. Likewise, if we instead take
AB2Cα2 − γ2 to vanish, we obtain µ1 = 0, hence both must vanish. However, if both of these vanish,
the original term AB2Cα2 − γ2 +B2e2µ1 vanishes, a contradiction.

We can then consider the case when β1 6= −AB2Cµ1. Taking the remaining factor of the shortest
equation, we have

A2
(
AB2Cα2 − γ2

)4
+B2

(
β1 +AB2Cµ1

)2
= 0. (281)

This requires AB2Cα2 − γ2 = 0 and β1 +AB2Cµ1 = 0, but the second of these is a contradiction. This
exhausts the case where α1 = 0, so we take α1 6= 0, and consider the next factor β1 + AB2Cµ1 = 0.
Inserting this into the equations, we obtain

A10B14α4
1

(
A2α2

1 +B2µ4
1

)
= 0. (282)

This cannot vanish for α1 6= 0, so we come to a contradiction.
Next, we consider α1 6= 0 and β1 +AB2Cµ1 6= 0, and take A2B2α1− e2β1−AB2Ce2µ1 = 0. Solving

this for β1, and inserting this into the equations, we obtain the condition

AB2Cα2 − γ2 +B2e2µ1 = 0, (283)

which can be solved for µ1 and is sufficient to satisfy the remaining equations. Finally, we consider
the remaining option with α1 6= 0, β1 + AB2Cµ1 6= 0, and A2B2α1 − e2β1 − AB2Ce2µ1 6= 0 with
AB2Cα2β1−β1γ2 +A2B4α1µ1 +A2B4C2α2µ1−AB2Cγ2µ1 = 0. This equation can be solved for either
β1 or µ1. If γ2 6= AB2Cα2, we can solve this for β1 and obtain

β1 =
AB2Cγ2 −A2B4

(
α1 + C2α2

)
AB2Cα2 − γ2

µ1. (284)

If we insert this, we obtain

µ1 =
γ2 −AB2Cα2

B2e2
, (285)

as a necessary and sufficient condition for the remaining equations to be satisfied. This yields

β1 =
−AB2Cγ2 +A2B4

(
α1 + C2α2

)
B2e2

. (286)

However, with these, the equation A2B2α1 − e2β1 −AB2Ce2µ1 = 0 is satisfied, a contradiction. Hence,
we consider γ2 = AB2Cα2, which requires µ1 = 0. With this, we have the conditions β1 6= 0, α1 6= 0,
and A2B2α1 − e2β1 6= 0. With these, the remaining equations demand

e3
2 − e1e2 + 1 = 0, (287)

which in turn demands either λ1 = 1
λ2
2

or λ2 = 1
λ2
1
. Denoting the repeated eigenvalue as λa, we obtain

the necessary condition λa = 1. However, with this we have β1 = A2B2α1, which contradicts the above
inequality conditions, i.e., this case is already accounted for in the previous cases.

This exhausts the options with µ2 = γ1 = 0, so we consider ν = B2µ2

γ1
as an eigenvalue of b. Inserting

this into our equations yields

β2 =
A2B2α2 −ACγ1

e2
. (288)

This requires e3
2 − e1e2 + 1 = 0, or if not, µ1 = γ2−AB2Cα2

B2e2
.

In the later case, we have α2 = 0 or β1 =
A2B2(α1+C2α2)−ACγ2

e2
. This second option satisfies the

remaining equation, so we then consider α2 = 0. With this, we obtain β1 = A2B2α1−ACγ2
e2

, which is a
special case of the previous option.
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We then consider e3
2 − e1e2 + 1 = 0, which demands a repeated eigenvalue. This then demands that

this repeated eigenvalue λa = 1, which means that all eigenvalues are the same. This allows us to solve
for β1 and µ1 as

µ1 =
γ2 −AB2Cα2

B2
, β1 = A2B2

(
α1 + C2α2

)
−ACγ2. (289)

This satisfies the remaining conditions, and so our analysis is complete, having exhausted all possible
branches of solutions.

In order to depict this branching set of conditions, we can express the steps of the analysis in a tree.
Each node on these trees represents a system of equations, and each edge represents one partial solution
to these equations. Terminal nodes are color coded corresponding to whether they are consistent (green)
or not (red). Nodes and edges are then labelled below the tree with the relevant equation/solutions
utilized at each step of the analysis. The following is the tree for this family:

O

-

--

---

--+
--+-

--++
--++-

--+++

-+

-+-
-+--

-+---

-+--+
-+-+

-++
-++-

-+++
-+++-

-++++

+

+-

+--

+-+

++

Nodes

• 0: B6µ3
2 − I1B4µ2

2γ1 + I2B
2µ2γ

2
1 − γ3

1 = 0

• −: β3
2 − I1A2B2β2

2α2 + I2A
4B4β2α

2
2 −A6B6α3

2 = 0

• +: β2 = A2B2α2−ACγ1
e2

, and (B2µ1e2 − γ2 +AB2Cα2)(e3
2 − e2e1 + 1) = 0

• −−: B6µ3
1 − I1B4µ2

1γ2 + I2B
2µ1γ

2
2 − γ3

2 = 0

• −+: α1

(
β1 +AB2Cµ1

) (
A2B2α1 − e2β1 −AB2Ce2µ1

)(
AB2Cα2β1 − β1γ2 +A2B4α1µ1 +A2B4C2γ2µ1

)
= 0

• +−: α2

(
A2B2

(
α1 + C2α2

)
−ACγ2 − β1e2

)
= 0

• ++: µ1 = γ2−AB2Cα2

B2 , and β1 = A2B2
(
α1 + C2α2

)
−ACγ2

• − −−: β3
1 − I1A2B2β2

1α1 + I2A
4B4β1α

2
1 −A6B6α3

1 = 0
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• − −+: B2µ1

γ2
is an eigenvalue of b

• −+−:
(
β1 +AB2Cµ1

)
(...) = 0

• −+ +:
(
β1 +AB2Cµ1

) (
A2B2α1 − e2β1 −AB2Ce2µ1

)(
AB2Cα2β1 − β1γ2 +A2B4α1µ1 +A2B4C2γ2µ1

)
= 0

• +−−: β1 = A2B2α1−ACγ2
e2

, and β1 6= A2B2α1−ACγ2
e2

• +−+: µ1 = γ2−AB2Cα2

B2e2
, and β1 =

A2B2(α1+C2α2)−ACγ2
e2

• − −+−: β1 = A2B2α1−ACγ2
e2

• − −++: α1

(
e3

2 − e2e1 + 1
)

(e2β1 +ACγ2) = 0

• −+−−:
(
γ2 −AB2Cα2 −B2e2µ1

)
(...) = 0

• −+−+: γ2 = AB2Cα2 ⇒ β1 = −AB2Cµ1, and β1 6= −AB2Cµ1

• −+ +−: α1 = 0, and α1 6= 0

• −+ ++:
(
A2B2α1 − e2β1 −AB2Ce2µ1

) (
AB2Cα2β1 − β1γ2 +A2B4α1µ1 +A2B4C2γ2µ1

)
= 0

• − −+ +−: γ2 = 0, and γ2 6= 0

• − −+ + +: β1e2 −A2B2α1 −ACγ2 = 0, and β1e2 −A2B2α1 −ACγ2 6= 0

• −+−−−: µ1 = γ2−AB2Cα2

B2e2

• −+−−+: µ1 = γ2−AB2Cα2

B2e2
, and µ1 6= γ2−AB2Cα2

B2e2

• −+ + +−: µ1 = γ2−AB2Cα2

B2e2

• −+ + + +: µ1 = γ2−AB2Cα2

B2e2
, and β1 =

A2B2(α1+C2α2)−ACγ2
e2

⇒

A2B2α1 − e2β1 −AB2Ce2µ1 = 0, and A2B2α1 − e2β1 −AB2Ce2µ1 6= 0

Edges (labelled by child node):

• −: γ1 = 0, and µ2 = 0

• +: B2µ2

γ1
is an eigenvalue of b

• −−: β2 = 0, and α2 = 0

• −+: β2

A2B2α2
is an eigenvalue of b

• +−: e3
2 − e1e2 + 1 6= 0

• ++: e3
2 − e1e2 + 1 = 0⇒ λa = 1

• − −−: γ2 = 0, and µ1 = 0

• − −+: B2µ1

γ2
is an eigenvalue of b

• −+−: α1 = 0

• −+ +: α1 6= 0

• +−−: β1 6=
A2B2(α1+C2α2)−ACγ2

e2
, and α2 = 0

• +−+: β1 =
A2B2(α1+C2α2)−ACγ2

e2
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• − −+−: β1e2 −A2B2α1 −ACγ2 = 0

• − −++: β1e2 −A2B2α1 −ACγ2 6= 0

• −+−−: β1 = −AB2Cµ1

• −+−+: β1 6= −AB2Cµ1

• −+ +−: β1 +AB2Cµ1 = 0

• −+ ++: β1 +AB2Cµ1 6= 0

• − −+ +−: e3
2 − e2e1 + 1 = 0

• − −+ + +: α1 = 0⇔ e2β1 +ACγ2 = 0

• −+−−−: γ2 = AB2Cα2 +B2e2µ1

• −+−−+: γ2 6= AB2Cα2 +B2e2µ1 ⇒ µ1 = 0, and γ1 = AB2Cα2

• −+ + +−: A2B2α1 − e2β1 −AB2Ce2µ1 = 0

• −+ + + +: A2B2α1 − e2β1 −AB2Ce2µ1 6= 0

The reader should note that this tree is not unique; there are potentially numerous ways we could have
performed these algebraic eliminations, but ultimately, we have derived these conditions as necessary,
and we have shown they are sufficient as well, and so any other sequence of algebraic reductions would
yield equivalent results. The branches of this tree are all special cases of the conditions

µ1 =
γ2 −AB2Cα2

B2e2
, (290)

β2 =
A2B2α2 −ACγ1

e2
, (291)

µ2 =
γ1

B2e2
, (292)

β1 =
A2B2

(
α1 + C2α2

)
−ACγ2

e2
. (293)

Note that these values are always well defined, since B 6= 0, and e2 = λ1λ2 > 0, even though in their
derivation we considered branching cases that are mutually exclusive. After these substitutions, both of
the constant invariant conditions become

A4B2M11(r)2−A2B2e1r
2M11(r)+A2B4

(
α1 + r2α2

)2
+r2

(
r2γ1 + γ2 −AB2Cα2

)2
+B2e2r

4 = 0, (294)

which let us solve for M11(r) as

M11(r) =
e1r

2

2A2
±
r

√
B2e2

1r
2 − 4

[
B2r2 (e2 +A2B2M12(r)2) + (AB2CM12(r)−M13(r))

2
]

2A2B
, (295)

and hence, completely determine the anomalous inverse metric tensor field for this family.

M12(r) =
α1

r2
+ α2, (296)

M13(r) =
AB2Cα1

r2
+ γ1r

2 + γ2, (297)

M11(r) =
e1r

2

2A2
±
r

√
B2e2

1r
2 − 4

[
B2r2 (e2 +A2B2M12(r)2) + (AB2CM12(r)−M13(r))

2
]

2A2B
, (298)
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M22(r) =
A2B4e2

(
e1r

2 −A2M11(r)
)
M12(r)2 +

[
AB2CM12(r)−M13(r)

]2
B2e2r2

[
(AB2CM12(r)−M13(r))

2
+ r2M12(r)2

] , (299)

M23(r) =
AC

[
AB2CM12(r)−M13(r)

]2
e2r2

[
(AB2CM12(r)−M13(r))

2
+ r2M12(r)2

]
+
A2B2

(
e1e2r

2 − r2 −A2e2M
11(r)

)
M12(r)M13(r)

e2r2
[
(AB2CM12(r)−M13(r))

2
+ r2M12(r)2

] , (300)

M33(r) =
A2B2

e2r2

[
AB2

(
C2 + r2

)
M12(r)− CM13(r)

]2
+ e2

(
e1r

2 −A2M11(r)
)
M13(r)2

[AB2CM12(r)−M13(r)]
2

+ r2M12(r)2
. (301)

One can check that in all cases, the equilibrium conditions are satisfied, and that the invariants of b
are

I1 = e1 +
1

e2
, I2 =

e1

e2
+ e2, I3 = 1, (302)

as expected.

Family 2

As above, we compute the equations

ma[k∇l]∇bb
ab = 0, ma[k∇l]∇bc

ab = 0. (303)

The first of these contains a component

4ξ2M12(ξ)′′ + 4ξM12(ξ)′ −M12(ξ)

2
√

2ξ
3
2A

1
2

= 0, (304)

where here we have made the substitution x = ξ + D. The denominator is nonzero, so we can simply
take the numerator to be zero, and integrate it. This yields

M12(ξ) =
α1ξ + α2√

ξ
. (305)

Substituting this into the other component of this equation, we obtain a differential equation for M13(ξ):

√
A
[
4ξ2M13(ξ)′′ + 4ξM13(ξ)′ −M13(ξ)

]
2
√

2ξ
3
2

= 0, (306)

which has the same general solution as the equation for M12(ξ), and hence

M13(ξ) =
γ1ξ + γ2√

ξ
. (307)

The first of the remaining differential equations is

√
2
(
(α1ξ + α2)M23(ξ)′′ − (γ1ξ + γ2)M22(ξ)′′ + 2α1M

23(ξ)′ − 2γ1M
22(ξ)′

)
A

3
2B2

= 0, (308)

which equivalently reads
[
(α1ξ + α2)M23(ξ)− (γ1ξ + γ2)M22(ξ)

]′′
= 0, and integrates to

(α1ξ + α2)M23(ξ)− (γ1ξ + γ2)M22(ξ) = µ1ξ + µ2. (309)

The second equation is

√
2
(
2Cγ1M

22(ξ)′ + 2 (Aγ1 − Cα1)M23(ξ)′ − 2Aα1M
33(ξ)′

)
A

3
2B2
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+

√
2
(
C (γ1ξ + γ2)M22(ξ)′′ + (A (γ1ξ + γ2)− C (α1ξ + α2))M23(ξ)′′ −A (α1ξ + α2)M33(ξ)′′

)
A

3
2B2

= 0,

(310)

or equivalently[
(γ1ξ + γ2)

(
AM23(ξ) + CM22(ξ)

)
− (α1ξ + α2)

(
AM33(ξ) + CM23(ξ)

)]′′
= 0. (311)

We can add C times the previous differential equation, and divide by A to obtain[
(γ1ξ + γ2)M23(ξ)− (α1ξ + α2)M33(ξ)

]′′
= 0. (312)

which integrates to
(γ1ξ + γ2)M23(ξ)− (α1ξ + α2)M33(ξ) = β1ξ + β2. (313)

Finally, we have the constant trace condition on b, which reads(
1 + C2

)
M22(ξ) + 2ACM23(ξ) +A2M33(ξ) = −2A3B4ξM11(ξ) +A2B2I1. (314)

These equations can be solved for M22(ξ), M23(ξ), and M33(ξ), as the determinant of these equations is

− (α1ξ + α2)
2 − (C (α1ξ + α2) +A (γ1ξ + γ2))

2
< 0, (315)

which only vanishes if both M12(ξ) and M13(ξ) vanish.
We then have the solution in terms of the yet-to-be determined component M11(ξ), and numerous

undetermined constants. Denoting α = α1ξ + α2, γ = γ1ξ + γ2, µ = µ1ξ + µ2, β = β1ξ + β2, and
h = A2B2I1 − 2A3B4ξM11(ξ), we haveM22(ξ)

M23(ξ)
M33(ξ)

 =
1

α2 + (Cα+Aγ)
2

 hα2 +A (Aαβ − 2Cαµ−Aγµ)
hαγ +A2βγ +

(
1 + C2

)
αµ

−
(
1 + C2

)
αβ + γ

(
−2ACβ + hγ +

(
1 + C2

)
µ
)
 . (316)

Under these substitutions, the constant second invariant condition is written as

4A2B4ξ2M11(ξ)2 −
2Aξ

[
B2I1

[
α2 + (Cα+Aγ)

2
]

+ αβ + γµ
]

α2 + (Cα+Aγ)
2 M11(ξ)

= −
2A5B4γ4 +A4B4γ2 (I2 + 8Cαγ) + 2A3B4αγ

(
CI2 + 2αγ + 6C2γα

)
+
(
1 + C2

)
µ2

A2B4
[
α2 + (Cα+Aγ)

2
]

−
2
[
B4
(
1 + C2

)2
α4 − Cβµ

]
+A

[
β2 +B4

(
1 + C2

)
α2 (I2 + 8Cαγ) +B2I1 (αβ + γµ)

]
AB4

[
α2 + (Cα+Aγ)

2
] , (317)

and the incompressibility condition reads

4A2B2ξ2 (αβ + γµ)

α2 + (Cα+Aγ)
2 M11(ξ)2 −

2ξ
[
µ2 +B2I1 (αβ + γµ) + (Cµ−Aβ)

2
]

α2 + (Cα+Aγ)
2 M11(ξ) =

AB2 − 2αβ − 2γµ

AB2
.

(318)
Clearing denominators and computing the resultant of these equations in M11(ξ), we obtain

ResM11(ξ) (p1, p2) = 16A4B8ξ4
(
α2 + (Cα+Aγ)

2
)

(...) . (319)

This must vanish for solutions to exist, so we take (...) = 0, since the remaining factors are nonzero.
We then take the coefficients of this polynomial in ξ to vanish independently, factor these coefficients,

and order them by length. The first of these demands

A (Cα1 +Aγ1)β1 =
(
ACγ1 +

(
1 + C2

)
α1

)
µ1. (320)
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If this equation can be solved for β1, we can perform this substitution and obtain the condition

µ3
1 − I1µ2

1

(
AB2 (Cα1 +Aγ1)

)
+ I2µ1

(
AB2 (Cα1 +Aγ1)

)2 − (AB2 (Cα1 +Aγ1)
)3

= 0, (321)

which requires that ν = − µ1

AB2(Cα1+Aγ1) be an eigenvalue of b. We perform the usual substitutions

with the invariants to express equations in terms of e1 and e2, then take discriminants of the resulting
equations in e1, and demand non-negativity. This yields the condition

β2 =
A2B2 (α1γ2 − α2γ1) +

(
1 + C2

)
e2α1µ2 +ACe2γ1µ2

Ae2 (Cα1 +Aγ1)
, (322)

or
e2α1β2 = −

(
B2
(
Aγ1 (Cα2 +Aγ2) + α1

(
α2 + C2α2 +ACγ2

))
+ e2γ1µ2

)
. (323)

In the first case, substitution yields either

µ2 = −AB
2 (Cα2 +Aγ2)

e2
, (324)

or not, in which case e3
2 − e1e2 + 1 = 0. In the first case, we satisfy the equations and obtain

β2 = −
B2
(
α2 + C2α2 +ACγ2

)
e2

. (325)

Otherwise, we take e3
2 − e2e1 + 1 = 0.

Substituting this yields λ1 = λ2 = 1, which reduces the equations to only one. After removing nonzero
factors of this equation, we obtain something quadratic in µ2, which after taking the discriminant and
demanding non-negativity yields α2γ1 = α1γ2. With this, if α1 6= 0, we obtain the final necessary
result µ2 = −AB2 (Cα2 +Aγ2), which is a contradiction, since it is the case considered earlier with
λ1 = λ2 = 1. If α1 = 0, we require α2 = 0, since Cα1 +Aγ1 6= 0. With this, we require µ2 = −A2B2γ2,
again, a contradiction.

Next, we consider the case where

e2α1β2 = −
(
B2
(
Aγ1 (Cα2 +Aγ2) + α1

(
α2 + C2α2 +ACγ2

))
+ e2γ1µ2

)
. (326)

If α1 6= 0, we solve this expression for β2 and obtain the necessary and sufficient condition

µ2 = −AB
2 (Cα2 +Aγ2)

e2
, (327)

with

β2 = −
B2
((

1 + C2
)
α2 +ACγ2

)
e2

. (328)

If α1 = 0, we can solve for µ2 to obtain

µ2 =
−AB2 (Cα2 +Aγ2)

e2
. (329)

This requires

β2 =
−B2

((
1 + C2

)
α2 +ACγ2

)
e2

. (330)

Alternatively, if Cα1 + Aγ1 = 0, we obtain γ1 = −Cα1

A , which implies α1µ1 = 0. If we assume

α1 = 0, and insert this relation into the equations, we obtain µ2
1 + (Aβ1 − Cµ1)

2
= 0, so we can freely

take µ1 = 0. With this, we obtain an eigenvalue equation that demands that either ν = − β1

B2α1
is an

eigenvalue of b, or that β1 = α1 = 0. In the first case, we perform the usual substitutions and take
discriminants in e1 and demand non-negativity, which yields

µ2 = −AB
2 (Cα2 +Aγ2)

e2
, (331)
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or not, in which case

β2 =
Ce2µ2 −AB2α2

Ae2
. (332)

In the first case, we have the sufficient condition

β2 = −
B2
[(

1 + C2
)
α2 +ACγ2

]
e2

, (333)

or not, in which case e3
2 − e1e2 + 1 = 0. With this, we then obtain the condition λ1 = λ2 = 1, and then

requiring discriminants in β2 to be non-negative, Cα2 +Aγ2 = 0. With this, we take γ2 = −CAα2, which
requires β2 = −B2α2, which is a special case of the previous solution.

Next, we consider β2 = Ce2µ2−AB2α2

Ae2
. This requires the necessary and sufficient condition

µ2 = −AB
2 (Aγ2 + Cα2)

e2
, (334)

which is the same as before.
The previously examined cases are all particular instances of the following anomalous solution:

M12(ξ) =
α1ξ + α2√

ξ
, (335)

M13(ξ) =
γ1ξ + γ2√

ξ
, (336)

M11(ξ) =

√
Ae1 ±

√
Ae2

1 − 4
[
Ae2 + 2ξ

(
(AM13(ξ) + CM12(ξ))

2
+M12(ξ)2

)]
4A

3
2B2ξ

, (337)

M22(ξ) =
A2B2

[(
CM12(ξ) +AM13(ξ)

)2
+ e2

(
e1 − 2AB2ξM11(ξ)

)
M12(ξ)2

]
e2

[
M12(ξ)2 + (AM13(ξ) + CM12(ξ))

2
] , (338)

M23(ξ) = −
AB2

[
C
(
CM12(ξ) +AM13(ξ)

)2
+ CM12(ξ)2

]
e2

[
M12(ξ)2 + (AM13(ξ) + CM12(ξ))

2
] ,

−
AB2

[(
A− e1e2 + 2AB2e2ξM

11(ξ)
)
M12(ξ)M13(ξ)

]
e2

[
M12(ξ)2 + (AM13(ξ) + CM12(ξ))

2
] , (339)

M33(ξ) =
B2

e2

((
1 + C2

)
M12(ξ) +ACM13(ξ)

)2
+A2e2

(
e1 − 2AB2ξM11(ξ)

)
M13(ξ)2

M12(ξ)2 + (AM13(ξ) + CM12(ξ))
2 . (340)

Finally, when β1 = α1 = 0, we are left with only one equation. In principle it can be solved for
I2, but because I2 does not appear in any of the other equations, we can simply use the remaining
constants as a transcendence basis in lieu of actually solving it. When we do this, we recognize that
with γ1 = α1 = β1 = µ1 = 0, we obtain bab being constant. Hence, we can take any constant positive-
definite tensor with det b = 1, and obtain MAB via MAB = F−1)Aab

ab(F−1)Bb, which one can easily see
generates a positive-definite symmetric metric tensor, since b is positive-definite and symmetric. This,
however, implies that the material manifold is Euclidean, since c is the push forward of the material
metric tensor, and it is constant in Cartesian coordinates. Therefore, the curvature tensor based on c
vanishes, and the anelastic deformation is stress free, i.e., Euclidean.

In general, a metric MAB (R) arising from this case has the form

[MAB (R)] =

M11R
2 M12R M13R

M12R M22 M23

M13R M23 M33

 , (341)

where the constants {M11 ,M12 ,M13 ,M22 ,M23 ,M33 } satisfyM11M22M33 +2M12M13M23−M13
2M22−

M23
2M11 −M12

2M33 = 1. Any choice of these constants that yields a positive-definite metric generates
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an admissible constant tensor b. Though not immediately obvious, all of the above solutions are part of
the same branch, apart from a global rigid rotation, which can be freely removed. The analysis tree for
this family is:

O

-

--

-+

-+-
-+--

-+-+

-++

+

+-

+--

+-+
+-+-

+-++

++

++-

+++

Nodes:

• 0: A (Cα1 +Aγ1)β1 =
(
ACγ1 +

(
1 + C2

)
α1

)
µ1

• −: β3
1 + I1B

2α1β
2
1 + I2B

4α2
1β1 +B6α3

1

• +:
(
Aβ2e2 (Cα1 +Aγ1)−A2B2 (γ2α1 − α2γ1)−

(
1 + C2

)
e2α1µ2 −ACe2γ1µ2

)(
e2α1β2 +B2

(
Aγ1 (Cα2 +Aγ2) + α1

(
α2 + C2α2 +ACγ2

))
+ e2γ1µ2

)
= 0

• −−: bab is constant

• −+:
(
µ2e2 +AB2 (Cα2 +Aγ2)

) (
Aβ2e2 +AB2α2 − Ce2µ2

)
= 0

• +−:
(
µ2e2 +AB2 (Cα2 +Aγ2)

) (
e3

2 − e1e2 + 1
)

= 0

• ++:e2α1β2 +B2
(
Aγ1 (Cα2 +Aγ2) + α1

(
α2 + C2α2 +ACγ2

))
+ e2γ1µ2 = 0

• −+−:
(
β2e2 +B2

((
1 + C2

)
α2 +ACγ2

)) (
e3

2 − e1e2 + 1
)

= 0

• −+ +: µ2 = −AB2(Cα2+Aγ2)
e2

• +−−: µ2 = −AB2(Cα2+Aγ2)
e2

• +−+: α1γ2 = α2γ1

• + +−: µ2 = −AB2(Cα2+Aγ2)
e2

• + + +: β2 =
−B2((1+C2)α2+ACγ2)

e2
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• −+−−: µ2 = −AB2(Cα2+Aγ2)
e2

and β2 = −B
2((1+C2)α2+ACγ2)

e2

• −+−+: λa = 1⇒ Cα2 +Aγ2 = 0⇒ β2 = −B2α2&β2 6= −B2α2

• +−+−: µ2 = −AB2 (Cα2 +Aγ2) 6= −AB2 (Cα2 +Aγ2)

• +−++: µ2 = −A2B2γ2 6= −A2B2γ2

Edges (labelled by child node):

• −: γ1 = −CAα1 ⇒ µ1 = 0

• +: γ1 6= C
Aα1 ⇒ ν = − µ1

AB2(Cα1+Aγ1)

• −−: β1 = α1 = 0

• −+: ν = − β1

B2α1

• +−: β2 =
A2B2(α1γ2−α2γ1)+(1+C2)e2α1µ2+ACe2γ1µ2

Ae2(Cα1+Aγ1)

• ++: e2α1β2 = −
(
B2
(
Aγ1 (Cα2 +Aγ2) + α1

(
α2 + C2α2 +ACγ2

))
+ e2γ1µ2

)
• −+−: µ2 = −AB2(Cα2+Aγ2)

e2

• −+ +: β2 = Ce2µ2−AB2α2

Ae2

• +−−: µ2e2 +AB2 (Cα2 +Aγ2) = 0

• +−+: µ2e2 +AB2 (Cα2 +Aγ2) 6= 0 and e3
2 − e1e2 + 1 = 0

• + +−: β2 =
−(B2(Aγ1(Cα2+Aγ2)+α1(α2+C2α2+ACγ2))+e2γ1µ2)

e2α1

• + + +: α1 = 0 and µ2 =
−AB2((1+C2)α2+ACγ2)

e2

• −+−−: β2 = −B
2((1+C2)α2+ACγ2)

e2

• −+−+: β2 6= −
B2((1+C2)α2+ACγ2)

e2
&e3

2 − e1e2 + 1 = 0

• +−+−: γ2 = α2γ1
α1

• +−++: α1 = α2 = 0

Family 3

For this family, we can write the remaining equations corresponding to the coefficients of terms involving
W1 and W2, and solve them before recasting the results in terms of the components of M. First, we take
the equation ma[l∇k]∇bb

ab = 0, which has two nonzero components yielding

r2b12′′(r) + 5rb12′(r) + 3b12(r) = 0, (342)

r2b13′′(r) + rb13′(r)− b13(r) = 0. (343)

Solving these yields

b12(r) = a1r
−1 + a2r

−3 =

√
A (r2 −B)

r

(
CM12 +DM13

)
, (344)

b13(r) = b1r + b2r
−1 =

√
A (r2 −B)

r

(
EM12 + FM13

)
. (345)
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Reparameterizing these equations to simplify constants yields the equation[
C D
E F

] [
M12

M13

]
=

[
γ1 + γ2r

−2

α1r
2 + α2

]
DE − CF√
r2 −B

, (346)

which gives [
M12

M13

]
=

[
−F D
E −C

] [
γ1 + γ2r

−2

α1r
2 + α2

] (
r2 −B

)− 1
2 . (347)

With this, we have the W2 equations involving c, which are

8r3α1b
23(r) + 7r4α1b

23′(r) + 3r2α2b
23′(r)− 3r2γ1b

33′(r) + γ2b
33′(r)

+ r5α1b
23′′(r) + r3α2b

23′′(r)− r3γ1b
33′′(r)− rγ2b

33′′(r) = 0, (348)

and

8r3α1b
22(r) + 7r4α1b

22′(r) + 3r2α2b
22′(r)− 3r2γ1b

23′(r) + γ2b
23′(r)

+ r5α1b
22′′(r) + r3α2b

22′′(r)− r3γ1b
23′′(r)− rγ2b

23′′(r) = 0, (349)

which have the common solution(
r2γ1 + γ2

)
b33(r)− r2

(
r2α1 + α2

)
b23(r) = µ1 + µ2r

2, (350)(
r2γ1 + γ2

)
b23(r)− r2

(
r2α1 + α2

)
b22(r) = β1 + β2r

2. (351)

We also have the constant trace condition that amounts to b11(r) + r2b22(r) + b33(r) = I1, which lets us
solve for b22(r), b23(r), and b33(r), as these equations are linear in these components, and the determinant

of the linear system is −
[(
r
(
r2γ1 + γ2

))2
+
(
r2
(
r2α1 + α2

))2]
, which is nonzero. Additionally, we have

the following relations between the components of b and the components of MC2 2CD D2

CE DE + CF DF
E2 2EF F 2

M22(r)
M23(r)
M33(r)

 =

b22(r)
b23(r)
b33(r)

 , (352)

which can be inverted, as the determinant of this system is (CF −DE)
3 6= 0. Doing this, we define

p(r) = γ1 +
γ2

r2
, q(r) = α1r

2 + α2, (353)

and obtain

M12(r) =
Dq(r)− Fp(r)√

r2 −B
, (354)

M13(r) =
Ep(r)− Cq(r)√

r2 −B
, (355)

M22(r) =
F 2
(
I1p(r)

2r2 − q(r)
(
β1 + r2β2

)
− p(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

+
D2r2

(
I1q(r)

2 + q(r)
(
β1 + r2β2

)
+ p(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

−
2DF

(
I1p(r)r

2
(
β1 + r2β2

)
− q(r)

(
µ1 + r2µ2

))
+A

(
r2 −B

)
(Fp(r)−Dq(r))2

M11(r)

(CF −DE)
2
r2 (p(r)2r2 + q(r)2)

,

(356)

M23(r) =
−EF

(
I1p(r)

2r2 − q(r)
(
β1 + r2β2

)
− p(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

+
CDr2

(
I1q(r)

2 + q(r)
(
β1 + r2β2

)
+ p(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)
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+
DE

(
I1p(r)r

2q(r) + p(r)r2
(
β1 + r2β2

)
− q(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

+
CF

(
I1p(r)r

2
(
β1 + r2β2

)
− q(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

+
A
(
r2 −B

)
(Fp(r)−Dq(r)) (Ep(r)− Cq(r))M11(r)

(CF −DE)
2
r2 (p(r)2r2 + q(r)2)

, (357)

M33(r) =
E2
(
I1p(r)

2r2 − q(r)
(
β1 + r2β2

)
− p(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

+
C2r2

(
I1q(r)

2 + q(r)
(
β1 + r2β2

)
+ p(r)

(
µ1 + r2µ2

))
(CF −DE)

2
r2 (p(r)2r2 + q(r)2)

−
2EC

(
I1p(r)r

2
(
β1 + r2β2

)
− q(r)

(
µ1 + r2µ2

))
+A

(
r2 −B

)
(Ep(r)− Cq(r))2

M11(r)

(CF −DE)
2
r2 (p(r)2r2 + q(r)2)

.

(358)

We are then left with the constant invariant condition for I2 and the incompressibility condition. We
simplify notation by writing µ = µ1 + r2µ2 and β = β1 + r2β2. These equations are

A2
(
r2 −B

)2
(q(r)β − p(r)µ)M11(r)2

r4 (q(r)2 + p(r)2r2)
−
A
(
r2 −B

) (
I1q(r)r

2β + r2β2 − I1p(r)r2µ+ µ2
)
M11(r)

r4 (q(r)2 + p(r)2r2)

+
A (DE − CF )

2
(q(r)β − p(r)µ)

r2
= 1, (359)

A2
(
r2 −B

)2
M11(r)2

r4
−
A
(
r2 −B

) (
I1
(
q(r)2 + p(r)2r2

)
+ q(r)β − p(r)µ

)
M11(r)

r2 (q(r)2 + p(r)2r2)

+ I2 +
A (CF −DE)

2 (
q(r)2 + p(r)2r2

)
r2

+
I1r

2 (q(r)β − p(r)µ) + r2β2 + µ2

r2 (q(r)2 + p(r)2r2)
= 0 (360)

We take the discriminant of these equations in M11(r), and demand this vanish. We remove nonzero
factors, and then demand each coefficient in r vanish independently. The first condition we obtain is
α3

1 + I2α
2
1β2 + I1α1β

2
2 +β3

2 = 0, which implies that either ν = − β2

α1
is an eigenvalue of b, or α1 = β2 = 0.

In the first case, we obtain µ2 = γ1
e2

. This yields two subcases:

β1 = −α2

e2
, (361)

or alternatively
e3

2 − e1e2 + 1 = 0. (362)

In this first subcase, we obtain the sufficient condition µ1 = γ2
e2

, or e3
2 − e1e2 + 1 = 0. However, when we

take e3
2 − e1e2 + 1 = 0, we obtain the same value for µ1, and hence, this second condition is redundant.

If we take the subcase, e3
2 − e1e2 + 1 = 0 and β1 6= −α2

e2
, we obtain λ1 = λ2 = 1.

We then obtain the sufficient condition

µ1 =
α1γ2 − γ1 (α2 + β1)

α1
, (363)

which further yields β1 = −α2, which is again a special case of the already discovered solutions. Next,
we consider α1 = β2 = 0. Inserting this, we obtain the equation µ3

2 − I1µ2
2γ1 + I2µ2γ

2
1 − γ3

1 = 0, which
implies ν = µ2

γ1
is an eigenvalue of b, or µ2 = γ1 = 0. In the first case, we take discriminants in e1 and

demand non-negativity, which yields the condition

γ2µ1 (e2µ1 − γ2) (β1γ2 + α2µ1) = 0. (364)
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Beginning with γ2 = 0, we obtain

µ4
1

[
A (CF −DE)

2
α4

2 + µ2
1

]
= 0, (365)

which requires that µ1 = 0. With this, we then obtain equations with the common factor α2 + e2β1.
Hence, it is sufficient if this factor vanishes. If it does not, we can take the resultant of the remaining
two equations in β1 to obtain

(
e3

2 − e1e2 + 1
)
α2 = 0. If α2 = 0, we obtain that β1 = 0 as well, which is

a case of the previously solved condition. If we instead take e3
2 − e1e2 + 1 = 0, we obtain the condition

β1 = −α2λ2, which is a special case of the previously solved condition, so we can always take β1 = −α2

e2
.

Next, we assume γ2 6= 0 and take µ1 = 0. Doing this yields

γ4
2

[
γ2

2 +A (CF −DE)
2
β4

1

]
= 0, (366)

which demands γ2 = 0, a contradiction. We then assume γ2 6= 0, µ1 6= 0, and take µ1 = γ2
e2

. This
requires β1 = −α2

e2
, which is also sufficient. Finally, we assume µ1e2 − γ2 6= 0 in addition to γ2 6= 0 and

µ1 6= 0, and take β1 = −α2µ1

γ2
. This demands

(µ1 − λ1γ2) (µ1 − λ2γ2) = 0. (367)

Making the first factor vanish reveals λ1 = λ2 or λ2 = 1
λ2
1
. The first case ultimately requires λ2 = 1,

but this also means e2 = 1, and hence µ1e2 − γ2 = 0, a contradiction. In the case where λ2 = 1
λ2
1
,

this contradiction is immediate. The steps are identical for the case where µ1 = λ2γ2, and so we have
exhausted this branch of solutions.

Next, we take µ2 = γ1 = 0. This returns

α3
2 + I2α

2
2β1 + I1α2β

2
1 + β3

1 = 0, (368)

which requires ν = − β1

α2
be an eigenvalue of b, or α2 = β1 = 0. In the first case, we obtain a sufficient

condition µ1 = γ2
e2

. If this condition is not met, we can take the resultant of the remaining two equations
in γ2 and obtain the necessary condition(

e3
2 − e1e2 + 1

)
µ1 = 0. (369)

Taking µ1 = 0 yields γ2 = 0. Taking e3
2 − e1e2 + 1 = 0, i.e., λ1 = 1

λ2
2

yields µ1 = γ2λ2 = γ2
e2

, again

obtaining the previous sufficient condition. Finally, if α2 = β1 = 0, we obtain

µ3
1 − I1γ2µ

2
1 + I2γ

2
2µ1 − γ3

2 = 0, (370)

which demands that µ1 = γ2
e2

, since γ2 cannot vanish without leaving the anomalous solution branch.
This exhausts all solution branches of this family and reveals all solutions to be cases of the anomalous
solution

β1 = −α2

e2
,

β2 = −α1

e2
,

µ1 =
γ2

e2
,

µ2 =
γ1

e2
.

(371)

This lets us solve for M11(r), and finally obtain the anomalous solution

p(r) = γ1 +
γ2

r2
, (372)

q(r) = α1r
2 + α2, (373)

M12(r) =
Dq(r)− Fp(r)√

r2 −B
, (374)

M13(r) =
Ep(r)− Cq(r)√

r2 −B
, (375)
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M11(r) = r2

e1 ±
√
e2

1 − 4
[
e2 +A (CF −DE)

2
(
p(r)2 + q(r)2

r2

)]
2A (r2 −B)

, (376)

M22(r) =

(
Dr2p(r) + Fq(r)

)2
+ e1e2r

2 (Dq(r)− Fp(r))2

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

−
Ae2 (Fp(r)−Dq(r))2 (

r2 −B
)
M11(r)

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

, (377)

M23(r) =
Ae2 (Ep(r)− Cq(r)) (Fp(r)−Dq(r))

(
r2 −B

)
M11(r)

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

− e1 (Cq(r)− Ep(r)) (Dq(r)− Fp(r))
(CF −DE)

2
(q(r)2 + p(r)2r2)

−
(
Cp(r)r2 + Eq(r)

) (
Dp(r)r2 + Fq(r)

)
e2 (CF −DE)

2
r2 (q(r)2 + p(r)2r2)

, (378)

M33(r) =

(
Cr2p(r) + Eq(r)

)2
+ e1e2r

2 (Cq(r)− Ep(r))2

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

−
Ae2 (Ep(r)− Cq(r))2 (

r2 −B
)
M11(r)

e2 (CF −DE)
2
r2 (q(r)2 + p(r)2r2)

. (379)

The analysis tree for this family is

O

-

--

-+

+

+-

+--

+-+
+-+-

+-++
+-++-

+-+++
+-+++-

+-++++

++

++-
++--

++-+
++-+-

++-++

+++

Nodes:

• 0: α3
1 + I2α

2
1β2 + I1α1β

2
2 + β3

2 = 0

• −: (β1e2 + α2)
(
e3

2 − e1e2 + 1
)

= 0

• +: γ3
1 − I2γ2

1µ2 + I1µ
2
2γ1 − µ3

2 = 0

• −−: µ1 = γ2
e2
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• −+: β1 = −α2 6= −α2

• +−: γ2µ1 (e2µ1 − γ2) (β1γ2 + α2µ1) = 0

• ++: β3
1 + I1β

2
1α2 + I2β1α

2
2 + α3

2 = 0

• +−−: µ1 = 0 and β1 = −α2

e2

• +−+: µ1 (e2µ1 − γ2) (β1γ2 + α2µ1) = 0

• + +−: (µ1e2 − γ2) (...)1 = 0 and (µ1e2 − γ2) (...)2 = 0

• + + +: µ1 = γ2
e2

• +−+−: γ2 = 0 6= 0

• +−++: (e2µ1 − γ2) (β1γ2 + α2µ1) = 0

• + +−−: µ1 = γ2
e2

• + +−+:
(
e3

2 − e1e2 + 1
)
µ1 = 0

• +−+ +−: β1 = −α2

e2

• +−+ + +: (µ1 − λ1γ2) (µ1 − λ2γ2) = 0

• + +−+−: µ1 = γ2 = 0

• + +−+ +: µ1 = γ2
e2

• +−+ + +−: µ1 = γ2
e2
6= γ2

e2

• +−+ + ++: µ1 = γ2
e2
6= γ2

e2

Edges (labelled by child node):

• −: ν = − β2

α1
⇒ µ2 = γ1

e2

• +: α1 = β2 = 0

• −−: β1 = −α2

e2

• −+: β1 6= −α2

e2
and e3

2 − e1e2 + 1 = 0⇒ λa = 1

• +−: ν = µ2

γ1

• ++: µ2 = γ1 = 0

• +−−: γ2 = 0

• +−+: γ2 6= 0

• + +−: ν = −β1

α2

• + + +: β1 = α2 = 0⇒ µ3
1 − I1γ2µ

2
1 + I2γ

2
2µ1 − γ3

2 = 0

• +−+−: µ1 = 0

• +−++: µ1 6= 0

• + +−−: µ1e2 − γ2 = 0

• + +−+: Resγ2 ((...)1 , (...)2) = 0

• +−+ +−: µ1 = γ2
e2

• +−+ + +: µ1 6= γ2
e2

, µ1 6= 0, and γ2 6= 0
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• + +−+−: µ1 = 0

• + +−+ +: µ1 6= 0

• +−+ + +−: µ1 = λ1γ2

• +−+ + ++: µ1 = λ2γ2

Family 5

First addressing the equilibrium equations involving b, we obtain the equations

r2M13′′(r) + rM13′(r)−M13(r) = 0, (380)

3CM12(r) + 3ABM11′(r) + 5CrM12′(r) +ABrM11′′(r) + Cr2M12′′(r) = 0, (381)

which simplify upon defining the auxiliary function f = CrM12(r)+ABM11(r), which makes the second
equilibrium equation rf ′′(r) + 3f ′(r) = 0. These equations can be integrated to obtain

f(r) = γ1 +
γ2

r2
⇒M12(r) =

γ1 + γ2
r2 −ABM

11(r)

Cr
, (382)

M13(r) = α1r +
α2

r
. (383)

Next, we have the equilibrium equations derived from c, which are

8ABr3α2
1 + 8Cr3α1M

23(r) + Cr2
(
7r2α1 + 3α2

)
M23′(r) +

(
−3r2γ1 + γ2

)
M33′(r)

+ Cr3
(
r2α1 + α2

)
M23′′(r)− r

(
r2γ1 + γ2

)
M33′′(r) = 0, (384)

− 8ABα2γ2 − 8C2r6α1M
22(r) +A2B2r3

(
3r2α1 − α2

)
M11′(r)

− C2r5
(
7r2α1 + 3α2

)
M22′(r) + Cr3

(
3r2γ1 − γ2

)
M23′(r) +A2B2r4

(
r2α1 + α2

)
M11′′(r)

− C2r6
(
r2α1 + α2

)
M22′′(r) + Cr4

(
r2γ1 + γ2

)
M23′′(r) = 0. (385)

These equations can be integrated to obtain(
r2γ1 + γ2

)
M33(r)− Cr2

(
r2α1 + α2

)
M23(r) = r2µ1 + µ2 +ABr4α2

1, (386)

C2r4
(
r2α1 + α2

)
M22(r)− Cr2

(
r2γ1 + γ2

)
M23(r) = A2B2r2

(
r2α1 + α2

)
M11(r)

+ r4β1 + r2β2 −ABα2γ2, (387)

which coupled with the constant trace condition

E2r2M33(r) + c2r4M22(r) = −A2
(
1−B2

)
M11(r)− 2AB

(
r2γ1 + γ2

)
+ I1r

2, (388)

lets us solve for M22(r), M23(r), and M33(r) in terms of undetermined constants, and M11(r). The

determinant of this system is −C3r6
[
E2r2

(
r2α1 + α2

)2
+
(
r2γ1 + γ2

)2] 6= 0, so we can always invert

these equations. Denoting γ = γ1r
2 + γ2, α = α1r

2 + α2, µ = µ1r
2 + µ2, and β = β1r

2 + β2, we obtain

M22(r) =
γ2
(
I1r

2 − 2ABγ
)

+ E2r2
(
r2αβ −AB

(
α2γ + α2

2γ + αα2 (γ2 − 2γ)
)
− γµ

)
C2r4 (E2r2α2 + γ2)

+
A2
(
B2 − γ2

E2r2α2+γ2

)
M11(r)

C2r2
, (389)

M23(r) =
−AB

(
E2r2α (α− α2)

2
+ γ (2αγ − α2γ2)

)
+ r2

(
I1αγ − βγ − E2αµ

)
Cr2 (E2r2α2 + γ2)

− A2αγM11(r)

CE2r2α2 + Cγ2
, (390)
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M33(r) =
I1r

2α2 − r2αβ −ABα2γ − 2ABαα2γ +ABα2
2γ +ABαα2γ2 + γµ

E2r2α2 + γ2

− A2r2α2M11(r)

E2r2α2 + γ2
. (391)

This leaves us with the incompressibility condition, and the constant second invariant of b to satisfy. As
in the other cases, these equations are quadratic in M11(r), and we compute their resultant in M11(r),
factor each coefficient in r and demand they all vanish independently.

The first of these is the equation

E6
[
(β1 +ABα1γ1)

3 − I1 (β1 +ABα1γ1)
2
α1 + I2 (β1 +ABα1γ1)α2

1 − α3
1

]2
= 0, (392)

which implies that either ν = β1+ABα1γ1
α1

is an eigenvalue of b, or α1 = 0 and β1 = 0. In the first case,
we immediately obtain µ1 = 2ABα1α2 + γ1

E2e2
, which upon substitution yields(

e3
2 − e1e2 + 1

)
(e2β2 − α2 +ABe2 (α2γ1 + α1γ2)) = 0, (393)

which requires β2 = α2

e2
− AB (α2γ1 + α1γ2), or if not, λ1 = 1

λ2
2
. Tackling this latter case first, after

substitution we demand λ2 = 1 to avoid a contradiction and obtain

µ2 =
−α2γ1 + β2γ1 + α1γ2 +AB

[
E2α1α

2
2 + γ1 (α2γ1 + α1γ2)

]
E2α1

. (394)

This, however, reduces the remaining equations to requiring β2 = α2

e2
− AB (α2γ1 + α1γ2), so we can

immediately consider this case. One of the remaining equations then implies

γ1

(
ABE2e2α

2
2 + γ2 − E2e2µ2

) (
e3

2 − e1e2 + 1
)

= 0. (395)

Taking µ2 =
ABE2e2α

2
2+γ2

E2e2
is sufficient, so then we consider the case where µ2 6= ABE2e2α

2
2+γ2

E2e2
. With this,

we first take γ1 = 0, but this leads immediately to a contradiction, so we then consider e3
2− e1e2 + 1 = 0.

However, this case also immediately leads to a contradiction, so we next consider β1 = α1 = 0. This
yields the equation

E6µ3
1 − I1γ1E

4µ2
1 + I2γ

2
1E

2µ1 − γ3
1 = 0, (396)

which implies that ν = E2µ1

γ1
is an eigenvalue of b, or γ1 = µ1 = 0. In the first case, we the take

discriminants in e1 and demand non-negativity to obtain

γ2

(
ABα2

2 − µ2

) (
ABE2e2α

2
2 + γ2 − E2e2µ2

) (
ABE2e2α

3
2 + β2γ2 +ABα2γ1γ2 − E2α2µ2

)
= 0. (397)

Examining these factors one at a time, we first consider γ2 = 0. With this, we get the equation(
ABα2

2 − µ2

) [
A2α4

2 +
(
ABα2

2 − µ2

)2]
= 0, (398)

hence, we take µ2 = ABα2
2. Inserting this yields either the sufficient condition

β2 =
α2

e2
−ABα2γ1, (399)

or β2 6= α2

e2
−ABα2γ1, in which case we can take the resultant of the remaining nonzero factors in β2 to

require
α2

(
e3

2 − e1e2 + 1
)

= 0. (400)

If we take α2 = 0 we obtain β2 = 0, which is a special case of the sufficient condition above. If we take
e3

2 − e1e2 + 1 = 0, we ultimately see that the sufficient condition is also necessary. Considering γ2 6= 0,
we then take µ2 = ABα2

2. However, substituting this yields an expression that is positive-definite in γ2

being equal to 0, so we have a contradiction.
Next, considering γ2 6= 0 and µ2 6= ABα2

2, we take ABE2e2α
2
2 + γ2−E2e2µ2 = 0. Doing this reveals

the necessary and sufficient condition β2 = α2

e2
−ABα2γ1. In the last case, we have

β2 =
−ABE2α3

2 −ABα2γ1γ2 + E2α2µ2

γ2
, (401)

69



which implies the sufficient condition

µ2 =
ABE2e2α

2
2 + γ2

E2e2
, (402)

or if not we can take resultants in µ2 with the remaining nonzero factors to obtain the necessary condition(
e2

1 − 4e2

) (
e3

2 − e1e2 + 1
)

= 0, (403)

which requires either λ1 = λ2 or λ1 = 1
λ2
2
, i.e., b has a repeated eigenvalue. If we take λ1 = λ2, and look

for different values of µ2, we obtain

µ2 =
ABE2α2

2 + γ2λ2

E2
. (404)

Substituting this into the remaining equations, we see that either λ2 = 1 or α2 = 0, both of which reduce
this value of µ2 to the previous sufficient condition. Taking λ1 = 1

λ2
2

and looking for different solutions

immediately requires α2 = 0, which then further implies µ2 = γ2
E2λ2

2
. This, however, demands λ2 = 1,

and we realize that the previous sufficient condition was also necessary.
Next, considering µ1 = γ1 = 0, we obtain the eigenvalue equation β3

2 − I1α2β
2
2 + I2α

2
2β2 − α3

2 = 0,
which demands b have the eigenvalue ν = β2

α2
, or β2 = α2 = 0. In the first case, we obtain the sufficient

condition

µ2 =
ABE2e2α

2
2 + γ2

E2e2
. (405)

Taking the resultant of the remaining factors yields γ2

(
e3

2 − e1e2 + 1
)

= 0, which has solutions γ2 = 0
or λ1 = 1

λ2
2
. Taking γ2 = 0 shows that in this case the sufficient condition is also necessary, and taking

λ1 = 1
λ2
2

reveals that the sufficient condition is necessary in all cases.

Finally, we take α2 = β2 = 0. This reveals only one remaining equation E6µ3
2−I1γ2E

4µ2
2+I2γ

2
2E

2µ2−
γ3

2 = 0, which, since γ2 6= 0, requires the eigenvalue ν = E2µ2

γ2
, and hence µ2 = γ2

E2e2
. The analysis tree

is then

O

-

--

---

--+

-+

+

+-

+--
+---

+--+

+-+
+-+-

+-++
+-++-

+-+++
+-+++-

+-++++

++

++-

+++
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Nodes:

• 0: (β1 +ABα1γ1)
3 − I1 (β1 +ABα1γ1)

2
α1 + I2 (β1 +ABα1γ1)α2

1 − α3
1 = 0

• −:
(
e3

2 − e1e2 + 1
)

(e2β2 − α2 +ABe2 (α2γ1 + α1γ2)) = 0

• +:
(
E2µ1

)3 − I1 (E2µ1

)2
γ1 + I2

(
E2µ1

)
γ2

1 − γ3
1 = 0

• −−:
(
E2e2µ2 −ABE2e2α

2
2 − γ2

) (
e3

2 − e1e2 + 1
)

= 0

• −+: β2 = α2

e2
−AB (α2γ1 + α1γ2) 6= α2

e2
−AB (α2γ1 + α1γ2)

• +−: γ2

(
ABα2

2 − µ2

) (
ABE2e2α

2
2 + γ2 − E2e2µ2

) (
ABE2e2α

3
2 + β2γ2 +ABα2γ1γ2 − E2α2µ2

)
=

0

• ++: β3
2 − I1α2β

2
2 + I2α2β2 − α3

2 = 0

• − −−: µ2 =
ABE2e2α

2
2+γ2

E2e2

• − −+: µ2 =
ABE2e2α

2
2+γ2

E2e2
6= ABE2e2α

2
2+γ2

E2e2

• +−−: ABα2
2 − µ2 = 0 and (β2e2 − α2 +ABe2α2γ1) (...)a = 0

• +−+: γ2 = 0 6= 0

• + +−: µ2 =
ABE2e2α

2
2+γ2

E2e2

• + + +: µ2 = γ2
E2e2

• +−−−: β2 = α2

e2
−ABα2γ1

• +−−+: α2

(
e3

2 − e1e2 + 1
)

= 0

• +−+−: γ2 = 0 6= 0

• +−++:
(
ABE2e2α

2
2 + γ2 − E2e2µ2

) (
ABE2e2α

3
2 + β2γ2 +ABα2γ1γ2 − E2α2µ2

)
= 0

• +−+ +−: β2 = α2

e2
−ABα2γ1

• +−+ + +:
(
e2

1 − 4e2

) (
e3

2 − e1e2 + 1
)

= 0

• +−+ + +−: ABE2e2α
2
2 + γ2 − E2e2µ2 = 0 6= 0

• +−+ + ++: ABE2e2α
2
2 + γ2 − E2e2µ2 = 0 6= 0

Edges (labelled by child node):

• −: ν = β1+ABα1γ1
α1

• +: α1 = β1 = 0

• −−: β2 = α2

e2
−AB (α2γ1 + α1γ2)

• −+: λ1 = 1
λ2
2

• +−: ν = E2µ1

γ1

• ++: γ1 = µ1 = 0

• − −−: µ2 =
ABE2e2α

2
2+γ2

E2e2

• − −+: µ2 6= ABE2e2α
2
2+γ2

E2e2
and e3

2 − e1e2 + 1 = 0

• +−−: γ2 = 0
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• +−+: γ2 6= 0

• + +−: ν = β2

α2

• + + +: β2 = α2 = 0

• +−−−: µ2 = ABα2
2 and β2 = α2

e2
−ABα2γ1

• +−−+: Resβ2 ((...)a , (...)b) = 0

• +−+−: µ2 = ABα2
2

• +−++: µ2 6= ABα2
2

• +−+ +−: ABE2e2α
2
2 + γ2 − E2e2µ2 = 0

• +−+ + +: ABE2e2α
2
2 + γ2 − E2e2µ2 6= 0

• +−+ + +−: e2
1 = 4e2

• +−+ + ++: e3
2 − e1e2 + 1 = 0

These are all special cases of the solution

µ1 = 2ABα1α2 +
γ1

E2e2
, (406)

µ2 =
ABE2e2α

2
2 + γ2

E2e2
, (407)

β1 =
α1

e2
−ABα1γ1, (408)

β2 =
α2

e2
−AB (α2γ1 + α1γ2) , (409)

which lets us solve for M11(r) and obtain the anomalous solution

f(r) = γ1 +
γ2

r2
, (410)

M13(r) = α1r +
α2

r
, (411)

M11(r) =
e1 ±

√
e2

1 − 4 (e2 +A2f(r)2 +A2E2M13(r)2)

2A2
, (412)

M12(r) =
f(r)−ABM11(r)

Cr
, (413)

M22(r) =
e2f(r)2

(
e1 +A2

(
B2 − 1

)
M11(r)

)
C2r2e2 (f(r)2 + E2M13(r)2)

+
E2
(
1 +A2B2e2M

11(r)
)
M13(r)− 2ABe2f(r)

(
f(r)2 + E2M13(r)2

)
C2r2e2 (f(r)2 + E2M13(r)2)

, (414)

M23(r) = −ABM
13(r)

Cr
−
M13(r)f(r)

(
1− e1e2 +A2e2M

11(r)
)

Ce2r (f(r)2 + E2M13(r)2)
, (415)

M33(r) =
f(r)2 + E2e2

(
e1 −A2M11(r)

)
M13(r)2

E2e2 (f(r)2 + E2M13(r)2)
. (416)

C The Role of Symmetry

We note that the left Cauchy-Green stretch tensor fields present in all the known universal solutions,
both classical and anelastic, are equivariant under the defining action of a Lie subgroup of the special
Euclidean group. In particular, these subgroups all have at least two independent generators, with
the three anelasic families separated by the nature of these generators; taking two purely translational
generators yields U2, taking one translational and one rotational yields U3, and taking two rotational
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yields U4. Of course, these families are not simply symmetric with respect to an arbitrary choice of
generators of these natures; the translational generator in U3 is orthogonal to the plane of rotation
determined by the rotational generator of U3, and both of the rotational generators for U4 fix a common
point. It is then natural to ask if there are other universal solutions that are likewise equivariant with
respect to a similar subgroup, but without these specific generator choices.

C.1 The Lie Algebra se(n)

To examine the subgroup structure in terms of generators, we turn our attention to se(3), the Lie algebra
associated to the Lie group SE(3). We can represent the group SE(n) as a subgroup of GL(n+ 1) in the
following way: The element (Q|c) ∈SE(n) is identified with the (n+ 1)× (n+ 1) matrix[

Q c
0 1

]
, (417)

where 0 is a 1 × n block of 0’s. It is clear that the standard matrix multiplication in GL(n+ 1) agrees
with the group action determined by the defining action of SE(n) on En. As a reminder of example A.1,
the defining action of the special Euclidean group induces the group action

(Q2|c2) ? (Q1|c1) = (Q2Q1|Q2c1 + c2) . (418)

Translating this into the representation (417), we have[
Q2 c2
0 1

] [
Q1 c1
0 1

]
=

[
Q2Q1 Q2c1 + c2

0 1

]
, (419)

which clearly captures the induced group structure in terms of standard matrix multiplication. Taking
the derivative of this representation around the identity yields a representation of the Lie algebra se(n):[

Ω u
0 0

]
, (420)

where Ω is a skew symmetric matrix, u is an n × 1 column vector, and 0 is a 1 × n block of 0’s. We
seek to examine the subalgebra structure of se(n), and in particular, se(3), since subalgebras with two
generators will directly correspond to Lie subgroups with two generators by way of the exponential map.

The defining feature of SE(n) being its action on En, we expect there to be an analogous representation
for En such that this action is reflected by the standard action of GL(n+ 1) on Rn+1. Indeed the

analogous representation takes the point with position vector X ∈ Rn to the vector

[
X
1

]
∈ Rn+1. Under

this representation, the special Euclidean group acts via matrix multiplication as follows:[
Q c
0 1

] [
X
1

]
=

[
QX + c

1

]
, (421)

which clearly agrees with the action as defined previously.

C.2 Subalgebras of se(3)

Under the above representation, an arbitrary element of se(3) takes the form
0 −ζ ε α
ζ 0 −δ β
−ε δ 0 γ
0 0 0 0

 , (422)

and the Lie bracket becomes the matrix commutator. Clearly elements of this form span a 6-dimensional
subspace of R4×4. We are interested in Lie subalgebras generated by the two generators, hence we
consider two arbitrary elements of se(3), examine their product, and check for linear dependence. Doing
this successively will identify proper subalgebras generated by two elements.
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We first want to choose our coordinates in such a way that to simplify our calculations. We seek to
align our coordinate frame with the axial vector of the skew symmetric submatrix Ω. The axial vector

of Ω lies in the null space of Ω, which is spanned by the vector
[
δ, ε, ζ

]T
, unless Ω = 0, in which case

we do not have to do anything at this step. These two options are exhaustive, since the eigenvalues of
Ω are {0,±

√
−δ2 − ε2 − ζ2}.

Provided Ω 6= 0, we can choose a Cartesian coordinate system such that e3 is the normalized axial
vector:

e3 =
1√

δ2 + ε2 + ζ2

δε
ζ

 . (423)

We do this by considering any rotation mapping the normalized axial vector to e3. Denoting such a
rotation R, we change coordinates by computing

[
R 0
0 1

]
0 −ζ ε α
ζ 0 −δ β
−ε δ 0 γ
0 0 0 0

[RT 0
0 1

]
. (424)

When we apply this coordinate transformation, our chosen element of the Lie algebra takes the form
0 −ω 0 α
ω 0 0 β
0 0 0 γ
0 0 0 0

 , (425)

where ω =
√
δ2 + ε2 + ζ2, and the α, β, and γ here have been relabeled, being independent linear

combinations depending on R of the old α, β, and γ, which were arbitrary to begin with.
Next, we seek to apply a coordinate translation to simplify the translation portion of our chosen

element. To do this, we seek to identify the fixed points of this action. The velocity of points under the
action of the one-parameter subalgebra generated by this element is given by

0 −ω 0 α
ω 0 0 β
0 0 0 γ
0 0 0 0



x
y
z
1

 =


α− ωy
ωx+ β
γ
0

 . (426)

Hence, if ω 6= 0, we can choose a coordinate translation that sets the point
[
−β/ω α/ω 0

]T
to be the

origin. Under this transformation, our chosen element takes the form
1 0 0 β/ω
0 1 0 −α/ω
0 0 1 0
0 0 0 1




0 −ω 0 α
ω 0 0 β
0 0 0 γ
0 0 0 0




1 0 0 −β/ω
0 1 0 α/ω
0 0 1 0
0 0 0 1

 =


0 −ω 0 0
ω 0 0 0
0 0 0 u
0 0 0 0

 . (427)

Here, u = γ, but we shall explicitly use u and ω to emphasize that we have expressed this element of
se(3) in a coaxial coordinate system. In the case where Ω = 0, we simply choose our coordinate rotation
so that our translation vector is aligned with e3, which sets our chosen Lie algebra element to the form
above with ω = 0.

C.2.1 2-Dimensional Subalgebras

Obviously, provided that the generators we select are linearly independent, they span a two-dimensional
vector space, hence all subalgebras containing them are at least 2-dimensional. In order for us to identify
2-dimensional subalgebras, we simply need to establish necessary and sufficient conditions for the two
generators and their bracket to be linearly dependent. We select a coordinate system that is coaxial with
one of our generators, and hence have

v1 =


0 −ω 0 0
ω 0 0 0
0 0 0 u
0 0 0 0

 , (428)
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and select another arbitrary generator,

v2 =


0 −ζ ε α
ζ 0 −δ β
−ε δ 0 γ
0 0 0 0

 . (429)

Taking the Lie bracket of these two elements, we obtain

[v1, v2] =


0 0 δω −uε− βω
0 0 εω uδ + αω
−δω −εω 0 0

0 0 0 0

 . (430)

We then require the Lie bracket of our generators to be within their span, i.e., we seek all solutions to
the equations

a1v1 + a2v2 + [v1, v2] = 0, (431)

which explicitly become

a2α− uε− βω = 0,

a2β + uδ + αω = 0,

a1u+ a2γ = 0,

a2δ − εω = 0,

a2ε+ δω = 0,

a2ζ + a1ω = 0.

Taking the combination δ (a2ε+ δω = 0)− ε (a2δ − εω = 0) yields the equation(
ε2 + δ2

)
ω = 0, (432)

which implies that either ω = 0, or both δ = 0 and ε = 0. If ω = 0, we consider the combinations

ε (a2α− uε = 0)− α (a2ε = 0) = −uε2 = 0, (433)

δ (a2β + uδ = 0)− β (a2δ = 0) = uδ2 = 0. (434)

Since v1 6= 0, u 6= 0, hence we require δ = ε = 0. With these substitutions, [v1, v2] vanishes, and we have

v1 =


0 0 0 0
0 0 0 0
0 0 0 u
0 0 0 0

 , (435)

and

v2 =


0 −ζ 0 α
ζ 0 0 β
0 0 0 γ
0 0 0 0

 . (436)

If ζ 6= 0 can always reselect our origin to eliminate α and β, while leaving v1 unchanged. Hence we
obtain the symmetry of family U3. If ζ = 0, we have two independent translational symmetries, which
yields the symmetry found in family U2.

Now we turn our attention to the case where ω 6= 0, and consider the combination

α (a2β + αω = 0)− β (a2α− βω = 0) =
(
α2 + β2

)
ω = 0. (437)

Since ω 6= 0, we require α = β = 0. This leaves us with v1 as initially specified and

v2 =


0 −ζ 0 0
ζ 0 0 0
0 0 0 γ
0 0 0 0

 , (438)

which means that v1 and v2 generate independent screw motions about the same axis, corresponding to
the symmetry of family U3.
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C.2.2 3-Dimensional Subalgebras

Defining v3 = [v1, v2], and provided v3 6= 0, v1, v2, and v3 span a three-dimensional vector space. The
span of these three vectors must be closed under the Lie bracket, hence we require

a1v1 + a2v2 + a3v3 + [v1, v3] = 0, (439)

and
b1v1 + b2v2 + b3v3 + [v2, v3] = 0. (440)

We know that if v3 = 0 then v1 and v2 generate a 2-dimensional subalgebra, hence we can freely assume
v3 6= 0.

First, we recognize that if ω = 0, both v1 and v3 are pure translations. They are linearly independent
provided δ 6= 0 and ε 6= 0, in which case v3 = 0. Hence, the bracket of a pure translation with a
non-coaxial rotation yields another translation that is linearly independent of the original translation.
Hence, t(2) is contained in such a Lie subalgebra, and hence all universal solutions that are symmetric
with respect to the subgroups corresponding to these subalgebras are contained in U2. If the rotation
is coaxial with the translation, then the bracket vanishes and we are reduced to the already solved
2-dimensional case; hence from now on, we can safely assume ω 6= 0.

The equations we must tackle are explicitly

a1u+ a2γ = 0,

a2ζ + a1ω = 0,

b1u+ b2γ + u
(
δ2 + ε2

)
+ 2ω (αδ + βε) = 0,

b2ζ + b1ω + ω
(
δ2 + ε2

)
= 0,

b2δ − b3εω − δζω = 0,

b2ε+ b3δω − εζω = 0,

a2δ − a3εω − δω2 = 0,

a2ε+ a3δω − εω2 = 0,

b2β + b3uδ − uεζ + b3αω − γεω − βζω = 0,

a2α− a3uε− a3βω − 2uδω − αω2 = 0,

b2α− b3uε− uδζ − b3βω − γδω − αζω = 0,

a2β + a3uδ + a3αω − 2uεω − βω2 = 0.

Taking the linear combination

δ
(
a2ε+ a3δω − εω2 = 0

)
− ε
(
a2δ − a3εω − δω2 = 0

)
= a3

(
δ2 + ε2

)
ω = 0, (441)

coupled with the condition ω 6= 0 yields either a3 = 0 or both δ = 0 and ε = 0. If δ = ε = 0, v3 is a pure
translation that is orthogonal to the axis of v1, hence, taking [v1, v3] generates another pure translation
orthogonal to the axis of v1 and that of v3, hence we capture the symmetry t(2) as a subgroup of our
symmetry group, and hence this case is captured in family U2.

If either ε 6= 0 or δ 6= 0, we have a3 = 0, which upon substitution yields δ
(
a2 − ω2

)
= 0 and

ε
(
a2 − ω2

)
= 0. These equations together imply a2 = ω2. Substituting this new relation into our

equations, two of our equations reduce to

− 2uδω = 0, −2uεω = 0, (442)

which together imply that u = 0, since δ and ε cannot simultaneously vanish and ω 6= 0; hence v1 must
be a pure rotation, not simply a screw motion. With this, our first equation becomes γω2 = 0, hence
γ = 0 as well. When we insert this relation into our equations, we obtain

2 (αδ + βε)ω = 0, (443)

which implies that the inner product of v2’s axial vector with its translation vector is zero. This implies
that v2 is also a pure rotation, since this inner product is unchanged under coordinate transformations.
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This can be seen by noting that the velocity field u induced by the action of an element of se(3) is given
by 

u1

u2

u3

0

 =


0 −ζ ε α
ζ 0 −δ β
−ε δ 0 γ
0 0 0 0



x
y
z
1

 =


εz − ζy + α
ζx− δz + β
δy − εx+ γ

0

 . (444)

Taking the inner product of this with the embedding of the axial vector
[
δ ε ζ 1

]T
yields

αδ + βε+ γζ, (445)

which, not depending on position, is an invariant of the velocity field. Since the velocity field is coordinate
independent, we know that this invariant will be preserved under coordinate changes. When we express
our generator in a coordinate system aligned with its axis, this invariant becomes ωu, which vanishes if
either our generator is a pure translation or a pure rotation. In our analysis, we have for v2, αδ+βε = 0
together with γ = 0, hence we know v2 is either a pure translation or a pure rotation. We know that v2

is not a pure translation since either δ or ε is nonzero. Additionally, we know that the axial vectors of
v1 and v2 are linearly independent, since either δ or ε is nonzero.

Summing up our progress thus far, we have shown that both v1 and v2 must be pure rotations. In fact,
their axes of rotation intersect, hence they generate so(3), the symmetry present in U4, indicating that
our classification captures all 3-dimensional cases. To see this, note that we have aligned our coordinates
so that the axis of rotation for v1 is the z axis. We seek to show that the axis of rotation for v2 intersects
the z axis.

First notice that for rotations about the origin, the velocity field generated is of the form

v = ω ∧X, (446)

where ω is the axial vector of Ω, and ∧ is the standard cross product. This implies that the velocity
vector at a point is orthogonal to the plane spanned by the axial vector of the rotation, and the position
vector X. Since (446) assumes we have chosen our origin such that the axis of rotation passes through the
origin, this plane is equivalently the plane containing the axis of rotation and the point X. Therefore, for
the generator v2, we can examine the velocity generated at the origin, and recognize that it lies entirely
in the x, y plane. If this velocity is nonzero, we know that the plane passing through the origin that is
orthogonal to this translation contains v2’s axis of rotation. This plane also contains the z axis, since all
planes passing through the origin that are orthogonal to a nonzero vector in the x, y plane contain the
z axis. Therefore the axes of rotation for v1 and v2 are coplanar. We have already established that they
are not parallel, since the axial vectors for v1 and v2 are linearly independent, hence they must intersect
at some point. If the velocity generated by v2 at the origin is zero, then the axis of rotation of v2 passes
through the origin, and hence not only intersects the z axis, but intersects it at the origin.

We have therefore shown that all three-dimensional Lie subalgebras of se(3) that are generated by two
linearly independent generators either contain t(2) as a subalgebra, or are so(3), the algebra associated
with the set of rotations about a fixed point, and hence universal solutions that are equivariant with
respect to the associated Lie groups are contained in one of our discovered families.

C.2.3 4+ Dimensional Subalgebras

Without loss of generality, we assume v1, v2, v3, and v4 = [v1, v3] are linearly independent, since the
other choice would be v4 = [v2, v3], which would be equivalent. Specifically, we denote V2 = Span (v1, v2),
and V3 = Span (v1, v2, [v1, v2]). Provided that v1, v2, and [v1, v2] are linearly independent, we can write
V3 = V2 ⊕ Span ([v1, v2]). It suffices to take the fourth linearly independent element to be of the form

v4 = [u,w] , u ∈ V2, w ∈ Span ([v1, v2]) , (447)

since for all u,w ∈ V2, [u,w] ∈ V3, and for all u,w ∈ Span ([v1, v2]), [u,w] = 0. Since v1 and v2 are
arbitrary, we can choose this fourth linearly independent element to be [v1, v3]. Doing this, we have

v4 =


0 0 −εω2 −ω (2uδ + αω)
0 0 δω2 −ω (2uε+ βω)
εω2 −δω2 0 0
0 0 0 0

 . (448)
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Notice that the axial vectors of v1, v3, and v4 are [0, 0, ω]
T

, [−εω, δω, 0]
T

, and
[
−δω2,−εω2, 0

]T
respec-

tively. These vectors are mutually orthogonal, hence provided ω 6= 0 and that ε 6= 0 or δ 6= 0, these
span R3, and hence the rotational components of these three generators can be used to reduce any
fourth linearly independent generator to a pure translation. As shown earlier, taking the bracket of a
pure translation with any other linearly independent element of se(3) generates a 2-dimensional subal-
gebra: either t(2) or so(2) × t(1). Therefore, all subalgebras of dimension four or higher contain one of
these two-dimensional subalgebras, hence universal solutions that are symmetric with respect to such a
4-dimensional subalgebra will be contained in either U2 or U3.
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