
On an equation from the theory of field dislocation mechanics

Amit ACHARYA & Luc TARTAR∗

to the memory of Professor Giovanni PRODI

Abstract.

Global existence and uniqueness results for a quasilinear system of partial differential equations in
one space dimension and time representing the transport of dislocation density are obtained. Stationary
solutions of the system are also studied, and an infinite dimensional class of equilibria is derived. These time
(in)dependent solutions include both periodic and aperiodic spatial distributions of smooth fronts of plastic
distortion representing dislocation twist boundary microstructure. Dominated by hyperbolic transport-like
features and at the same time containing a large class of equilibria, our system differs qualitatively from
regularized systems of hyperbolic conservation laws and neither does it fit into a gradient flow structure.

Introduction.

Since this article is written for a special issue of the Bolletino dell’Unione Matematica Italiana, in
memory of Giovanni PRODI, the introduction is written in the first person, by the second author.

During my second year as a graduate student, in Paris in 1968–1969, my advisor, Jacques-Louis LIONS,
gave a course on nonlinear partial differential equations, and he wrote a book in this way [Li]. After a
secretary had typed his handwritten notes, he asked me to proof-read one chapter at a time, and it was then
that I first encountered the name of Giovanni PRODI, who was quoted for questions about Navier–Stokes
equation. I had already taken the habit of reading very little, and I could not have read an article in Italian
at the time, but I did not even try to read the joint work of Giovanni PRODI and my advisor, a note to the
Comptes Rendus de l’Académie des Sciences, written in French, of course.

I am not sure when I first met Giovanni PRODI, and I suppose that it was in Pisa when I first visited the
Scuola Normale Superiore at the invitation of Ennio DE GIORGI, and I remember well a visit in February
1982, just after having visited my good friend Carlo SBORDONE in Napoli at the time of carnevale, and while
in Pisa some new friends took me to carnevale in Viareggio, which I could not appreciate so well since I did
not know the politicians who were caricatured, but I enjoyed the fireworks afterward, the best I ever saw. I
could well have been in Pisa for a short visit before that occasion.

Since I first associated the name of Giovanni PRODI to Navier–Stokes equation, I thought of writing
an article in his memory on this subject, but I have no important remark to make that I have not already
written in my four books published by Springer in the lecture notes series of Unione Matematica Italiana,
the first one on Navier–Stokes equation [Ta3], the second one on Sobolev spaces and interpolation spaces
[Ta4], the third one on kinetic theory [Ta5], and the fourth one on homogenization [Ta6].

However, I find useful to emphasize again that it gives a bad impression about mathematicians that after
convincing a philanthropist like L. T. CLAY to give one million dollars away for a prize on the Navier–Stokes
equation, those in charge of writing on that problem could not find a mathematician competent enough
to tell them what the Navier–Stokes equation is about. I certainly received an excellent training in Paris,
but I thought that everyone learned that the basic laws of continuum mechanics are about conservation of
mass, conservation of linear momentum, conservation of angular momentum (usually taken care of by the
symmetry of the Cauchy stress tensor), and conservation of energy, together with some constitutive equations
forming equations of state, although I was not told in a clear way that the validity of equations of state is
questionable out of equilibrium, which was the reason why kinetic theory was invented, by MAXWELL, and
by BOLTZMANN.

Then, since conservation of mass gives an hyperbolic equation ρt + div(ρ u) = 0 for the density (of
mass) ρ, one avoided this “difficulty” by assuming incompressibility, ρ = ρ0, which has the unfortunate
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effect of making unphysical the “pressure” p appearing in the equation, since after that it is only a Lagrange
multiplier defined up to addition of a “constant”, depending upon t, and although the speed of sound at usual
atmospheric pressure (and reasonable temperature) is about 300 meters per second for air and about 1500
meters per second for water, the incompressibility hypothesis makes it infinite. Then, one forgot to tell why
the equation of conservation of energy was not considered, which is that one assumed the dynamic viscosity
µ to be constant, without saying it and without observing that having it independent of temperature is
quite contrary to evidence, so that one finally only considers an equation for the velocity field u, which uses
a reduced “pressure” p

ρ0
, and where the kinematic viscosity ν = µ

ρ0
appears. Then, trying to describe the

group of transformations which leave the equation invariant, besides translation in space or time, and scaling,
one forgot to mention invariance by rotation, since fluids like air or water are isotropic, and one forgot to
mention Galilean invariance, which makes the difference between the slightly unphysical Stokes equation and
the more physical Navier–Stokes equation (first introduced in 1821 by NAVIER using a molecular approach,
and then derived more mathematically using stress, in 1843 by SAINT-VENANT, and in 1845 by STOKES).
Then, one chose domains without boundary, like the not so physical R3 or the unphysical torus T3, although
the mathematical problem is to find good bounds for the vorticity, and that it is observed that vorticity is
created at the boundary.

I am not sure why some harmonic analysts are fascinated by the scaling property, since it only says that
if one changes the unit of length and the unit of time, then the unit of velocity is automatically changed, and
the scaling property is just observing that the unknown u is a velocity. Of course, there could be unexpected
consequences of scaling, and Sobolev’s embedding theorem is a classical one, about which I have introduced
a general method for its extension to Lorentz spaces, published in this journal [Ta1], and my work is in the
spirit of what Jaak PEETRE had done,1 and also extends a result of Häım BREZIS and Stephen WAINGER,
but although it uses a classical scaling argument for the domain x ∈ RN , it uses a nonlinear scaling for the
target space R by considering various functions ϕ(u), and adapting the choice of ϕ to the rearrangement of
|u|; I think that it would be a generalization of that type of argument and not of the classical scaling that
could be useful, so that I expect that a different kind of scaling argument could be discovered.

Giovanni PRODI participated in the 1950s and 1960s in the “rinascita” of Italian mathematics together
with a few other colleagues, some of whom I met a few times, like Guido STAMPACCHIA and Ennio DE

GIORGI who died before him, or Enrico MAGENES who died more recently, and in some way my decision to
write lecture notes for the graduate courses which I taught (after 1999) followed a similar plan to revitalize
a way of doing mathematics with a serious interaction with continuum mechanics and physics, in the spirit
of POINCARÉ, HADAMARD, and Jean LERAY in France; I do not put Laurent SCHWARTZ in this category
although his theory of distributions helped give a more general framework than what Sergei SOBOLEV had
done for problems in continuum mechanics or physics, nor do I put my advisor either, since I could not find in
them a true will to improve the understanding of continuum mechanics or physics through the development
of new mathematical tools, which should permit to go a step further, and correct some of the “mistakes”
made by the practitioners. However, since engineers and physicists are not mathematicians, they are allowed
to guess results without calling them conjectures, so that a “mistake” may just be what a mathematician
calls a conjecture which is proven to be false, but I shall measure the success of my plan by the number of
mathematicians who will understand the errors in reasoning which were made for arriving at some popular
models, and hopefully have the courage to mention such mistakes, and suggest ways for finding better models.

Since no realistic approach to plasticity in solids can be made without knowing about dislocations, the
point of view that we have taken is to start from a reasonable description of physical reality, the theory of
field dislocation mechanics, of which the first author is a specialist, and try to solve some of the systems of
partial differential equations which appear in this theory, by improving the actual mathematical methods,
but since such a goal has not been attained yet, we have looked at simpler systems in one space dimension,
for which some variants of more or less classical methods can be used. We first present the general theory,
and then explain how to derive the simpler models which will be treated mathematically afterward, and

1 I realized afterward that Jaak PEETRE could not have proven my generalization W 1,1(RN ) ⊂ L1∗,1(RN ),
since he followed the method of Sergei SOBOLEV, which gives W 1,p(RN ) ⊂ Lp

∗
(RN ) only for 1 < p < N ,

and then I did not attribute correctly the case p = 1 of “Sobolev’s embedding theorem”, which was proven
independently by Emilio GAGLIARDO and by Louis NIRENBERG.
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it would certainly be desirable that some mathematicians pretending to work on realistic problems would
follow this scheme instead of specializing in unrealistic questions and then look for inadequate models of the
kind that they like which were used in the past, due to a lack of a better alternative, and pretend that it
is still important to solve them, without explaining in what way they are now known to be deficient, and
which mathematical questions about them are nevertheless useful to be settled.

Although the equation that we consider looks like an unconventional regularization (certainly for those
who never questioned the “artificial viscosity method”) of an hyperbolic system of conservations laws, trans-
port is the main feature of our system, with a weaker dissipation effect for ε > 0 than in hyperbolic systems of
conservations laws, for which an up-to-date reference is the book of my good friend Constantine DAFERMOS

[Da], where he describes various types of E-conditions for selecting which discontinuities one wants to accept.
One should then be careful in comparing our results to what happens for hyperbolic system of conservations
laws, as we show in sections 3 and 4.

1. Field Dislocation Mechanics.

Field Dislocation Mechanics, denoted FDM afterwards, was developed by the first author in [Ac1], [Ac2],
[Ac3], [Ac4], [Ac5], as a pde-model for understanding plasticity of solids as it arises from the nucleation,
the motion, and the interaction of defects, in an otherwise elastic motion of a material. FDM advances
the pioneering work of KRÖNER [Kr], MURA [Mu], FOX [Fo], and John WILLIS [Wi] to produce the first
pde model for the prediction of coupled dislocation internal stress, dislocation microstructure evolution, and
permanent deformation in generic bodies of finite extent. A unique feature of FDM is the treatment of
dissipative dislocation transport accounting for nonlinearity due to geometric and crystal elasticity effects.
While simplifications of the model to a small deformation setting were developed and will be analyzed in this
article, an essential feature of the general theory is to make no restrictions on the material and the geometric
nonlinearities. It is perhaps fair to say that there is a general bias that, in the context of modeling of defect
dynamics in an elastic material, dislocations should be thought of as discrete objects that are best studied
as singularities within an otherwise linear theory, with their nonlinear interactions “put in by hand.” The
primary goals of FDM are: to understand such discreteness as field localizations without singularities that
emerge naturally in nonlinear theory, whose interactions are decided by partial differential equations which
encode conservation statements of a geometric and topological nature, coupled with nonlinear elasticity; and
to understand the emergence of macroscopic plasticity as a homogenization of this underlying system of
non-linear pde. This article is one of the first rigorous studies (cf. [Ac&Ma&Zi]) of the dynamics of such
nonsingular localizations arising in perhaps the most simplified, but exact, dynamic problem of FDM, which
nevertheless appears to be surprisingly rich. For instance, NABARRO [Na] states “The attempt to build up a
dislocation theory while neglecting the non-Hookean forces which hold a dislocation together and prevent its
spreading thinly over the glide plane is bound to encounter difficulties similar to the ‘purely’ electromagnetic
theory of the electron.”. As we show, in FDM, even with linear elasticity, it is possible to hold a dislocation
together and this is because of nonlinearity and non-scalar nature of dislocation transport.

The full 3-dimensional, small deformation theory is presented first (for details, see [Ac4]) and an exact
simplification for a time-dependent system in one space dimension is then derived. The physical context
that this simplification represents is described, and primary questions of interest related to the system are
mentioned.

The notation used is as follows: for a second-order tensor A, a vector v, and a spatially constant vector
field c,

(A× v)T c = (AT c)× v for all c

(divA) · c = div(AT c) for all c

(curlA)T c = curl(AT c) for all c.

In rectangular Cartesian components,

(A× v)im = emjkAijvk

(divA)i = Aij,j

(curlA)im = emjkAik,j
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where one sums over repeated indices, emjk is a component of the third-order alternating tensor X, and ,j

as an index means ∂j . Also, the vector X AB is defined as

(X AB)i = eijkAjrBrk.

The spatial derivative, for the component representation is with respect to rectangular Cartesian coordi-
nates on the body. For all manipulations with components, we shall always use such rectangular Cartesian
coordinates. The symbol div represents the divergence, grad the gradient, and div grad the Laplacian. We
have occasion to use the identity curl curl(·) = grad div(·) − div grad(·), often for an argument for which
div(·) = 0. A superposed dot represents a time derivative.

The complete set of equations is

on R



curl χ = α
div χ = 0
div(grad ż) = div(α× V )
Ue := grad(u− z) + χ ; Up := grad z − χ
div[T (Ue)] = 0
α̇ = −curl(α× V )

(1)

where R is the body, and the various fields are defined as follows. χ is the incompatible part of the elastic
distortion tensor Ue, u is the total displacement field, and u − z is a vector field whose gradient is the
compatible part of the elastic distortion tensor. Up is the plastic distortion tensor. α is the dislocation
density tensor, and V is the dislocation velocity vector. α× V represents the flow of Burgers vector carried
by the dislocation density field moving with velocity V relative to the material. The argument of the div
operator in the fifth equation in (1) is the (symmetric) stress tensor, and the functions V , T are constitutively
specified. All the statements in (1) are fundamental statements of kinematics or conservation. In particular,
the sixth equation in (1) is a purely geometric statement of conservation of Burgers vector content carried by
a density of lines (see [Ac5] for a derivation) and the fifth equation in (1) is the balance of linear momentum
in the absence of inertia and body forces.

As for boundary conditions,

on ∂R, with n denoting the normal,

{
χn = 0
(grad(ż)− α× V )n = 0

(2)

are imposed along with standard conditions on displacement and/or traction. For the dislocation density
field, analysis from the linear partial differential equation point of view [Ac2] indicates that it suffices to
prescribe α (V · n) on inflow parts of the boundary, but we believe that the nonlinear problem admits other
physically motivated possibilities [Ac&Ro].

In order to define sensible, minimal constitutive relations, we require that the mechanical power supplied
by external agencies always be greater than or equal to the rate at which energy is stored in the body at all
instants of time. To ensure this, we define a stored-energy function,

ψ = ψ̂(Uesym) +
ε

2
α : α, where α : α = αijαij , (3)

in terms of which the stress is defined as

T =
∂ψ

∂Uesym
,

and the “driving force” for the dislocation velocity is

V → X (T + ε [curl α]T )α. (4)

In the above, ε = µ b2 is to be considered a small parameter, where µ is the shear modulus (from linearized
elastic response) of the material and b is a typical interatomic spacing. The stored energy models the elastic
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straining of the material and energy contained in dislocation cores. In particular, the function ψ̂ could be
non-convex in its argument. We now assume the simplest possible linear kinetic equation for the dislocation
velocity in terms of its thermodynamic driving force:

V =
X (T + ε [curl α]T )α

B
, (5)

where B > 0 is a material constant called the “drag.” It is in the determination of the response function ψ
and V that FDM is designed to draw input from the apparatus of molecular dynamics or quantum mechanics.
It can now be shown [Ac4] that solving the sixth equation of (1) is equivalent to

U̇p = curl Up × X (T + ε [curl α]T ) curl Up

B
, (6)

and therefore solving (1)-(2) with the given constitutive equations is the same as solving (6) along with the
fifth equation in (1) with the same constitutive equations and then solving for the fields χ, grad(z) from
the first three equations in (1) and (2). It should be noted, however, that the sixth equation in (1) is the
fundamental statement of defect evolution and (6) a derived construct, given the structure of (1)-(2) that
is required in the nonlocal thermodynamic arguments to infer the dissipative driving force (4). This overall
model based on the driving force (4) with ε = 0 was first proposed in [Ac2]; it was subsequently rediscovered
and analyzed in [Li&Se1].

Our objective now is to solve the fifth equation in (1) and (6).

All tensor indices run from 1 to 3. We make the ansatz that Tij , i, j = 1, 2 are the only non-vanishing
(symmetric) stress components. Similarly, we assume that Upij , i, j = 1, 2 are the only non-vanishing plastic
distortion components. Additionally, we assume that all fields vary only in the x3 direction. As a consequence
we have div(Up) = 0 in this special case, which implies

curl α = −curl curl Up = div gradUp.

Thus (6) becomes

U̇p = curl Up × X (T + ε [div gradUp]T ) curl Up

B
. (7)

We also note that under the stated assumptions, the fifth equation in (1) written in components as

Tij,j = 0

is identically satisfied. Thus our task reduces to solving (7) with the assumed constitutive equation for the
stress tensor. Since force equilibrium is identically satisfied, any displacement field u with a spatial variation
in its gradient being only in the x3 direction and one that does not produce any T3j component would suffice
to generate the elastic distortion Ue; for definiteness we assume u = 0 on R for all times.

The physical problem we think of modeling is a bar of uniform rectangular cross section in the (x1, x2)
plane with axis being the x3 direction. All lateral surfaces of the cylinder are rigidly constrained and when
the bar is of finite length, it has free surfaces at the ends. The bar is assumed to contain a non-uniform initial
plastic distortion field possibly containing dislocations, and we would like to understand how this dislocation
distribution evolves and the type of spatial equilibria admitted by the model. Based on the assumptions,
the only non-vanishing components of the dislocation density tensor,

αr1 = Upr2,3 for r = 1, 2

αr2 = −Upr1,3 for r = 1, 2

are uniform on any cross-section, possibly varying from one cross-section to another. Contact with discrete
dislocations would have been made if the dynamics produces regions of length on the order of b where the
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dislocation density is non-vanishing with adjoining areas where it is zero or close to it. Thus we look for
dislocation walls of finite width, corresponding to smooth fronts in the plastic distortion.

We would now like to write (7) in simpler notation adapted to the exact ansatz we have assumed. We
first note that

(curl Up)ri = ei3kU
p
rk,3 = ei31U

p
r1,3 + ei3 2U

p
r2,3,

so that
(curl Up)r1 = −Upr2,3 for r = 1, 2, 3

(curl Up)r2 = Upr1,3 for r = 1, 2, 3

are the only possibly non-zero components of curl Up. Denote

T + ε [curl α]T = [T + ε div gradUp]T = AT ,

since T is symmetric. Next we expand

(X ATB)k = ekijAriBrj ,

assuming A3i = Ai3 = B3i = Bi3 = 0 for i = 1, 2, 3. With

ξk := (X ATB)k = eki1AriBr1 + eki2AriBr2,

this yields
ξ1 = e1i2AriBr2 = −Ar3Br2 = 0

ξ2 = e2i1AriBr1 = Ar3Br1 = 0

ξ3 = e3i1AriBr1 + e3i2AriBr2 = −Ar2Br1 +Ar1Br2

Choosing B = curl Up, we have

ξ3 = X (T + ε [div gradUp]T ) curl Up = (Tr2 + εUpr2,33)Upr2,3 + (Tr1 + εUpr1,33)Upr1,3. (8)

The only non-trivial statements of (7) now are

B U̇prm = emnpBrnξp = emn3Brnξ3 for r = 1, 2, i.e.

B U̇pr1 = e123Br2ξ3 = Upr1,3ξ3 for r = 1, 2,

B U̇pr2 = e213Br1ξ3 = Upr2,3ξ3 for r = 1, 2.

(9)

Finally, for ψ = ψ(Uesym, α), a class of function to which (3) belongs, we note that

(Uesym)ij =
1

2
[ui,j − Upij + uj,i − Upji]

hence
∂ψ

∂Uprj
= − ∂ψ

∂Uemn

∂(Uesym)mn

∂Uprj
= −Trj .

Denoting the coordinate x3 := x and introducing the array

ϕ = (Up11, U
p
21, U

p
12, U

p
22),

(9) is now expressed as

ϕt =
(
εϕxx −

∂ψ

∂ϕ
, ϕx

)
ϕx, (10)

where we work in physical units such that B = 1, (·, ·) represents the standard inner-product of two vectors
in RN , and ∂ψ/∂ϕ is a function of (ϕ,ϕx) in general.
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For the simplified problem being discussed here, ui = 0. When linear elasticity (possibly anisotropic) is
assumed in (3),

ψ̂(Uesym) =
1

2
Cijk`(−Upij) (−Upk`), hence

∂ψ̂

∂Uprj
= Crjk`U

p
k`,

where Cijk` has the minor symmetries, and
∂ψ

∂ϕ
= K ϕ,

where K is a 4× 4 matrix. K cannot be positive-definite because of the minor symmetries of C.

In the setting of linear elasticity with ε = 0, [Li&Se1], [Li&Se2] raise the interesting question of whether
(10) and its 3-d general form, the fifth equation in (1) or (6), admit discontinuities in the plastic distortion
field, with the intent of probing the dynamics of such discontinuities as grain boundaries and dislocation cell
walls. They carry out their analysis numerically, utilizing a variety of numerical regularizations and conclude
that in the system case, as opposed to the scalar, discontinuities do arise. Unfortunately, discontinuities of
ϕ in (10) are problematic due to the nonlinearity in ϕx. At any rate, questions of whether singularities
can arise in a pde-model can hardly be discussed by numerics, and one goal of this article is to answer this
question with definiteness for the case with core energy. An analysis of traveling waves for the scalar case
in (10) with non-convex ψ and ε 6= 0 has been carried out in [Ac&Ma&Zi], providing interesting physical
insight into patterned dislocation wall equilibria.

2. Why prove existence of solutions for good models in mechanics?

In a book which Garrett BIRKHOFF edited [Bi], containing some translations into English of passages
of articles in analysis from the 19th century (originally written in French, German, or Italian), he wrote
(page 403) “Even Poincaré, ... , gave in 1890 a discussion of the heat and wave equations which concluded
ignominiously with a physical “proof” of the completeness of the eigenfunctions of the Laplace operator, based
on a “molecular hypothesis” which essentially said that solids could be treated as finite sets of particles.”, but
it is curious that Garrett BIRKHOFF wanted to insult POINCARÉ in this way and write a few lines after “By
1893, Poincaré had also established the completeness of the eigenfunctions of the Laplace equation using the
still nascent theory of integral equations.” with a footnote referring to [Po2], because if Garrett BIRKHOFF

meant [Po1] as the first reference, it is clear from the last paragraph in [Po1] “Je pourrai dire alors que
les conclusions des §§2, 3 et 4 sont démontrées d’un façon rigoureuse au point de vue physique. Peut-être
même est-il permis d’espérer que, par une sorte de passage à la limite, on pourra fonder sur ces principes
une démonstration rigoureuse même au point de vue analytique.”2 that POINCARÉ did not pretend to have
proved his results from a mathematical point of view: he said that, with a sequel, he will have shown enough
evidence to convince physicists, and he was actually quite cautious in conjecturing that a mathematical
proof could be made using the same ideas (and he could have thought of inventing a new approach to the
mathematical question, different from the formal argument based on physical intuition).

The questions which POINCARÉ raised in [Po1] about the necessity or the usefulness to give rigorous
proofs (from a mathematical point of view) for physics problems which may just be approximations is still
valid, but there is something that POINCARÉ was obviously not aware of, even after discovering what one
now calls “chaos”, which is an effect for ordinary differential equations.

An important message of the second author in his books [Ta3], [Ta5], [Ta6], is that 20th century
mechanics (like plasticity or turbulence in continuum mechanics, and atomic physics or phase transitions in
physics) seem to force upon us to go “beyond partial differential equations”, because some homogenization
problems show that the form of equations may change when one goes from one level to another, obviously
so from the microscopic level of atoms to a mesoscopic level, but also possibly from one mesoscopic level
to another, or from mesoscopic level to macroscopic level, and that some homogenized/effective equations
might not be partial differential equations (and definitely not ode’s). From the observed diversity of the
constructions that nature builds at so many different scales, it seems clear that the mathematical tools

2 What POINCARÉ wrote means “I shall be able to say that the conclusions of §§2, 3 and 4 are proved in
a rigorous fashion from the physical point of view. Perhaps even is it allowed to hope that, by some kind of
limit procedure, one will base on these principles a rigorous proof even from the analytical point of view.”.
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(beyond partial differential equations) which will permit to understand how this diversity comes out of a
unified framework have not been developed yet, but one may hope to find a hierarchy of simpler models
which permit to understand in a better way some of the questions which puzzled the previous generation of
researchers. It is then important that mathematicians develop more efficient tools for proving or disproving
the validity of some approximations, for the new models which specialists of continuum mechanics and physics
propose, and for proposing better models than those old ones for which some limitations have already been
pointed out.

3. Stationary solutions for the model with ε > 0.

There is no clear interpretation to what (10) could mean if ϕ takes its values in Rd (with dimension
d > 1) and is allowed to be discontinuous, and a numerical approach (like that of [Li&Se1] and [Li&Se2])
cannot resolve this question, since one may easily confuse a very sharp layer where ϕ goes continuously from
a− to a+ with a jump of ϕ from a− to a+.

At the moment, the only reasonable framework for allowing discontinuities in partial differential equa-
tions of continuum mechanics is to write equations in conservative form, and use the definition of derivatives
in the sense of distributions (of Laurent SCHWARTZ), although STOKES was the first to derive a jump condi-
tion in 1848, followed by RIEMANN, who did it independently in 1860, but the jump conditions which must
be imposed are now named after RANKINE and HUGONIOT; without the mention of any of these names, one
should explain how a discontinuous function may satisfy a nonlinear partial differential equation.

One should pay attention to the example of the function w(x) = sign(x) on R, which is discontinuous
and satisfies wx = 2δ0, and since w2 = 1, one can multiply w2 by a Dirac mass; however, since w3 = w,
one has (w3)x = 2δ0, although 3w2wx = 6δ0. If one changes the nonlinearity w3 to f(w) with f smooth,
then

(
f(w)

)
x

=
(
f(+1) − f(−1)

)
δ0, but f ′(w)wx has no meaning unless f ′(+1) = f ′(−1); if instead, the

function w takes the value a on (−∞, 0) and the value b on (0,+∞), the term (w3)x has a meaning, and is
(b3 − a3) δ0, while 3w2wx has no meaning if |a| 6= |b|.

We shall then only accept discontinuous solutions for equations written in conservative form, and since
(for ε > 0) the jth component of (10) shows the quantity ϕjx

∑
k ϕkxϕkxx, which cannot be written as(

Aj(ϕ,ϕx)
)
x

+ Bj(ϕ,ϕx), we shall not allow ϕx to be discontinuous either. It is then natural to look for a

solution such that ϕx is continuous, and such that the derivative of |ϕx|2
2 in the sense of distributions, which

is the meaning given to the quantity (ϕxx, ϕx), is locally integrable.3

In this section, we look for stationary solutions on an interval (−L,+L), which are constant on (−∞,−L)
and on (+L,+∞), and satisfy Neumann conditions at ±L, so that solving (10) in (−L,+L) creates a solution
for x ∈ R. We make the restrictive assumption that ψ only depends upon ϕx in the separated form (3), i.e.
one rewrites (10) as

ϕt +
(∂ψ̂
∂ϕ
− εϕxx, ϕx

)
ϕx = 0, (11)

for a smooth enough function ψ̂ defined on Rd, and one observes that(∂ψ̂
∂ϕ
− εϕxx, ϕx

)
=
(
ψ̂(ϕ)− ε |ϕx|

2

2

)
x
,

so that, since ϕx is assumed to be continuous, in any open interval where ϕx 6= 0, one obtains a stationary
solution of (11) by solving

ψ̂(ϕ)− ε |ϕx|
2

2
= constant.

Theorem 1: Assume that ψ̂ is a function of class C1 in Rd, that a−, a+ ∈ Rd are given such that

ψ̂(a−) = ψ̂(a+), denoted ψ̂(a±), (12)

3 In one dimension, in order to have v, w continuous and v wx defined, it is not necessary that w be
absolutely continuous (i.e. w ∈ W 1,1

loc (R)): for example, Hs(R) is a (Banach) algebra if 1
2 < s < 1, so that

by interpolation any v ∈ Hs(R) is a multiplier for Ht(R) for 0 ≤ t ≤ s, hence for v, w ∈ Hs(R) one has
v wx ∈ Hs−1(R), which may be multiplied by elements from Hs(R).
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and that one can join a− to a+ by a curve M(s) of class C2, parametrized by arc-length s on an interval
[s−, s+], and such that

ψ̂
(
M(s)

)
> ψ̂(a±) for s ∈ (s−, s+),(∂ψ̂

∂ϕ

(
M(s)

)
,M ′(s)

)
6= 0 for s = s− and s = s+,

(13)

and

2L ≥ `(s−, s+) =

√
ε

2

∫ s+

s−

[
ψ̂
(
M(s)

)
− ψ̂(a±)

]−1/2
ds. (14)

Then, there exists a stationary solution ϕ of (11) of the form ϕ(x) = M
(
s(x)

)
, x ∈ Ω = (−L,+L), with

s(±L) = s±, sx(±L) = 0, and sxx ∈ L∞(Ω), so that ϕ(±L) = a±, ϕx(±L) = 0, and ϕxx ∈ L∞(Ω;Rd).
Proof: The first part of (13) puts a geometric restriction, that a− and a+ must be on the boundary of the same

connected component of {a ∈ Rd | ψ̂(a) > ψ̂(a±)}. The second part of (13) means that ∂ψ̂
∂ϕ

(
M(s±)

)
6= 0

and that M ′(s±) is not tangent to the equipotential ψ̂(a) = ψ̂(a±) at a±, and the equipotential is a C1

hyper-surface near a− and a+ by the implicit function theorem, so that ψ̂
(
M(s)

)
− ψ̂(a±) behaves as |s−s±|

near s±, which makes the integral in (14) converge. One “defines” s(x) by

sx =

√
2

ε

[
ψ̂
(
M(s)

)
− ψ̂(a±)

]1/2
, and s(−L) = s−, (15)

but since it is a classical case of non-uniqueness (and we do not want the constant solution s−), one means
the solution corresponding to

x = −L+

√
ε

2

∫ s

s−

[
ψ̂
(
M(σ)

)
− ψ̂(a±)

]−1/2
dσ, for s− < s < s+ (16)

and condition (14) asserts that s reaches s+ for a value x∗ ∈ (−L,+L], and one defines

ϕ(x) = M
(
s(x)

)
, with s(x) = s− for x < −L and s(x) = s+ for x > x∗. (17)

Since (15), which follows from (16), implies that s is of class C2, one deduces by deriving (15) that

sxx =

√
2

ε

1

2

[
ψ̂
(
M(s)

)
− ψ̂(a±)

]−1/2
(∂ψ̂
∂ϕ

(
M(s)

)
,M ′(s)

)
sx =

1

ε

(∂ψ̂
∂ϕ

(
M(s)

)
,M ′(s)

)
, (18)

which is then bounded for x ∈ (−L, x∗). One deduces from (17) that

ϕx = M ′(s) sx, and ϕxx = M ′(s) sxx +M ′′(s) s2
x, (19)

so that, because |M ′(s)| = 1, which implies
(
M ′′(s),M ′(s)

)
= 0, one has

ε (ϕxx, ϕx) = ε sxxsx =
(∂ψ̂
∂ϕ

,M ′(s)
)
sx =

(∂ψ̂
∂ϕ

, ϕx

)
, (20)

which implies that one has a stationary solution of (11).

Remark 2: It is enough that the curve M(s) be of class C1 with an integrable curvature, between s− and
s+, more precisely ∫ s+

s−

|M ′′(s)| ds <∞ implies ϕxx ∈ L1(Ω;Rd). (21)

Indeed, sx and sxx are bounded by (15) and (18), so that (19) implies∫ +L

−L
|ϕxx| dx ≤

∫ +L

−L
|sxx| dx+

∫ +L

−L
|M ′′(s)| s2

x dx ≤ 2L |sxx|∞ + |sx|∞
∫ s+

s−

|M ′′(s)| ds.
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Remark 3: Assuming that a curve M is chosen satisfying (13), i.e. one only considers the case ϕ(x) =
M
(
s(x)

)
for a function s, and one imposes s(±L) = s± (which is stronger than the condition ϕ(±L) = a±

in the case a+ = a−), what can be said about uniqueness?
There is uniqueness only if 2L = `(s−, s+): there must exist a value x0 ∈ (−L,+L) with s− < s(x0) <

s+, and uniqueness for the differential equation (15) holds around s(x0) as long as s− < s(x) < s+ since[
ψ̂
(
M(s)

)
− ψ̂(a±)

]1/2
is C1 on (s−, s+), and this solution tends to s− for a value x− < x0 and tends to

s+ for a value x+ > x0, and x+ − x− = `(s−, s+); then, there is no choice other than having x− = −L and
x+ = +L.

A first form of non-uniqueness holds if 2L > `(s−, s+), in that one may translate the solution in x of
any amount from 0 to 2L− `(s−, s+).

A second form of non-uniqueness holds if 2L ≥ 3`(s−, s+): one observes that our equation is invariant
by changing x into −x, i.e. choosing the opposite sign in (15), so that going from s+ to s− gives a solution
connecting a+ to a−, hence one obtains a solution by gluing together the constructed piece going from s− to
s+, the reversed piece going from s+ to s−, and again the first piece going from s− to s+. If 2L > 3`(s−, s+),
there is even room for waiting for a while at s− or at s+, of amounts adding up to 2L− 3`(s−, s+).

Of course, another family of solutions is possible when 2L ≥ 5`(s−, s+), 2L ≥ 7`(s−, s+), and so on.

Remark 4: Once a− and a+ can be connected by a curve M , there are plenty of curves doing the job, so
that the coefficient of

√
ε in `(s−, s+), defined at (14), is not a definite number depending only upon a−, a+,

and ψ̂, but may take all values from a smallest positive one to +∞. For a+ near a−, one estimates the order

of this smallest value by replacing ψ̂ by its linearization at a−, and besides a coefficient
∣∣∂ψ̂
∂ϕ (a−)

∣∣−1/2
one

finds a universal constant times |a+ − a−|1/2 by a scaling argument.4

Remark 5: It may be useful to point out that in the case of linear elasticity, i.e. ψ̂(ϕ) = (K ϕ,ϕ) for a
matrix K, the existence result of a stationary solution connecting different values that we obtained holds for
a system but has no analogue for a scalar equation: indeed, if d = 1 and ψ̂(ϕ) = κϕ2 with κ > 0, the region

ψ̂ > c is disconnected if c > 0, and for c = 0 one cannot take a− = a+ = 0 since one has ∂ψ̂
∂ϕ (0) = 0, hence

the second part of (13) does not hold.

4. Limits of stationary solutions as ε tends to 0.

When ε tends to 0, the solutions constructed are rescaled versions of the solution corresponding to
ε = 1, and they converge to the discontinuous function taking the value a− for x < −L and the value
a+ for x > −L. Of course, there is then no way to deduce from the sole knowledge of a− and a+ what
internal structure the discontinuity shows. Also, besides the constraint (12), which says that one must have

ψ̂(a−) = ψ̂(a+), (13) requires more, i.e. the existence of the curve M , which implies that a− and a+ are on

the boundary of the same connected component of {a ∈ Rd | ψ̂(a) > ψ̂(a±)}.

One should be careful in comparing our result to what happens for hyperbolic systems of conservation
laws [Da], where there are various types of E-conditions for selecting which discontinuities one wants to
accept, and one usually does not accept both the jump from a− to a+ and the jump from a+ to a−, except
in the case of contact discontinuities, because our system (11) with ε = 0 is not an hyperbolic system of
conservation laws.

However, one may perform some manipulations for transforming (11) into a regularized version of an
hyperbolic system of conservation laws by using the variables

χ =
(∂ψ̂
∂ϕ

, ϕx

)
=
(
ψ̂(ϕ)

)
x
, Φ = ϕx, (22)

4 If one stays near a−, the equipotential ψ̂(M) = ψ̂(a−) looks like the tangent hyperplane at a− and

ψ̂(M)− ψ̂(a−) looks like
∣∣∂ψ̂
∂ϕ (a−)

∣∣ times the signed distance to the hyperplane, so that the crucial question

is like for d = 2 if one considers a curve y = g(x) with g(x±) = 0 and 0 < g(x) for x− < x < x+ and one looks

for g minimizing
∫ x+

x−

√
1+(g′)2
√
g dx, and rescaling means taking x = x−+ξ (x+−x−) and g(x) = (x+−x−) γ(ξ),

which makes a coefficient
√
x+ − x− appear, time the minimum value corresponding to the interval (0, 1).
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so that (11) becomes
ϕt +

(
χ− ε (Φx,Φ)

)
Φ = 0, (23)

and taking the derivative of (23) in x gives the first equation of (24), while taking the scalar product of (23)

with ∂ψ̂
∂ϕ and then taking the derivative in x gives the second equation of (24):

Φt +
[(
χ− ε (Φx,Φ)

)
Φ
]
x

= 0,

χt +
[(
χ− ε (Φx,Φ)

)
χ
]
x

= 0,
(24)

which is an unconventional regularization of the case ε = 0, i.e. (25), which is a system of d + 1 equations
in conservative form, the last one being Burgers’s equation with a different coefficient than usual

Φt + (χΦ)x = 0,

χt + (χ2)x = 0.
(25)

Since the precise function ψ̂ used does not appear in (24), one must show how a solution of (24) permits
to define ϕ satisfying (11), and for doing this one assumes that the initial data for (24) and (11) are linked
by the relations

Φ0 = ϕ0x; χ0 =
(∂ψ̂
∂ϕ

(ϕ0), ϕ0x

)
=
(∂ψ̂
∂ϕ

(ϕ0),Φ0

)
. (26)

One defines aε(x, t) = χ − ε (Φx,Φ), assuming that the solution of (24) is smooth enough, so that the
characteristic curves defined for any basis point y ∈ R by

d

dt
x(t; y) = aε(x(t; y), t), with x(0; y) = y,

are well defined for t ∈ [0, T ], and that uniqueness holds for equations of the type (27) and (29), so that for
any initial data v0 which is smooth enough, the solution of

vt + aεvx = 0 in R× (0, T ), with v |t=0= v0 (27)

is given by
v(x(t; y), t) = v0(y) for y ∈ R, (28)

and the solution of
wt + (aεw)x = 0 in R× (0, T ), with w |t=0= v0x (29)

is given by
w(x, t) = vx(x, t) in R× (0, T ), (30)

since vx is a solution of (29).
One then defines ϕ not as a solution of (23) but as the solution of

ϕt + aε ϕx = 0 in R× (0,∞), with ϕ |t=0= ϕ0, (31)

and one applies the preceding remark to v0 being a component of U0 = ϕ0x, and one deduces from the first
equation in (24) and (31) that Φ = ϕx. Then, one observes that (31) implies(

g(ϕ)
)
t

+ aε
(
g(ϕ)

)
x

= 0 in R× (0,∞), (32)

for every smooth function g, and choosing g = ψ̂, and v0 =
(
ψ̂(ϕ0)

)
x
, one deduces from the second equation

in (24) and (32) that χ =
(
ψ̂(ϕ)

)
x
, so that aε(x, t) = χ− ε (Φx,Φ) =

(
∂ψ̂
∂ϕ − εϕxx, ϕx

)
, hence the solution of

(31) satisfies (11).
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5. The system of conservation laws obtained for ε = 0.

In order to check if (25) is an hyperbolic system, one rewrites it for smooth solutions as(
Φ
χ

)
t

+A(Φ, χ)

(
Φ
χ

)
x

= 0, with A(Φ, χ) =

(
χ I Φ
0 2χ

)
, (33)

so that A is hyperbolic (i.e. diagonalizable with real eigenvalues) if χ 6= 0, but also at the origin, and the
general theory of Peter LAX (for the Riemann problem) applies for the upper half space χ > 0 or the lower
half space χ < 0, but mixing the two creates some difficulties because for χ = 0 and Φ 6= 0, the matrix
A(Φ, χ) still has real eigenvalues but is non-diagonalizable.

If χ 6= 0, then A(Φ, χ) has an eigenvalue χ of multiplicity d, with eigen-space Rd × {0}, and this field
is linearly degenerate, i.e. the derivative of the eigenvalue in the direction of an eigenvector is everywhere
0 (since the eigenvalue χ is independent of Φ). Also, A(Φ, χ) has a simple eigenvalue 2χ, with eigenvector(

Φ
χ

)
, and this field is genuinely nonlinear, i.e. the derivative of the eigenvalue in the direction of an

eigenvector is everywhere 6= 0 (since it is +2).

The linear degeneracy of system (25) leads to accept contact discontinuities, because for a constant χ,
say χ = v, and Φ0 smooth, then Φ(x, t) = Φ0(x− v t) and χ(x, t) = v is a smooth solution of (25), and one is
led to accept limits of such solutions corresponding to Φ0 not necessarily smooth. However, the initial data
should be of the form (26), so that these Riemann data for (25) are usually not “physical”, i.e. they do not
correspond to a problem for ϕ.

Even for the case χ = 0, if one imposes condition (26) to initial data for (25), then ϕ0 must be such

that ψ̂(ϕ0) is constant, so that if one takes a sequence of smooth initial data ϕ0 equal to a− for x < 0,

and satisfying ψ̂(ϕ) = ψ̂(a−) for x > 0, one can only expect to obtain in the limit a function ϕ jumping

from a− to a point a+ on the same connected component of the equipotential ψ̂(ϕ) = ψ̂(a−), while we have
constructed such limiting solutions under the weaker condition that a+ and a− are on the boundary of the

same component of ψ̂(ϕ) > ψ̂(a−).5

It seems then questionable to draw conclusions for the behaviour of our equation (11) when ε tends to
0 from information corresponding to the solution of the Riemann problem for (25).

6. The evolution problem for ε > 0.

We now consider the evolution equation (11) using the same approach as for stationary solutions, in
that one seeks ϕ taking its values on a smooth curve, parametrized using arc-length s, i.e.

ϕ(x, t) = M
(
s(x, t)

)
, s− ≤ s(x, t) ≤ s+, x ∈ Ω = (−L,+L), t ∈ [0, T ], (34)

but we now impose Neumann conditions

ϕx(±L, t) = 0, t ∈ (0, T ), (35)

so that extending ϕ by ϕ(−L, t) on (−∞,−L) and ϕ(+L, t) on (+L,+∞) does not usually give a solution
of (11) for x ∈ R (since the “constants” in (−∞,−L) and (+L,+∞) may depend upon t). From (34), one
deduces that ϕt = stM

′(s) and ϕx = sxM
′(s), and since |M ′(s)| = 1, one deduces that |ϕx|2 = s2

x, which
implies (ϕxx, ϕx) = sxxsx,6 and the equation (11) complemented with (34)-(35) consists in seeking a function
s satisfying

st + F (s) s2
x − ε s2

xsxx = 0, x ∈ Ω = (−L,+L), t ∈ (0, T ), sx(±L, t) = 0, t ∈ (0, T ), s
∣∣
t=0

= s0, x ∈ Ω, (36)

5 If d ≥ 2 and ψ̂(ϕ) = |ϕ|2(|ϕ|2 − 1)2, then if 0 < c < 4
27 the equation r2(r2 − 1)2 = c has three

positive roots 0 < r1 <
1√
3
< r2 < 1 < r3, and the region ψ̂(ϕ) > c has two connected components, one

being r1 < |ϕ| < r2 and the other being |ϕ| > r3, and the boundary of the first region has two connected
components, one being |ϕ| = r1 and the other being |ϕ| = r2.

6 One has ϕx = sxM
′(s) and ϕxx = sxxM

′(s) + s2
xM
′′(s), so that imposing M of class C2 is natural (but

too strong a condition) for talking about ϕxx; however, since M ′′ is perpendicular to M ′ (because M ′ stays
a unit vector) the term in s2

x does not appear in the result for (ϕxx, ϕx).
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where one uses

E(s) = ψ̂
(
M(s)

)
; F (s) = E′(s) =

(∂ψ̂
∂ϕ

(
M(s)

)
,M ′(s)

)
, s− < s < s+. (37)

Theorem 6: Assume that ψ̂ is a function of class C1 in Rd, that a curve M(s) of class C2 is parametrized
by arc-length s on an interval [s−, s+], and that

ϕ0(x) = M
(
s0(x)

)
, x ∈ Ω, with s0 ∈W 1,4(Ω), s− ≤ s0(x) ≤ s+, x ∈ Ω, (38)

then there exists a unique solution s of (36), equivalent to (11) with (34)-(35), satisfying

s− ≤ s(x, t) ≤ s+, x ∈ Ω, t ∈ (0, T ); sx ∈ L4
(
(0, T )× Ω

)
; st ∈ L2

(
(0, T )× Ω

)
(sx)3 ∈ L2

(
(0, T );H1(Ω)

)
.

(39)

Most of the techniques used in the various steps of the proof are not new, and were already taught by
Jacques-Louis LIONS in the late 1960s [Li],7 so that they should not be attributed to recent authors, as it is
unfortunately done sometimes. For some technical results on Sobolev spaces, one may consult the course of
Shmuel AGMON [Ag], or [Ta4].

One extends F outside the interval [s−, s+] so that it is bounded and (globally) Lipschitz continuous,
although the solution does not depend upon which extension one takes, but one will show the existence of a
solution by a method of approximation which does not rely on the maximum principle, so that one needs the
equation to be defined for s ∈ R; one will then show that the solution is unique and satisfies some regularity
properties, one of them being that a ≤ s0 ≤ b in Ω implies a ≤ s ≤ b in Ω× (0, T ), so that the solution takes
its values in the interval [s−, s+].

The first step is to use a Faedo–Galerkin approximation for a simpler problem, where the non-linear
term F (s) s2

x is replaced by a given function f , and passing to the limit requires the use of the monotonicity
method, which was introduced independently by Eduardo ZARANTONELLO for a problem in continuum
mechanics, and by George MINTY for a problem on electrical circuits.8

The second step is to use a fixed point argument for a truncated equation, in order to find f such
that the solution s satisfies F (s) min{s2

x, h
2} = f for a constant h, and for verifying the hypotheses of the

Schauder–Tychonoff fixed point theorem, for a space endowed with a weak topology, one needs an argument
of compactness: one uses what is sometimes called the Aubin–Lions lemma, since it seems due to Jean-Pierre
AUBIN and it uses a lemma of Jacques-Louis LIONS.9

The third step is to let h tend to +∞ in order to obtain a solution.
The fourth step is to prove some regularity properties, for deducing that the solution is unique.
The fifth step is to prove L∞ estimates by the maximum principle, in the spirit of the work of Guido

STAMPACCHIA [St].

First step: For s0 ∈ L2(Ω) and f ∈ L2
(
0, T ;L2(Ω)

)
, and with Ω = (−L,+L), one wants to solve the equation

st + f − ε s2
xsxx = 0, x ∈ Ω, t ∈ (0, T ); s

∣∣
t=0

= s0 ∈ L2(Ω); sx
∣∣
x=±L= 0, t ∈ (0, T ), (40)

where s2
xsxx means

( s3x
3

)
x
, of course. Also, since the Neumann boundary conditions do not have a meaning

for functions in W 1,4(Ω), they are imposed in a variational way; they can also be given a meaning for

7 In particular, one does not use the generalization called the compensated compactness method, which
the second author developed in the late 1970s, based on his joint work with François MURAT, but a good
reference for the history of various related questions is [Ta2], written for a volume in memory of Luigi
AMERIO.

8 After them, monotonicity was given a general framework in functional analysis by the works of Häım
BREZIS, Felix BROWDER, Jacques-Louis LIONS, and Terry ROCKAFELLAR (in alphabetic order).

9 It is a variant of the Fréchet–Kolmogorov compactness argument, and like almost all the compactness
theorems in functional analysis, it uses the ideas of ARZELÁ and ASCOLI on equi-continuity.
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solutions of some partial differential equations, by using the normal trace of functions in the space H(div)
introduced by Jacques-Louis LIONS.

Besides H = L2(Ω), one considers V = W 1,4(Ω), which is ⊂ C0,3/4(Ω). The solution s is found in the

space C([0, T ];H) ∩ L4(0, T ;V ), and since |u|∞ ≤ C (|ux|2/54 |u|
3/5
2 + L−1/2|u|2) for all u ∈ V ,10 where | · |p

denotes the norm in Lp(Ω), one deduces that |s|∞ ∈ L10(0, T ).
The existence part uses the fact that s3

x is monotone in sx, i.e. (a3− b3) (a− b) ≥ 0 for all a, b ∈ R, and
even ≥ 1

4 |a− b|
4, which will be crucial for proving some strong convergences.

One uses a Faedo–Galerkin basis of V , i.e. linearly independent functions w1, . . . , wn, . . . ∈ V , whose
linear combinations are dense in V , and one approaches the initial data s0 by a sequence s0n converging to
s0 strongly in H, where s0n belongs to Vn = span{w1, . . . , wn} ⊂ V , and one solves∫

Ω

dsn
dt

wj dx+

∫
Ω

f wj dx+
ε

3

∫
Ω

s3
nxwjx dx = 0, j = 1, . . . , n, and t ∈ (0, T ),

with sn =

n∑
k=1

ck(t)wk, and sn
∣∣
t=0

= s0n.

(41)

This is a differential system for the unknown coefficients c1, . . . , cn,11 because the matrix with entries∫
Ω
wjwk dx is invertible, and since the non-linear term is algebraic in c1, . . . , cn, hence locally Lipschitz

continuous, there is a unique solution on a maximal interval (0, Tn) with 0 < Tn ≤ T , and for showing that
Tn = T one needs bounds: multiplying the jth equation by cj and summing in j gives

d

dt

(∫
Ω

s2
n

2
dx
)

+
ε

3

∫
Ω

s4
nx dx = −

∫
Ω

f sn dx ≤ |f(·, t)|2|sn(·, t)|2, (42)

and one then uses a variant of Gronwall’s inequality,12 to deduce that

|sn(·, t)|2 ≤ |s0n|2 +

∫ t

0

|f(·, τ)|2 dτ, t ∈ (0, Tn), so that Tn = T, (43)

and then

ε

3

∫ T

0

|snx(·, t)|44 dt ≤
|s0n|22

2
+

∫ T

0

|f(·, t)|2|sn(·, t)|2 dt ≤
1

2

(
|s0n|2 +

∫ T

0

|f(·, t)|2 dt
)2

. (44)

From the nature of the bounds, one could have taken f ∈ L1
(
0, T ;L2(Ω)

)
, but L2 in time is enough for our

purpose, and it is better for using weak convergence arguments later. For existence of sn, the bounds may
depend upon n, but for passing to the limit it is important to have the bounds independent of n.

One extracts a subsequence sm such that

sm ⇀ s∞ in L2
(
(0, T )× Ω

)
weak,

smx ⇀ s∞x in L4
(
(0, T )× Ω

)
weak,

s3
mx ⇀ ξ∞ in L4/3

(
(0, T )× Ω

)
weak,

sm(·, T ) ⇀ σ∞ in L2(Ω) weak,

(45)

10 One may choose |ux|4 + L−5/4|u|2 as a norm on W 1,4(Ω), the power of L being chosen so that the two
terms are measured in the same unit. Then, there is a linear extension to functions on R (by mirror symmetry
at the ends of the interval, followed by a truncation) whose norm is bounded by a constant independent of

L, for the norm of H or that of V . On R a scaling argument shows that |v|∞ ≤ C |vx|2/54 |v|
3/5
2 .

11 There should be another index to represent that they are the coefficients of sn.
12 One has |sn(·, t)|22 ≤ |s0n|22 + 2

∫ t
0
|f(·, τ)|2|sn(·, τ)|2 dτ = gn(t), so that g′n(t) = 2|f(·, t)|2|sn(·, t)|2 ≤

2|f(·, t)|2
√
gn(t), hence (

√
gn)′(t) ≤ |f(·, t)|2, which gives by integration

√
gn(t) ≤ |s0n|2 +

∫ t
0
|f(·, τ)|2 dτ .
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although one has better information, that sn, s∞ ∈ L∞
(
0, T ;L2(Ω)

)
. One multiplies by a smooth function

of t and one integrates by parts in t, and then one passes to the limit; after using the fact that linear
combinations of the wj are dense, one finds (in a weak formulation) that

s∞t + f − ε

3
ξ∞x = 0, in (0, T )× Ω,

s∞(·, 0) = s0; s∞(·, T ) = σ∞; ξ∞ |±L= 0 in (0, T ),
(46)

and there are some technical details, for showing that s∞ is continuous in t with values in L2(Ω),13 so that
the initial data and final data make sense, and for the Neumann condition one uses an argument of Jacques-
Louis LIONS concerning the space H(div; (0, T ) × Ω), but there is an important observation, which is that
one has ξ∞ = s3

∞x, and it is where the monotonicity property is crucial. Multiplying by sm and integrating
in (x, t), and comparing to what one obtains by multiplying the limiting equation by s∞ and integrating in
(x, t), one obtains14

lim sup
m→∞

∫ T

0

∫
Ω

s4
mx dx dt ≤

∫ T

0

∫
Ω

ξ∞s∞x dx dt, (47)

and one can deduce from (47) that

ξ∞ = s3
∞x a.e. in (0, T )× Ω,

smx → s∞x in L4
(
0, T ;L4(Ω)

)
strong.

(48)

Indeed, for the first part of (48), one deduces from (47) and from the definition of ξ∞ that

lim sup
m→∞

∫ T

0

∫
Ω

(s3
mx−v3) (smx−v) dx dt ≤

∫ T

0

∫
Ω

(ξ∞−v3) (s∞x−v) dx dt, for all v ∈ L4
(
0, T ;L4(Ω)

)
, (49)

and the monotonicity implies

0 ≤
∫ T

0

∫
Ω

(ξ∞ − v3) (s∞x − v) dx dt, for all v ∈ L4
(
0, T ;L4(Ω)

)
; (50)

one concludes with a trick used by George MINTY, which is to take v = s∞x + η w with w ∈ L4
(
0, T ;L4(Ω)

)
and, after dividing by η (and paying attention to the change of inequality for η < 0) let η tend to 0 either
from the positive side or the negative side, so that∫ T

0

∫
Ω

(ξ∞ − s3
∞x)w dxdt = 0 for all w ∈ L4

(
0, T ;L4(Ω)

)
, hence ξ∞ = s3

∞x a.e. in (0, T )× Ω. (51)

For the second part of (48), one uses v = s∞x in (49), and one deduces that

lim sup
m→∞

∫ T

0

∫
Ω

|smx − s∞x|4 dx dt ≤ 0, (52)

which gives the strong convergence of smx to s∞x in L4
(
0, T ;L4(Ω)

)
, hence a way to identify ξ∞ = s3

∞x
without using Minty’s trick.

13 The function space to use is s∞ ∈ L∞
(
0, T ;L2(Ω)

)
∩ L4

(
0, T ;W 1,4(Ω)

)
, but the derivative s∞t is the

sum of two terms, one in L2
(
0, T ;L2(Ω)

)
, or more generally in L1(0, T ;L2(Ω)), and another which is the x

derivative (in the sense of distributions) of a function in L4/3
(
(0, T );L4/3(Ω)

)
, and there are technical steps

(see [Li] or [Ta4]) of truncation, regularization, for showing the density of smooth enough functions, and
deduce that the formula of integration by parts is valid, and that one actually has s∞ ∈ C

(
[0, T ];L2(Ω)

)
.

14 For obtaining (47), one uses the fact that lim infm→∞ |sm(·, T )|22 ≥ |σ∞|22.
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Once one has proved all the technical details about the validity of the integration by parts, the uniqueness
of a solution of (40) is easy, since two solutions s and s imply after subtraction and multiplication by s− s
that

d

dt

|s− s|22
2

+

∫
Ω

(s3
x − s3

x) (sx − sx) dx = 0, which implies
d

dt

|s− s|22
2

≤ 0, hence s = s, (53)

since at time 0 one has |s− s|2 = 0.

Second step: For the fixed point argument, one uses the version by TYCHONOFF, that if one has a (nonempty)
compact convex set K of a locally convex space, and a continuous mapping S from K into K, then there exists
k ∈ K with S(k) = k. One uses the weak topology on a closed bounded convex set of Z2 = L2

(
0, T ;L2(Ω)

)
,

which is (sequentially) compact for the weak topology (which is metrizable on bounded sets like K), and the
continuity of the mapping will result from a compactness argument, often called the Aubin–Lions lemma.15

Using the fact that F (s) is a continuous bounded function, and choosing h > 0 (which will later tend
to +∞), one defines Sh(f) by

Sh(f) = F (s) min{s2
x, h

2}, where s satisfies (40). (54)

Since Sh sends all the space Z2 into a bounded subset of Z2, because of the introduction of the parameter
h, one takes for K a closed ball of Z2 which contains the image of Sh, and one needs to check the continuity
of Sh from Z2 to Z2, i.e. show that if fn ⇀ f∞ in Z2 weak, then Sh(fn) ⇀ Sh(f∞) in Z2 weak.

Since the injection of W 1,4(Ω) into L4(Ω) is compact, the Aubin–Lions lemma implies (for p > 1) that if
a sequence sn is bounded in Lp

(
0, T ;W 1,4(Ω)

)
, and the sequence snt is bounded in Lp(0, T ;E) for a Banach

space E in which L4(Ω) is continuously embedded, then the sequence belongs to a compact of Lp
(
0, T ;L4(Ω)

)
(for the strong topology).

If fn ⇀ f∞ in Z2 weak, then the corresponding solutions sn of (40) are bounded in L4
(
0, T ;W 1,4(Ω)

)
,

and the derivatives snt have a term bounded in L2
(
0, T ;L2(Ω)

)
and a term bounded in L4/3(0, T ;E) where

E is the dual of W 1,4(Ω), so that Aubin–Lions lemma applies with p = 4
3 . A subsequence sm converges

strongly in L4/3
(
0, T ;L4(Ω)

)
, but since sm is bounded in L10

(
0, T ;L∞(Ω)

)
, one can deduce from Hölder

inequality that the same subsequence converges strongly in other spaces of the form Lq
(
0, T ;Lr(Ω)

)
with

related values q, r, for example in La
(
0, T ;La(Ω)

)
for a < 10. However, it is important to show that the whole

sequence converges, and this is done by showing that the limit is unique, because it satisfies (40) for f∞:
for showing that, one extracts another subsequence such that (45) holds, then the monotonicity argument
applies because ∫ T

0

∫
Ω

fmsm dx dt→
∫ T

0

∫
Ω

f∞s∞ dx dt, (55)

since sm converges to s∞ strongly in L2
(
0, T ;L2(Ω)

)
. Once it is known that the whole sequence con-

verges to s∞, the monotonicity argument implies that snx converges to s∞x in L4
(
0, T ;L4(Ω)

)
strong, so

that min
{
s2
nx, h

2
}

converges to min
{
s2
∞x, h

2
}

in L4
(
0, T ;L4(Ω)

)
strong, because min{z2, h2} is a bounded

Lipschitz continuous function of z ∈ R. Then, using the fact that F is continuous and bounded, F (sn)
converges to F (s∞) in L∞

(
0, T ;L∞(Ω)

)
weak ? and a subsequence converges almost everywhere, hence

in Lb
(
0, T ;Lb(Ω)

)
strong for any b < ∞ by Lebesgue’s dominated convergence theorem. This shows the

continuity of Sh for the weak topology, hence the existence of a fixed point, which solves

st + F (s) min{s2
x, h

2} − ε s2
xsxx = 0, x ∈ Ω, t ∈ (0, T ), s

∣∣
t=0

= s0 ∈ L2(Ω), sx
∣∣
x=±L= 0. (56)

Third step: One wants to let h tend to ∞, and one needs to obtain bounds independent of h. Multiplying
by s, and denoting by ||F ||∞ the norm of F in L∞

(
0, T ;L∞(Ω)

)
, one has

d

dt

(∫
Ω

s2

2
dx
)

+
ε

3

∫
Ω

s4
x dx = −

∫
Ω

F (s) s2
x s dx ≤ ||F ||∞|sx|24|s|2 ≤

η

2
|sx|44 +

||F ||2∞
2η

|s|22 for η > 0, (57)

15 Jacques-Louis LIONS attributed this variant to Jean-Pierre AUBIN.
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and choosing η < 2ε
3 one applies Gronwall’s inequality for deducing that

|s(·, t)|2 ≤ |s0|2eC1t, t ∈ [0, T ],

∫ T

0

|sx|44 dt ≤ C2, (58)

with C1 =
||F ||2∞

2η , and these bounds are valid for all values of h. For a sequence hn tending to +∞, one

has a sequence fn = F (sn) min{s2
nx, h

2
n} which is bounded in L2

(
0, T ;L2(Ω)

)
by (58), so that a subse-

quence fm converges weakly to f∞ in L2
(
0, T ;L2(Ω)

)
, and by the preceding analysis sm converges to s∞

strongly in L2
(
0, T ;L2(Ω)

)
, and smx converges to s∞x strongly in L4

(
0, T ;L4(Ω)

)
, so that s∞ is the solution

corresponding to f∞.
Then, for h > 0, let Th be the Lipschitz continuous function equal to −h for u ∈ (−∞,−h], equal to u

for u ∈ [−h,+h] and equal to +h for u ∈ [+h,+∞), i.e. u 7→ Th(u) is the truncation operator at ±h, so that
min{s2

mx, h
2
m} = Thm

(s2
mx); one has |Thm

(smx) − s∞x|4 ≤ |Thm
(smx) − Thm

(s∞x)|4 + |Thm
(s∞x) − s∞x|4,

which is ≤ |smx − s∞x|4 + |Thm(s∞x) − s∞x|4 since Thm is a contraction. Because Thm(v) converges to v
strongly in L4

(
0, T ;L4(Ω)

)
for any v ∈ L4

(
0, T ;L4(Ω)

)
by Lebesgue’s dominated convergence theorem, one

deduces that Thm
(smx) converges to s∞x strongly in L4

(
0, T ;L4(Ω)

)
, hence min{s2

mx, h
2
m} converges to s2

∞x
strongly in L2

(
0, T ;L2(Ω)

)
.

Then, since sm converges to s∞ strongly in L2
(
0, T ;L2(Ω)

)
, one deduces that F (sm) converges to F (s∞)

strongly in L2
(
0, T ;L2(Ω)

)
because F is continuous and bounded, so that F (sm) converges to F (s∞) weakly

? in L∞
(
0, T ;L∞(Ω)

)
. Hence F (sm) min{s2

mx, h
2
m} converges to F (s∞) s2

∞x weakly in L2
(
0, T ;L2(Ω)

)
, and

s∞ satisfies (36).

Fourth step: The natural method for proving uniqueness of a solution is to write the equation for a solution
s and for a solution s, to subtract the two equations and to multiply by s − s, and the problem is then to
bound the integral∫ +L

−L
(F (s) s2

x − F (s) s2
x) (s− s) dx =

∫ +L

−L
F (s) (s2

x − s2
x) (s− s) dx+

∫ +L

−L

(
F (s)− F (s)

)
s2
x (s− s) dx, (59)

and the first term in the right hand side of (59) poses no difficulty, since

∣∣∣∫ +L

−L
F (s) (s2

x − s2
x) (s− s) dx

∣∣∣ ≤ ||F ||∞|s2
x − s2

x|2|s− s|2 ≤ η |s2
x − s2

x|22 +
||F ||2∞

4η
|s− s|22 (60)

and with η > 0 small the first term on the right hand side is controlled, because

ε

3

∫ +L

−L
(s3
x − s3

x) (sx − sx) dx ≥ ε

4
|s2
x − s2

x|22, (61)

consequence of the inequality (a3−b3) (a−b) ≥ 3
4 |a

2−b2|2 for all a, b ∈ R. The second term in the right hand
side of (59) presents a difficulty: F has been extended to be Lipschitz continuous, i.e. there is a Lipschitz
constant LF such that |F (b)− F (a)| ≤ LF |b− a| for all a, b ∈ R, and this implies the pointwise estimate∣∣(F (s)− F (s)

)
s2
x (s− s)

∣∣ ≤ LF s2
x |s− s|2, (62)

from which one deduces ∫ +L

−L

∣∣(F (s)− F (s)
)
s2
x (s− s)

∣∣ dx ≤ LF |sx|2∞|s− s|22, (63)

and choosing η = ε
4 one obtains

1

2
(|s− s|22)t ≤

( ||F ||2∞
ε

+ LF |sx|2∞
)
|s− s|22 = λ(t) |s− s|22, (64)
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and Gronwall inequality applies if λ ∈ L1(0, T ), and in this case it implies |s − s|22 = 0 since s and s have
the same initial data s0; it means that uniqueness holds if sx ∈ L2

(
0, T ;L∞(Ω)

)
, or if sx ∈ L2

(
0, T ;L∞(Ω)

)
,

since the role of s and s are equivalent.
Using the Faedo–Galerkin approximation (41), the estimate shown before was that corresponding to

f ∈ L1
(
0, T ;L2(Ω)

)
, although one only used it for f ∈ L2

(
0, T ;L2(Ω)

)
. However, there is a better smoothness

estimate in this case, enough for proving uniqueness, and actually the following analysis only uses the
hypothesis

√
t f ∈ L2

(
0, T ;L2(Ω)

)
.16 The estimate is obtained by multiplying the equation by t snt (i.e. by

multiplying the jth equation with wj by t cjt and summing in j), which gives∫
Ω

t |snt|2 dx+

∫
Ω

t f snt dx+
ε

3

∫
Ω

t s3
nxsnxt dx = 0, (65)

and since |t f snt| ≤ 1
2 t |snt|

2 + 1
2 t |f |

2, one deduces that

ε

12

(∫
Ω

t s4
nx dx

)
t

+
1

2

∫
Ω

t |snt|2 dx ≤
1

2

∫
Ω

t |f |2 dx+
ε

12

∫
Ω

|snx|4 dx, (66)

and since there is a bound independent of n for
∫

Ω
|snx|4 dx, one deduces bounds independent of n for∫

Ω
t s4
nx dx in L∞(0, T ), and for

∫
Ω
t |snt|2 dx in L1(0, T ), and these bounds are inherited by the solution

which is the limit of a subsequence sm, so that

s0 ∈ L2(Ω), f ∈ L2
(
0, T ;L2(Ω)

)
imply that the solution of (40) satisfies

t1/4sx ∈ L∞
(
0, T ;L4(Ω)

)
, t1/2st ∈ L2

(
0, T ;L2(Ω)

)
,

(67)

hence by the equation (40) it satisfies

t1/2(s3
x)x ∈ L2

(
0, T ;L2(Ω)

)
, i.e. t1/2s3

x ∈ L2
(
0, T ;H1

0 (Ω)
)
, (68)

since s3
x satisfies a Dirichlet condition, as a consequence of the Neumann condition for s. Then, σ = s3

x satis-
fies t1/2σ ∈ L2

(
0, T ;H1

0 (Ω)
)
, and since t1/4sx ∈ L∞

(
0, T ;L4(Ω)

)
is equivalent to t3/4σ ∈ L∞

(
0, T ;L4/3(Ω)

)
,

one deduces an estimate of σ in L∞(Ω) by using an inequality of the type |σ|∞ ≤ C |σx|3/52 |σ|
2/5
4/3 for all

σ ∈ H1
0 (Ω);17 then |σx|2 = t−1/2λ(t) for λ ∈ L2(0, T ) and |σ|4/3 ≤ C t−3/4 give |σ|∞ = t−3/5µ(t) with

µ ∈ L10/3(0, T ), and since t−3/5µ ∈ Lp(0, T ) for 1 ≤ p < 10
9 , one has sx ∈ Lq

(
0, T ;L∞(Ω)

)
for 1 ≤ q < 10

3 ,
and because q = 2 is the condition needed for uniqueness, one finds that uniqueness holds for s0 ∈ L2(Ω).
As a consequence, all the sequence sn converges to the (unique) solution.

Fifth step: We shall need another regularity result, still for f ∈ L2
(
0, T ;L2(Ω)

)
but with s0 ∈W 1,4(Ω), and

the estimates result from multiplying the equation by st: more precisely, one works on the Faedo–Galerkin
approximation (41), choosing the initial data s0n converging strongly to s0 in W 1,4(Ω), and one multiplies
by snt, so that instead of (65) one obtains∫

Ω

|snt|2 dx+

∫
Ω

f snt dx+
ε

3

∫
Ω

s3
nxsnxt dx = 0, (69)

and instead of (66) one obtains

ε

12

(∫
Ω

s4
nx dx

)
t

+
1

2

∫
Ω

|snt|2 dx ≤
1

2

∫
Ω

|f |2 dx, (70)

16 The second author devised this method for linear equations (of the abstract form u′+Au = f, u(0) = u0

with A elliptic), and used it in his thesis for interpolating regularity, but it may not be widely known.
17 From (σ5/3)x = 5

3 σ
2/3σx, one deduces that |σ5/3|∞ ≤ 1

2 |(σ
5/3)x|1 ≤ 5

6 |σ
2/3|2 |σx|2, hence |σ|5/3∞ ≤

5
6 |σ|

2/3
4/3 |σx|2.
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and since there is a bound independent of n for
∫

Ω
|s0nx|4 dx, one deduces bounds independent of n for∫

Ω
s4
nx dx in L∞(0, T ), and for

∫
Ω
|snt|2 dx in L1(0, T ), and these bounds are inherited by the solution which

is the limit of a subsequence sm, hence

s0 ∈W 1,4(Ω), f ∈ L2
(
0, T ;L2(Ω)

)
imply that the solution of (40) satisfies

sx ∈ L∞
(
0, T ;L4(Ω)

)
, st ∈ L2

(
0, T ;L2(Ω)

)
, hence s3

x ∈ L2
(
0, T ;H1

0 (Ω)
)
, sx ∈ L10

(
0, T ;L∞(Ω)

)
.

(71)

This regularity enables us to apply the technique of truncation used by Guido STAMPACCHIA [St] for proving
a weak form of the “maximum principle”, and a consequence is that the way one has extended F outside
the interval [s−, s+] has no effect on the solution: Guido STAMPACCHIA proved that if u ∈ W 1,1

loc (O) for an
open set O ⊂ RN , and if g is a Lipschitz continuous function on R with at most a countable number of

discontinuities of the derivative, then g(u) ∈ W 1,1
loc (O) with ∂g(u)

∂xj
= g′(u) ∂u

∂xj
for j = 1, . . . , N ,18 and if one

applies it to g(u) = u+ it does not matter what value g′(0) one takes.19

One considers two solutions s, σ of (36) with initial data s0, σ0, and one wants to shows that

s0 ≤ σ0 a.e. in Ω implies s ≤ σ a.e. in Ω× (0, T ), (72)

and for proving this one wants to subtract the two equations and multiply by (s− σ)+, so that one assumes
that s0, σ0 ∈W 1,4(Ω) in order to use the estimates (71) for both s and σ, which imply s, σ ∈ H1

(
Ω× (0, T )

)
,

so that one may apply the formula for the partial derivatives of (s − σ)+, and observe that (s − σ)+ ∈
H1
(
Ω× (0, T )

)
since(
(s− σ)+

)
t

= (s− σ)tχ+ and
(
(s− σ)+

)
x

= (s− σ)xχ+ a.e. in Ω× (0, T ),

where χ+ is the characteristic function of E+ = {(x, t) | s− σ > 0},
(73)

and because χ2
+ = χ+ one deduces that

(s− σ)t(s− σ)+ =
1

2

(
|(s− σ)+|2

)
t
. (74)

Moreover, since one also has sx, σx ∈ L∞
(
0, T ;L4(Ω)

)
∩ L2

(
0, T ;L∞(Ω)

)
, one deduces that(

(s− σ)+

)
x
∈ L∞

(
0, T ;L4(Ω)

)
∩ L2

(
0, T ;L∞(Ω)

)
, (75)

and one also has
|s− σ| (s− σ)+ = χ+ |(s− σ)+|2 = |(s− σ)+|2 a.e. in Ω× (0, T ). (76)

One starts from the variational formulation∫
Ω

[
(s− σ)tw +

(
F (s) s2

x − F (σ)σ2
x

)
w +

ε

3
(s3
x − σ3

x)wx

]
dx = 0 a.e. t ∈ (0, T ), for all w ∈W 1,4(Ω), (77)

from which one deduces that (79) is also true if w ∈ L∞
(
0, T ;W 1,4(Ω)

)
, and one then uses w = (s − σ)+.

One has
ε

3

∫
Ω

(s3
x − σ3

x)
(
(s− σ)+

)
x
dx ≥ ε

4

∫
Ω

χ+ (s2
x − σ2

x)2 dx a.e. t ∈ (0, T ), (78)

18 For g of class C1 over R and u smooth, one has ∂g(u)
∂xj

= g′(u) ∂u
∂xj

, and approaching u ∈ W 1,1
loc (O) by

a sequence of smooth functions un converging strongly to u in W 1,1(ω) for an open set ω with ω ⊂ O, one
deduces that the formula is true for u ∈ W 1,1

loc (O); then one takes a sequence gn of C1 functions, which
converges uniformly on R to a Lipschitz function g, and such that g′n converges everywhere on R to a
function which one denotes g′, and passing to the limit by using Lebesgue’s dominated convergence theorem,
one deduces the result.

19 This is the way Guido STAMPACCHIA showed that on the set where u(x) = 0 one has ∂u
∂xj

= 0 almost

everywhere, for j = 1, . . . , N .
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and∫
Ω

∣∣F (s) s2
x − F (σ)σ2

x

∣∣ (s− σ)+ dx ≤
∫

Ω

|F (s)− F (σ)| s2
x (s− σ)+ dx+

∫
Ω

|F (σ)| |s2
x − σ2

x| (s− σ)+ dx

≤ LF ||sx||2∞
∫

Ω

|(s− σ)+|2 dx+
ε

4

∫
Ω

χ+ (s2
x − σ2

x)2 dx+
||F ||2L∞

ε

∫
Ω

|(s− σ)+|2 dx a.e. t ∈ (0, T ),

(79)
so that

1

2

(∫
Ω

|(s− σ)+|2 dx
)
t
≤
(
LF ||sx||2∞ +

||F ||2L∞
ε

) ∫
Ω

|(s− σ)+|2 dx a.e. t ∈ (0, T ), (80)

and by Gronwall’s inequality ∫
Ω

|(s− σ)+|2 dx ≤ C
∫

Ω

|(s0 − σ0)+|2 dx = 0, (81)

since (s0 − σ0)+ = 0 from the hypothesis s0 ≤ σ0 a.e. in Ω; this shows that (s− σ)+ = 0, i.e. s ≤ σ.

A consequence is that

a ≤ s0 ≤ b a.e. in Ω for constants a, b ∈ R implies a ≤ s ≤ b a.e. in Ω× (0, T ), (82)

since if the initial data σ0 is a constant c (either a or b) then the solution is σ = c.

7. Another regularity property of the solution (for ε > 0).

There is a formal estimate obtained by multiplying the equation by −sxx and integrating by parts,
which supposes that one has enough regularity for writing (s3

x)x as a pointwise product 3s2
xsxx, and in this

way one obtains(∫
Ω

s2
x

2
dx
)
t
+ε

∫
Ω

(sxsxx)2 dx =

∫
Ω

F (s) sx(sxsxx) dx ≤ ||F ||∞|sx|2|sxsxx|2 ≤ η |sxsxx|22+
||F ||2∞|sx|22

4η
, (83)

so that, by choosing η < ε and using Gronwall’s inequality, one deduces that20

s0 ∈ H1(Ω) implies that the solution of (36) satisfies

sx ∈ L∞
(
0, T ;L2(Ω)

)
, s2
x ∈ L2

(
0, T ;H1

0 (Ω)
)
, so that sx ∈ L6

(
0, T ;L∞(Ω)

)
,

(84)

hence F (s) s2
x ∈ L3

(
0, T ;L∞(Ω)

)
∩ L∞

(
0, T ;L1(Ω)

)
, and (s3

x)x (which can be written as 3
2sx(s2

x)x) belongs

to L3/2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;L1(Ω)

)
, which then permits to find a bound for st in the latter intersection,

hence st ∈ Lp
(
0, T ;Lq(Ω)

)
with 1 ≤ q ≤ 2 and 3

p = 5
2 −

1
q .

One may prove that (84) is valid by one of two methods already taught by Jacques-Louis LIONS in the
late 1960s [Li]: the first one is to use a special Faedo–Galerkin basis, made of eigenfunctions of the operator

− d2

dx2 , i.e. wj(x) = cos (j−1)π (x+L)
2L for j = 1, . . ., in which case a linear combination of w1, . . . , wn gives

−smxx for the solution sm of (41), and the above computations hold for sm, and the bounds obtained are
inherited by the limit s; the second one is to start from the solution s of (36) and prove that it is more regular
by using the method of translations of Louis NIRENBERG. For applying this method, one denotes by τh the
operator of translation by h, i.e. (τhv)(x) = v(x − h) for a function v, but since one works on a bounded
interval Ω = (−L,+L), it is useful to extend u by symmetry around −L and +L (i.e. u(x) = u(−2L − x)
for x ∈ (−3L,−L), or u(x) = u(2L− x) for x ∈ (+L,+3L)) which gives a periodic function of period 4L, so
that all translations are then well defined, and the norms | · |p considered are computed on a period.21 One

20 The last bound for sx in (84) follows from taking v = s2
x and using the classical estimates |v|∞ ≤

|vx|1/22 |v|
1/2
2 for v ∈ H1

0 (Ω) and |v|2 ≤ |v|1/21 |v|
1/2
∞ by Hölder inequality, which give |v|∞ ≤ |vx|2/32 |v|

1/3
1 .

21 Since the equation only involves s, s2
x, and sxx which are invariant by changing x into c−x, and s satisfies

a Neumann condition at ±L (for which the precise meaning uses the space H(div) studied by Jacques-Louis
LIONS), this type of extension produces a function which satisfies the same partial differential equation.
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subtracts the equation for s and for a translated τhs, and one multiplies by s− τhs, and using the formula
(a3 − b3) (a− b) ≥ 3

4 |a
2 − b2| for all a, b ∈ R, one deduces that

1

2

d

dt
|s− τhs|22 +

ε

4
|s2
x − τhs2

x|22 ≤ |f − τhf |2|s− τhs|2, with f = F (s)s2
x, (85)

and one has the following estimate for |f − τhf |2

|f − τhf |2 = |F (s)s2
x − F (τhs)τhs

2
x|2 ≤ ||F ||∞|s2

x − τhs2
x|2 + LF |s− τhs|2|sx|2∞, (86)

so that

|f − τhf |2|s− τhs|2 ≤
ε

8
|s2
x − τhs2

x|22 +
(2||F ||2∞

ε
+ LF |sx|2∞

)
|s− τhs|22, (87)

and since 2
ε ||F ||2∞

+ LF |sx|2∞ has a finite norm C in L1(0, T ), Gronwall’s inequality implies22

|s− τhs|2 ≤ eC |s0 − τhs0|2 on (0, T ),

∫ T

0

|s2
x − τhs2

x|22 dt ≤
4e2C

ε
|s0 − τhs0|22. (88)

If s0 ∈ H1(Ω), then |s0 − τhs0|2 ≤ |h| |(s0)x|2 for all h, so that |s−τhs|2h is bounded in L∞
(
0, T ;L2(Ω)

)
and

|s2x−τhs
2
x|2

h is bounded in L2
(
0, T ;L2(Ω)

)
when h 6= 0 tends to 0; since s−τhs

h tends to sx and
s2x−τhs

2
x

h tends
to (s2

x)x in the sense of distributions as h tends to 0, one deduces (84).
Actually, using (a3 − b3) (a − b) ≥ 3

4 (|a| a − |b| b)2 for all a, b ∈ R, one has |sx| sx ∈ L2
(
0, T ;H1

0 (Ω)
)
,

which implies s2
x ∈ L2

(
0, T ;H1

0 (Ω)
)
, but the converse is not true.

Remark 7: If v = |u|u ∈ H1
0 (Ω), one may wonder if vx is the product of 2|u| by ux, and it is easy to show

(using |τhu − u| ≤ C |τhv − v|1/2) that u and |u| belong to the Besov space X = B
1/2,4
∞ , so that ux makes

sense in the dual Y ′ of another Besov space, Y = B
1/2,4/3
1 ; it is not so clear if one can multiply elements of

X by elements of Y ′. However, the derivative of u3 is the product of 3u2 by ux.

8. The class of initial data used (for ε > 0).

Given an initial data ϕ0, one needs to check if it satisfies our hypotheses, and one first wonders if one can
find a curve M(s) of class C1 with an integrable curvature, as noticed in Remark 2 for stationary solutions,
and then if ϕ0(x) = M

(
s0(x)

)
for x ∈ (−L,+L) with s0 smooth enough.

Since ϕ0x = s0xM
′ with |M ′| = 1, a sufficient condition is to assume that

ϕ0(x) = a− in [−L, x−], ϕ0x 6= 0 in (x−, x+), ϕ0(x) = a+ in [x+,+L]. (89)

In order to have s0 increasing when x varies from −L to +L, one chooses

s0(x) = s− in [−L, x−], s0x = |ϕ0x| and M ′(s) =
ϕ0x

|ϕ0x|
in (x−, x+), s0(x) = s+ in [x+,+L], (90)

so that s+ − s− =
∫ x+

x−
|ϕ0x| dx, and one then assumes that ϕ0x ∈ L1(Ω;Rd). Then, one also assumes that

ϕ0xx ∈ L1
(
(x−, x+);Rd

)
, so that s0xx =

(
ϕ0xx,

ϕ0x

|ϕ0x|

)
in (x−, x+), (91)

and since ϕ0xx = s0xxM
′+s2

0xM
′′ and M ′′ is orthogonal to M ′ because |M ′| = 1, one deduces that |ϕ0x|2M ′′

is the projection of ϕ0xx on the orthogonal of ϕ0x, i.e.

|ϕ0x|2M ′′ = ϕ0xx −
(ϕ0xx, ϕ0x)

|ϕ0x|2
ϕ0x in (x−, x+), (92)

22 With a = |s−τhs|22, b = ε
8 |s

2
x−τhs2

x|22, and c = 2
ε ||F ||2∞

+LF |sx|2∞, one has a+2
∫ t

0
b ≤ a(0)+

∫ t
0

2c a = d,

which satisfies dt = 2c a ≤ 2c d, hence a + 2
∫ t

0
b ≤ d ≤ a(0)exp

(
2
∫ t

0
c
)
, giving a ≤ a(0) e2C and 2

∫ T
0
b dt ≤

a(0) e2C .
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hence ∫ s+

s−

|M ′′| dx =

∫ x+

x−

∣∣ϕ0xx −
(ϕ0xx, ϕ0x)

|ϕ0x|2
ϕ0x

∣∣∣ dx

|ϕ0x|
, (93)

which one assumes then to be finite.
Then, the condition s0 ∈ W 1,p(Ω) follows from ϕ0x ∈ Lp(Ω;Rd), and one notices that assuming (91)

implies ϕ0x ∈ L∞(Ω;Rd).

One should pay attention to the fact that strong hypotheses of regularity for the initial data are used
for transforming the system (10) into the scalar equation (36), but then the system (36) admits uniquely
defined solutions even for some discontinuous initial data, so that such discontinuous initial data should be
considered as “non physical” for what concerns the system (10).

9. Conclusion.

We have analyzed a system of partial differential equations (10) in one space dimension, and shown
that one can study the stationary solutions as well as the evolutionary solutions if the initial data satisfy
a geometrical condition, because the analysis can be transformed into studying a scalar partial differential
equation, for which we applied more or less classical methods. However, since (10) came out of a special
situation for a system of partial differential equations (1) in three space dimensions, motivated by field dislo-
cation mechanics, this work should be considered as a motivation for developing a more general mathematical
approach for studying the complete system (1).
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[Kr] KRÖNER Ekkehart, “Continuum theory of defects.” Physics of Defects, Les Houches Summer School.
North-Holland, 1981. 217–315.
[Li&Se1] LIMKUMNERD Surachate & SETHNA James P., “Mesoscale theory of grains and cells: crystal plasticity
and coarsening.” Phys. Rev. Lett., (2006): 96, 095503.
[Li&Se2] LIMKUMNERD Surachate & SETHNA James P., “Shocks and slip systems: predictions from a meso-
scale theory of continuum dislocation dynamics.” J. Mech. Phys. Solids 56 (2008), no. 4, 1450–1459.
MR2404020 (2009c:74015).
[Mu] MURA Toshio, “Continuous distribution of moving dislocations.” Phil. Mag. 8 (1963): 843–857.
[Na] NABARRO Frank R.N., Theory of Crystal Dislocations, Dover Books on Physics and Chemistry, 1987,
821pp. ISBN: 978-0-486-65488-1.
[Po1] POINCARÉ Henri, “Sur les équations aux dérivées partielles de la physique mathématique.” Amer. J.
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