Ajit R.

What is "iqWaves"

Elements of "iqWaves"
Ontological Postulates 1

Postulates 1 and 2: Aether 3D Waves $\tilde{W}(\vec{r}, t)$

System Particle vs Action of a Detector

Postulate 3

Form of the Governing System of PDEs — Nonlinearity

Measureme Process

Born's "Postulate" Derived

New Numerical Method — H

Measurem Problem

Summary

Some essential elements of "iqWaves" — a new approach to quantum physics

Ajit R Jadhav

Independent Researcher Pune, India

ICCTPP-2022 09 – 11 June 2022 Pune, India

Copyright @ Aiit R. Jadhav. All rights reserved.

wnat is "iqWaves" Flements

"iqWaves"

Ontological Postulates 1 and 2: Aethe 3D Waves $\vec{W}(\vec{r}, t)$

Action of a Detector Ontologica Postulate

q-Quantitie
Form of the
Governing
System of
PDEs —

Measureme Process

Born's "Postulate Derived

Numerical Method — He atom

Measurem Problem Solved!

Summary and Outloo 1 What is "iqWaves"?

2 Elements of "iqWaves"

Ontological Postulates 1 and 2: Aether, 3D Waves $\tilde{W}(\vec{r},t)$

System Particle vs. Action of a Detector

Ontological Postulate 3: q-Quantities

Form of the Governing System of PDEs — Nonlinearity

Measurement Process

Born's "Postulate" Derived

New Numerical Method — He atom

Measurement Problem Solved!

3 Summary and Outlook

System Particle v Action of Detector

Postulate 3: q-Quantities Form of the Governing System of PDEs —

Measureme Process

Born's "Postulate" Derived

New Numerical Method — H

Measuremen Problem Solved!

Summary and Outlook

What is "iqWaves"?

- "iqWaves" = interacting quantum mechanical Waves
 - A completely new approach to conceptualize the quantum phenomenology
- Guiding themes
 - Examine the postulates of the mainstream (textbook) QM
 - Propose a proper ontology to identify their conceptual roots
 - Ontology: What kind of objects must be assumed in a physics theory, so that its mathematical formulation makes sense
 - Supply the missing physical mechanisms
 - Quantify!
- Only a whirl-wind tour is possible in 10 minutes
 - For reasoning and connections, please see the paper

Postulate 3 q-Quantitie Form of the Governing System of PDEs —

Measureme Process

Born's "Postulate" Derived

Numerical Method — F atom

Measuremer Problem Solved!

Summary and Outlook

Ontological Postulates 1 and 2: Aether, 3D Waves

Postulate 1: A New Aether for QM

- At the most fundamental level, the entire physical universe consists of nothing but a quantum mechanical aether
 - It's a singleton object
 - Locations and extensions in it can be described using <u>3D space</u>
- Postulate 2: Each Elementary Particle is a 3D Wave: $\tilde{W}_i(\vec{r},t)$
 - QM particles are waves and only waves
 - At the most fundamental level, there are no particles
 - To avoid confusion, we call them \tilde{W} , not Ψ
 - $\bullet\,$ Dark Magenta $\,$ denotes a complex-valued quantity. Tilde $\,\tilde{}\,$ denotes a wave
 - One-particle systems
 - $\tilde{W}(\vec{r}, t)$ of iqWaves = $\Psi(\vec{r}, t)$ of the mainstream QM
 - But phases are physical in our approach; in mainstream QM they are unphysical
 - N-particle systems
 - iqWaves: N number of $\tilde{W}_i(\vec{r},t)$ fields over the same 3D space Mainstream QM: One Ψ field defined over a 3N-dimensional configuration space
 - $\tilde{W}(\vec{r}, t)$ wavefields of <u>different</u> particles do <u>not</u> superpose
 - Instead, they interpenetrate and interact with each other, everywhere, at all times

Numerical Method — F atom

Measuremer Problem Solved!

Summary and Outlook

System Particle vs. Action of a Detector

Expectation value of an operator Ô

$$\langle o \rangle = \int d\Omega \ \Psi^* \ \hat{O} \ \Psi \quad \Leftrightarrow \quad \int d\Omega \ \ ilde{W}^* \ \hat{O} \ ilde{W}$$

- Analysis from the "iqWaves" viewpoint
 - $\tilde{W}(\vec{r},t)$ denotes the state of the system particle
 - Ô does not represent any physical object, only a mathematical action
 - Expectation value refers to the end-result of measurements
 - Measurements require Detectors
 - But $\tilde{W}^*(\vec{r}, t)$ cannot represent the system particle
 - It would have opposite sense of "rotation" in the abstract Argand plane
 - Inter-conversions of real ⇔ imaginary parts is a physical process
 - Nothing else is present in the above equation
- Conclusions
 - \tilde{W}^* must in some way refer to the role of Detector in measurements
 - Principle: Descriptions of undisturbed (unmeasured) QM objects
 cannot make use of complex conjugates

Ontological Postulate 3: q-Quantities

- Since $\tilde{W}(\vec{r}, t)$ fields exist physically, so do all their attributes
- So, we propose and use q-Quantities
- Definition of a q-Quantity

$$\tilde{o}(\vec{r},t) \stackrel{\mathsf{def}}{=} \hat{O} \left[\tilde{W}(\vec{r},t) \right]$$

- It's a complex-valued, time-dependent, 3D field
- It exists physically, albeit only as an <u>attribute</u> of a $\tilde{W}(\vec{r},t)$ field
- There is a q-Quantity for every operator
 - Examples:
 - q-Total energy E
 - g-Momentum $\tilde{\vec{p}}$
 - a-Position $\tilde{\vec{r}}$
 - q-Charge Q
 - 7
 - They are all complex-valued not real-valued
 - q-Quantities exist even in undisturbed systems even before measurements are conducted
- q-Quantities are necessary in characterizing interactions

Postulate 3: q-Quantities Form of the

Governing System of PDEs — Nonlinearity

Measureme Process

Born's "Postulate Derived

Numerical Method — H atom

Measuremen Problem Solved!

Summary and Outlook

Deriving the Governing Equations — Start with q-Charge, get q-PE

- Consider two interacting electrons in a box
- Mainstream QM
 - Uses the classical (real-valued) potential energy
 - The derivation involves an expression of the form:

$$\int d\Omega \ \psi^* \left(\ \frac{1}{r} \ \right) \psi \ , \qquad \text{i.e.,} \qquad \int d\Omega \ \left(\ \frac{1}{r} \ \right) \ |\psi|^2$$

- The Hartree and the Hartree-Fock methods use this expression
- iqWaves
 - For undisturbed systems, we must avoid the complex conjugate $\tilde{W^*}$
 - Instead, start with the q-charges

$$\tilde{Q}_1 \stackrel{\mathsf{def}}{=} \hat{Q} \left[\tilde{W}_1(\vec{r},t) \right] = Q_e \tilde{W}_1(\vec{r},t) ,$$

$$\tilde{Q}_2 \ \stackrel{\mathsf{def}}{=} \ \hat{Q} \left[\ \tilde{W}_2(\vec{r},t) \ \right] \ = \ Q_{\mathsf{e}} \ \tilde{W}_2(\vec{r},t) \ .$$

- Derive an expression for the g-potential energy
 - It involves a domain integral
 - Issues arise due to infinities (as in the Hartree methods)
- Use the q-PE in the two, one-particle, Schrödinger's equations

Particle v
Action of
Detector

Postulate 3

Form of the Governing System of PDEs — Nonlinearity

Measureme Process

Born's "Postulate" Derived New

Numerical Method — H atom

Solved! Summary

Summary and Outlook

Governing System of PDEs — Nonlinearity

- iqWaves (contd):
 - The governing Schrödinger's equations turn out to be of the form:

$$\begin{split} \mathrm{i} \, \hbar \frac{\partial \tilde{W}_1}{\partial t} \, = \, \left\{ \, -\frac{\hbar^2}{2 m_1} \nabla^2 \, + \, \frac{Q_1 \, Q_2}{4 \pi \epsilon_0} \, \, \tilde{\varpi} \, \Big[\, \, \tilde{W}_2 \, \Big] \, \right\} \tilde{W}_1 \\ \mathrm{i} \, \hbar \frac{\partial \tilde{W}_2}{\partial t} \, = \, \left\{ \, -\frac{\hbar^2}{2 m_2} \nabla^2 \, + \, \frac{Q_2 \, Q_1}{4 \pi \epsilon_0} \, \, \tilde{\varpi} \, \Big[\, \, \tilde{W}_1 \, \Big] \, \right\} \tilde{W}_2 \end{split}$$

- $\tilde{\varpi}[$] is a placeholder function a domain integral similar to that from EM
- Extension to N-particle system is straightforward
- It's a system of coupled nonlinear equations
 - This nonlinearity is in the wavefunctions themselves
 - No hidden or extra variables were introduced
- Nonlinearity implies
 - SDIC (Sensitive Dependence on Initial Conditions)
 - Chaos- and Catastrophe-theoretical changes occurring to the particle states at all times
 - Practically indistinguishable from "pure" randomness a characteristic of quantum phenomena

System
Particle vs
Action of a
Detector

Postulate 3: q-Quantities Form of the Governing System of PDEs — Nonlinearity

Measurement Process

Born's "Postulate" Derived

Numerical Method — He atom

Measuremen Problem Solved!

Summary and Outlook

Measurement Process

- The QM System consists of a single electron (to be measured)
- The Detector consists of a great many (10²⁰⁺) QM particles
 - Nuclei are heavy. Electrons are light. ("A small dog vs. a flea"). Due to interactions
 - W fields of nuclei form a vibrating "lattice" of ionic cores
 - \tilde{W} fields of electrons form a rapidly changing "cloud"
 - Pixels in the Detector
 - Each pixel itself has great many particles
 - All pixels are basically coupled
 - But at intermediate scales, they form units of generating detection signals
 - Due to coupling, all pixels compete with each other
 - Each pixel provides a separate, "randomly" varying, screening effect to the System electron
- Detection Process
 - When conditions become competitively advantageous in any one pixel, that particular pixel suffers an internal catastrophic change
 - Such catastrophic change occurs in response to the local features of the \tilde{W}_e field of the System electron
 - In actual experiments, the System electron gets absorbed in that pixel very rapidly
 - Catastrophic change
 - ⇒ The electron cannot oscillate back into the chamber
 - ⇒ Irreversibility of the measurement process

Born's "Postulate" Derived

- Interaction of one System particle with the Detector
 - Assume the System electron to be in a stationary state
 - Let $\varsigma[\tilde{W_e}(\vec{r},t)]$ denote "local strength" of the System electron's $\tilde{W_e}$ field
 - Our analysis (for the simplest case) leads to:

$$Pr(\text{detection event}) = \varsigma[\tilde{w}(\vec{r})] \varsigma[\tilde{w}(\vec{r})] \Delta x$$

• Compare with Born's rule from the mainstream QM: $Pr(\text{detection event}) = |\tilde{w}(\tilde{r})|^2 \Delta x$

- Conclusion: Born's rule does not lie not at the most fundamental level
 - It can be derived from more basic considerations
 - The nonlinear interactions among the \tilde{W} fields, taken together, constitute a physical "mechanism"
 - This mechanism lies at a more fundamental level
- The local "strength" of W, in the System-Detector interactions, is given by the modulus — not by the modulus-squared:

$$\varsigma[\tilde{W}(\vec{r},t)] = |\tilde{W}(\vec{r},t)|$$

- How about the interactions between two particles of the same System?
 - \bullet Reasonable to assume that the \tilde{W} wavefunctions interact with the same "strength"
 - So, we may use the modulus in the helium atom calculations!

Summary and Outlook

Numerical Method — He atom

- New numerical method for the helium atom
 - Use the relation

$$\varsigma[\tilde{W}(\vec{r},t)] = |\tilde{W}(\vec{r},t)|$$

as an ansatz in the q-Potential energy calculations

- Solve the resulting system of nonlinear equations, using an iterative algorithm
- Comparison of our method with the Hartree and HF methods
 - Quantitatively, the respective integrands turn out to be:

$$I=\left(rac{1}{r}
ight)\mid \tilde{W}\mid^2$$
 (Hartree methods)
$$I=\left(rac{1}{r}
ight)\mid \tilde{W}\mid$$
 (our method)

- Anticipated differences in results
 - Wavefunctions may differ, a slight bit
 - But energy eigenvalues should not differ significantly
- Note!
 - The measurement probabilities still come out as $\propto |\tilde{W}|^2$
 - It's only the particle-to-particle interactions which proceed as functions of $|\tilde{W}|$
- Aside:
 - The author hadn't studied the Hartree or Hartree-Fock methods before developing this method

Postulate 3 q-Quantitie Form of the Governing System of PDEs —

Measureme Process

Born's "Postulate" Derived New

Numerical Method — He atom

Measurement Problem Solved!

Summary and Outlook

Measurement Problem Solved!

- Consider position measurements in the Tonomura experiment
 - Tonomura et al. (Hitachi) used electron microscope
 - The main chamber is of the order of 10 cm per side
 - Each CCD pixel is of the order of 0.01 cm per side
 - Define the "core volume" of an electron as:
 - the volume over which 99 % of its own $|\tilde{W}|$ is spread
 - During detection
 - The System electron, which was in the chamber, now gets absorbed in a pixel
 - In the process, its core volume shrinks by a factor of about 109
 - Theoreticians idealized this shrinkage . . .
 - They said: The System electron is detected as a "particle"
 - Actually, the electron always remains a $\tilde{W}(\vec{r},t)$ wavefield, even after its core volume has moved into a single pixel
 - · Ontologically, there is no particle-like object at all
 - Further, theoreticians wrongly assumed that the System electron remains inside the chamber even after the detection event
 - Actually, the "core-volume" of electron's $\tilde{W}(\vec{r},t)$ shifts into the pixel catastrophically, i.e., irreversibly
 - So, the chamber is emptied of the core of the measured electron
 - So, the "measurement update" to the wavefunction, as supposedly occurring inside the chamber, is an entirely wrong idea. Also, very misleading.
- All other riddles can also be explained
 - Position measurements are of primary importance in actual experimentation
- Claim: A proper solution of the measurement problem is at the hand

 $\vec{W}(\vec{r}, t)$

Summary and Outlook

Summary and Outlook

Summary

- Ontological-physical basis of quantum phenomena is identified
 - . This layer lies "below" that of the mainstream QM postulates
- A new form of nonlinear equations is obtained
 - No hidden variables. No extra variables.
- Born's "postulate" is derived
- New numerical method is proposed
- Measurement problem is solved, in qualitative terms

Outlook / Future work

- Simulations of two- and three-particle systems
 - Computational resources ?
- Generalization using Dirac's relativistic theory

Thank you!