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Nonlocal Micromechanics of Composites of both Random and Periodic Structures.
(Background, Opportunities and Prospects)
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In locally elastic theory, the numerous methods of micromechanics, inspired by Eshelby, can be classi-
fied, according to Willis, into four broad categories (see for Refs. [1]): perturbation methods, self-consistent
methods of truncation of a hierarchy, variational methods, and the model methods among which there are
no rigorous boundaries. Apart from these methods exploiting microtopological information of the com-
posite materials (CM), there are the general results establishing the links between the effective properties
(effective elastic moduli, effective thermal expansion, and effective specific heat) and the corresponding
mechanical and transformation ifluence functions which were inspired by Hill and Levin. In parallel with
micromechanics of random structures, conceptually different methods of micromechanics of periodic struc-
ture composites can be subdivided on two-scale expansion methods (apparently coined by Babuska) and
the methods of computational homogenization inspired by Suquet. We will demonstrate that the men-
tioned basic directions of locally elastic micromechanics are generalized to the nonlocal micromechanics
(so-called strongly nonlocal ones by Eringen and peridynamics by Silling).

In contrast to these classical local and nonlocal theories, the peridynamic equation of motion intro-
duced in Silling [2] (see also [3]) is free of any spatial derivatives of displacements, where each material
point interacts directly with other material points separated from it by a finite distance. In bond-based
approach considered, these interactions only occur between pairs of material points within a horizon. Wide
expansion of the methods of locally elastic micromechanics into nonlocal phenomena was supported by
a critical generalization of micrmechanics. Namely, the author (see for Refs. [4, 5], and [6-11]) proposed
the general integral equation GIE of microinhomogeneous media forming the second background of mi-
cromechanics (the first one is based on the effective field hypothesis, EFH, proposed by Faraday, Poisson,
Mossotti, Clausius, and Maxwell (1830-1880), see for Refs. [1]). The critical features of the new GIE [4, 5]
are the absent of a direct dependence of GIE on both the Green function and the constitutive law (either
local or nonlocal) without restrictions of the conventional micromechanics (such as, e.g., acceptance of
the EFH and ellipsoidal symmetry of microtopology) that offers opportunities for a fundamental jump
in multiscale and multiphysics researches with drastically improved accuracy of local field estimations
(even to the point of correction of a sign, see [5]) that is critical for advanced material development
(especially for nonlinear modeling). It was established formal similarity of the operator forms of GIEs for
both locally elastic CMs and nonlocal ones (in the senses of either Eringen [12-14] or Silling [15-21]) that
opens the opportunities to straightforward generalization of their solutions for locally elastic CMs [1] to
their nonlocal counterparts.

For statistically homogeneous thermoperistatic media subjected to homogeneous volumetric macro
boundary loading, one proposed the background principles and proved [16, 21] that the effective behav-
ior of this media is governing by conventional effective constitutive equation which is intrinsic to the
local thermoelasticity theory (see [1]). The general results establishing the links between the effective
properties (effective elastic moduli, effective thermal expansion) and the corresponding mechanical and
transformation influence functions (do not miss with the influence functions in peridynamics) are ob-
tained by the use of both the decomposition of local fields into the load and residual fields as well as
extraction from the material properties a constituent of the matrix properties. The energetic definition
of effective elastic moduli is proposed. A detected similarity of results for both the locally elastic (and
so-called strongly nonlocal) and peristaltic composites is explained by the fundamental reasons because
the methods used for obtaining of the mentioned results widely exploit the Hill’s condition proved and
the self-adjointness of the peristatic operator. This similarity opens a way for straightforward expansion
of analytical micromechanics tools (see [1]) to the new area of random structure peridynamic composites.
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Effective moduli are expressed through the introduced new notions of both the micropolarization
tensor and the average local polarization tensor (although the local polarization tensor is not defined) [16,
21]. The average is accomplished over the surface of the extended inclusion phase (that was performed by
a straightforward generalization of interphase integral technique proposed by the author in locally elastic
micromechanics [22-27]) rather than over an entire space. Any spatial derivatives of local displacement
fields are not required. The basic hypotheses of locally elastic micromechanics (in the version of the second
background of micromechanics [4, 5]) are generalized to their peristatic counterparts. In particular, in a
dilute approximation method [28] (belonging to the class of perturbation methods), the volume fraction
of the particles is small and their mutual interaction are neglected, i.e. each particle can be thus imagined
as single, immersed into an unbounded matrix (this problem is solved in [29]). In self-consistent methods
[30], e.g. in the generalized effective field method (EFM) proposed, the effective field is evaluated from
self-consistent estimations by the use of closing of a corresponding integral equation in the framework of
the quasi-crystalline approximation. In so doing, the classical EFH is relaxed, and the hypothesis of the
ellipsoidal symmetry of the random structure of CMs is not used. One demonstrates some similarity and
difference with respect to other methods (such as the dilute approximation and Mori-Tanaka approach).
Effective nonlocal properties of statistically homogeneous peristatic CMs subjected to arbitrary self-
equilibrated strongly inhomogeneous body-force density are estimated as a straightforward generalization
of locally elastic micromechanics (see Chapter 8 in [1]). The generalized effective field method is realized
in the iteration scheme without the EFH. For the dilute approximation [31], the problem is reduced to the
solution for one inhomogeneity subjected to a set of body-force densities obtained by a parallel transition
from the fixed original body-force.

The variational methods represent the most rigorous trend and security aspect of micromechanics of
statistically homogeneous media. The admissible displacement and force fields are defined in [32]. The
theorem of work and energy, Betti’s reciprocal theorem, and the theorem of virtual work are proved.
Principles of minimum of both potential energy and complimentary energy are generalized. The strain
energy bounds are estimated for both the displacement and force homogeneous volumetric boundary
conditions. Generalized Hill’s bounds on the effective elastic moduli of peridynamic random structure
composites are obtained. In contrast to the classical Hill’s bounds, in the new bounds, comparable scales
of the inclusion size and horizon are taken into account that lead to dependance of the bounds on both
the size and shape of the inclusions. Generalized Hashin-Shtrikman variational principle and bounds can
be obtained as a straightforward combination of variational principles proposed and the new version of
Hashin-Shtrikman bounds [33, 34] obtained by the author in locally elastic micromechanics of CM with
noncanonical shape of inclusions in the framework of the EFH.

The background principles of computational homogenization (initiated by Suquet for locally elastic
micromechanics) of micromechanics of periodic structure CMs with the peristatic mechanical proper-
ties of constituents are proposed [35-39]. One introduces new volumetric periodic boundary conditions
(PBC, [37, 39]) at the interaction boundary of a representative unite cell whose local limit implies the
known locally elastic periodic boundary conditions. The classical representations of effective elastic mod-
uli through the mechanical influence functions for elastic CM are generalized to the case of peristatics,
and the energetic definition of effective elastic moduli is proposed. A generalization of the Hill’s equality
to peristatic composites is proved analogously to the theory for the peristatic random structure CM.
Due to the volumetric displacement periodicity the special traction boundary condition is not required
for establishment of the micro-to-macro displacement relationship although this classical antiperiodic
traction condition at the geometrical boundary of the UC is needed for estimations of both the overall
stresses and effective moduli. The discretization of the equilibrium equation acts as a macro-to-micro
transition of the deformation-driven type, where the overall deformation is controlled. One shows numer-
ically the convergence of the effective moduli estimations by the peristatic model to their locally elastic
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counterpart. Estimation of effective moduli of the medium with periodically distributed damage (i.e. with
the broken bonds) is considered [38]. Asymptotic exactness of Kachanov formula is proved for uniformly
damaged peridynamic medium. Proposal of the new volumetric Bloch conditions opens the opportunities
for analyses of a wide class of wave propagation in periodic peridynamic composites (e.g. metamaterials
and phononic crystals).

The mentioned problems were considered for the bond-based approaches, which can be easy general-
ized to the linear state-based approaches in a straightforward manner. Linear solutions are used as the
basic elements in analyses of wide classes of dynamic, nonlinear, and coupled problems in the framework
of the second background micromechanics proposed by the author (see for Refs. [4, 5]).
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