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When a voltage is applied to a layer of a dielectric elastomer, the layer reduces in thickness and expands in
area. A recent experiment has shown that the homogeneous deformation of the layer can be unstable, giving
way to an inhomogeneous deformation, such that regions of two kinds coexist in the layer, one being flat and
the other wrinkled. To analyze this instability, we construct for a class of model materials, which we call ideal
dielectric elastomers, a free-energy function comprising contributions from stretching and polarizing. We show
that the free-energy function is typically nonconvex, causing the elastomer to undergo a discontinuous transi-
tion from a thick state to a thin state. When the two states coexist in the elastomer, a region of the thin state has
a large area and wrinkles when constrained by nearby regions of the thick state. We show that an elastomer
described by the Gaussian statistics cannot stabilize the thin state, but a stiffening elastomer near the extension
limit can. We further show that the instability can be tuned by the density of cross-links and the state of stress.
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I. INTRODUCTION

Soft active materials are being developed to mimic a sa-
lient feature of life: movement in response to stimuli.1–6 This
paper focuses on a family of materials known as dielectric
elastomers. Figure 1 illustrates a thin layer of a dielectric
elastomer sandwiched between two compliant electrodes.
When a voltage is applied between the two electrodes, the
dielectric elastomer reduces in thickness and expands in area,
causing a weight to move. This phenomenon has been stud-
ied intensely in recent years,2,5,7–17 with possible applications
in medical devices, energy harvesters, and space
robotics.1,6,18–23

The dielectric elastomer is susceptible to a mode of fail-
ure known as pull-in instability. As the electric field in-
creases, the elastomer thins down, so that the same voltage
will induce an even higher electric field. The positive feed-
back may cause the elastomer to thin down drastically, re-
sulting in an even larger electric field. This electromechani-
cal instability can be a precursor of electrical breakdown, and
has long been recognized in the power industry as a failure
mode of polymer insulators.24,25 The instability has also been
analyzed recently in the context of dielectric elastomer
actuators.10,14,26,27

In a recent study of the pull-in instability, it was observed
experimentally that when a layer of a dielectric elastomer is
subject to a voltage, the homogeneous deformation can be
unstable, giving way to an inhomogeneous deformation, such
that two regions coexist in the layer, one being flat and the
other wrinkled.10 The underlying cause of this behavior has
not been discussed in the literature. Here, we develop a
theory to show how a homogenous deformation in the dielec-
tric layer can give way to two coexistent states.

Our theory will suggest the following qualitative picture.
Figure 2 sketches the relation between the voltage applied
between the two electrodes, �, and the magnitude of the
electric charge on either electrode, Q. When the charge is
small, the voltage needed to maintain the charge increases
with the charge. This behavior is the same as for any capaci-
tor, and the slope of the voltage-charge curve gives the ca-

pacitance. When the charge is large enough, the elastomer
thins down appreciably, and the electric field in the layer is
very high, so that the voltage needed to maintain the charge
starts to decrease. Consequently, the voltage reaches a peak,
which has long been identified with the onset of the pull-in
instability.28 The elastomer consists of long-chained poly-
mers cross-linked into a three-dimensional network. Under
no load, the end-to-end distance of each polymer chain is
small compared to its fully stretched length, known as the
extension limit. When the elastomer is subject to a large volt-
age, the polymer chains approach the extension limit, so that
the elastomer stiffens sharply, and the voltage increases
again with the charge.

The shape of the voltage-charge curve in Fig. 2 underlies
a discontinuous transition of the elastomer from a thick state
to a thin state. If the voltage is controlled, the elastomer may
exhibit hysteresis, jumping from one state to the other, much
like a ferroelectric. If the charge is controlled, the two states
may coexist in the elastomer at a constant voltage, with the
new state growing at the expense of the old. A region of the
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FIG. 1. A thin layer of a dielectric elastomer sandwiched be-
tween two compliant electrodes, and loaded by a battery and a
weight. �a� In the undeformed reference state, the elastomer has
thickness L and area A. �b� In the current state, the battery applies
voltage � and the weight applies force P. The loads are so arranged
that the elastomer deforms homogeneously to thickness l and area
a, while an amount of electric charge Q flows via the battery from
one electrode to the other. The electrodes are so compliant that they
do not constrain the deformation of the elastomer. In practice, the
weight may be used to compress the elastomer or to stretch the
elastomer in the plane.
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thin state has a large area and wrinkles when constrained by
nearby regions of the thick state. Maxwell’s rule in the
theory of phase transition applies: The voltage for coexistent
states is at the level such that the two shaded regions in Fig.
2 have equal areas.

The need to analyze large deformation of soft materials
under diverse stimuli has led us to reexamine the theory of
elastic dielectrics. In his classic text, Maxwell29 showed that
electric forces between conductors in a vacuum could be
calculated by invoking a field of stress in the vacuum. His
derivation is outlined in the Appendix of this paper for ease
of reference. The Maxwell stress has since been used in de-
formable dielectrics.5,7,30–34 This practice has been on an in-
secure theoretical foundation. Feynman et al.35 remarked that
differentiating electrical and mechanical forces inside a solid
was an unsolved problem and was probably unnecessary. Re-
cently, we and others have revisited the theory of deformable
dielectrics,36–38 showing that the Maxwell stress is not appli-
cable to deformable dielectrics in general and that the effect
of electric field on deformation is material specific.

The plan of this paper is as follows. Section II outlines the
theory of deformable dielectrics. The field equations are ap-
plicable for arbitrarily large deformation and are linear par-
tial differential equations. On the basis of available experi-
mental observations, we construct in Sec. III a free-energy
function for a class of model materials, which we call ideal
dielectric elastomers. The free energy of the elastomer comes
from two processes: stretching and polarizing. The polarizing
process is taken to be the same as that in a liquid, unaffected
by the stretching process. We show that for this special class
of materials, the Maxwell stress emerges from the free-
energy function. Section IV applies the theory to analyze a
layer of a dielectric elastomer deforming under a voltage. We
show that an elastomer characterized by the Gaussian statis-
tics cannot stabilize the thin state; to do so, we have to in-
voke stiffening near the extension limit, as described by non-
Gaussian statistics.

II. FIELD EQUATIONS OF DEFORMABLE DIELECTRICS

As a preparation for the later sections, this section sum-
marizes basic equations of the field theory of deformable
dielectrics. Following closely the approach of Ref. 27, we
express the theory in terms of material coordinates and nomi-

nal quantities, and we do not invoke the notions of electric
body force and Maxwell stress. Because a field may also
exist in the vacuum surrounding the dielectric, we will re-
gard the vacuum as a special dielectric, with a constant per-
mittivity and vanishing mechanical stiffness. Thus, the field
extends to the entire space, both the solid dielectric and the
vacuum. All the volume integrals extend over the entire
space, and the surface integrals extend over all the interfaces.
We take the continuum at a particular time as a reference
state and name each material particle using its coordinate X
in the reference state. Let dV�X� be an element of volume
and NK�X�dA�X� be an element of an interface, where dA�X�
is the area of the element and NK�X� is the unit vector nor-
mal to the interface between two materials labeled as � and
�, pointing toward material �.

In a current state at time t, a particle X occupies a place
with coordinate x�X , t�. Denote the deformation gradient by

FiK =
�xi�X,t�

�XK
. �1�

The deformation gradient is a second-rank tensor, and it gen-
eralizes the stretches.

We will use the word “weight” as a shorthand for any
mechanism that applies an external force to the continuum.
Imagine that we hang a weight to each material particle. In
the current state, let the force due to the field of weights on
an element of volume be B�X , t�dV�X� and that on an ele-
ment of an interface be T�X , t�dA�X�. Define the nominal
stress siK�X , t� such that the equation

� siK
��i

�XK
dV =� Bi�idV +� Ti�idA �2�

holds true for any test function �i�X�.
Applying the divergence theorem, we obtain

� siK
��i

�XK
dV =� �siK

− − siK
+ �NK�idA −� �siK

�XK
�idV . �3�

Across the interface, �i�X� is assumed to be continuous, but
the stress need not be continuous. Insisting that Eq. �2� holds
true for any test function �i�X�, we find that the nominal
stress obeys

�siK�X,t�
�XK

+ Bi�X,t� = 0 �4�

in the volume and

�siK
− �X,t� − siK

+ �X,t��NK�X,t� = Ti�X,t� �5�

on an interface. Equations �4� and �5� express momentum
balance in every current state in terms of the nominal fields.
While these equations are well known in continuum mechan-
ics, we should emphasize that B and T are forces associated
with the field of weights; the notion of electrical body forces
need not be invoked in the theory of deformable dielectrics.

We will use the word “battery” as a shorthand for any
mechanism that applies an electric voltage to a material par-
ticle. Imagine that we attach a battery to every material par-
ticle. In the current state, the battery maintains the voltage of
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FIG. 2. �Color online� A schematic of the voltage-charge curve
of a layer of an elastomer dielectric. When Q is small,� increases
with Q. When Q is large enough, the layer thins down appreciably,
so that the true electric field in the layer is large, and � needed to
maintain the charge drops. When Q is very large, the layer thins so
much that the elastomer becomes very stiff, so that � increases with
Q.
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the particle, ��X , t�, with respect to the ground. Denote the
nominal electric field as the gradient of the electric potential,

ẼK = −
���X,t�

�XK
. �6�

The negative sign conforms to the convention that the elec-
tric field points from a particle with high electric potential to
a particle with low electric potential.

In the current state, let the charge on an element of vol-
ume be Q�X , t�dV�X� and the charge on an element of an
interface be ��X , t�dA�X�. Define the nominal electric dis-

placement D̃K�X , t� such that

� �−
��

�XK
�D̃KdV =� �QdV +� ��dA �7�

holds true for any test function ��X�.
We apply the divergence theorem to the left-hand side and

obtain

� ��

�XK
D̃KdV =� ��D̃K

− − D̃K
+�NKdA −� �

�D̃K

�XK
dV . �8�

The test function ��X� is assumed to be continuous across
the interface, but the electric displacement need not be con-
tinuous across the interface. Insisting that Eq. �7� holds true
for any test function ��X�, we find that the nominal electric
displacement obeys

�D̃K�X,t�
�XK

= Q�X,t� �9�

in the volume and

�D̃K
+�X,t� − D̃K

−�X,t��NK�X,t� = ��X,t� �10�

on an interface. These equations express Gauss’s law in ev-
ery current state in terms of the nominal fields.

In the above, we have used nominal quantities exclu-
sively. For later reference, recall the well known relations
between the true and nominal quantities. The true stress �ij
relates to the nominal stress by

�ij =
FjK

det�F�
siK. �11�

The true electric displacement relates to the nominal electric
displacement by

Di =
FiK

det�F�
D̃K. �12�

The true electric field relates to the nominal electric field by

Ei = HiKẼK, �13�

where HiK is the inverse of the deformation gradient, namely,
HiKFiL=�KL and HiKFjK=�ij.

III. IDEAL DIELECTRIC ELASTOMERS

The field equations �Eqs. �1�, �4�, �6�, and �9�� are linear
partial differential equations; they determine the field in con-

junction with material laws, which we specify in this section.
When the material particles displace by �x, the weights do
work, �Bi�xidV+�Ti�xidA. When small amount of charge
�Q and �� flows from the ground to the material particles,
the batteries do work, ���QdV+����dA.

Let the free energy of the dielectric per unit reference
volume be W, taken to be a function of the deformation

gradient and the nominal electric displacement, W�F , D̃�. As-

sociated with small changes �F and �D̃, the free energy
changes by

�W =
�W�F,D̃�

�FiK
�FiK +

�W�F,D̃�

�D̃K

�D̃K. �14�

The dielectric, the weights, and the batteries together form
a thermodynamic system. The free energy of the system, G,
is a sum of the free energy of the dielectric and the potential
energy of the weights and batteries. Consequently, associated
with the small changes, the free energy of the system
changes by

�G =� �WdV −� Bi�xidV −� Ti�xidA −� ��QdV

−� ���dA . �15�

Applying Eqs. �14�, �2�, and �7� to Eq. �15�, we obtain

�G =� � �W

�FiK
− siK��FiKdV +� � �W

�D̃K

− ẼK��D̃KdV .

�16�

Thermodynamics dictates that an equilibrium state mini-
mizes the free energy of the system. That is, �G=0 for any

small changes, �F and �D̃, in the neighborhood of the equi-
librium state. Consequently, the coefficients in front of the
two variations must vanish, leading to

siK =
�W�F,D̃�

�FiK
, �17�

ẼK =
�W�F,D̃�

�D̃K

. �18�

Once the function W�F , D̃� is known for an elastic dielectric,
Eqs. �17� and �18� give material laws.

The free-energy density W�F , D̃� is a function of a tensor
and a vector. An explicit form of such generality is unavail-
able for any real material. On the other hand, experiments
suggest that for dielectric elastomers, the true electric dis-
placement is linear in the true electric field, D=	E, with the
permittivity 	 being approximately independent of the state
of deformation.5,7,9,10 We interpret this experimental observa-
tion as follows. Each polymer in an elastomer is a long chain
of covalently bonded links. The neighboring links along the
chain can readily rotate relative to each other, so that the
chain is flexible. A link also interacts with links on other
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chains through weak bonds. Different chains are cross-linked
with covalent bonds to form a three-dimensional network.
When each chain contains a large number of links and when
the end-to-end distance of the chain has not reached its fully
stretched length, the extension limit, the local behavior of the
links is just like molecules in a liquid. The elastomer can
polarize nearly as freely as in liquids. Furthermore, for an
elastomer with an approximately isotropic dielectric behav-
ior, we surmise that the polarizability of links is comparable
in the directions along the chain and transverse to the chain.

Motivated by the experimental observation and molecular
interpretation, we define an ideal dielectric elastomer such
that its free energy is the sum of the free energy due to
stretching the network and the free energy due to polarizing
the liquid polymer. We will take unstretched, unpolarized
elastomer as the reference state. The free energy of the liquid
polymer per unit current volume is DiDi /2	. Thus, the free-
energy function of the ideal dielectric elastomer is

W�F,D̃� = Ws�F� +
FiKFiL

2	 det�F�
D̃KD̃L. �19�

The term Ws�F� is the free energy due to stretching the three-
dimensional network. We assume that the free energy of
stretching is mainly due to the entropy of the flexible chains,
and neglect any effect of electric field on the free energy of
stretching.

Inserting Eq. �19� into Eq. �18�, we obtain

ẼK =
FiKFiL

	 det�F�
D̃L, �20�

which reduces to Di=	Ei. As anticipated, the dielectric be-
havior of the ideal dielectric elastomer is identical to that of
a liquid polymer.

Inserting Eq. �19� into �17�, and recalling an identity
� det�F� /�FiK=HiK det�F�, we obtain

siK =
�Ws�F�

�FiK
+

FiLD̃LD̃K

	 det�F�
−

FkLFkMHiKD̃LD̃M

2	 det�F�
. �21�

Using Eqs. �11�, �12�, �23�, and �20�, we reduce Eq. �21� to

�ij =
FjK

det�F�
�Ws�F�

�FiK
+ 	EiEj −

	

2
EkEk�ij . �22�

The first term is due to stretching the network, and the sec-
ond and third terms are due to the electric field.

A comparison of Eq. �22� with the Appendix shows that
the electric field induced stress in an ideal dielectric elas-
tomer takes the same form as the Maxwell stress in a liquid.
This relation is not accidental because we have modeled the
dielectric behavior of the elastomer after a liquid. For a gen-
eral solid dielectric, however, the free-energy function does
not take the form of Eq. �19�, so that the effect of electric
field on stress will not take the form of the Maxwell stress.
For example, when a solid dielectric is subject to a voltage,
the layer will become thinner or thicker, depending on the
dielectric used.39–42 For a dielectric that thickens under an
electric field, the Maxwell stress does not even predict the
correct sign of the strain. The atomic origin of this thicken-

ing is well understood. Influenced by the voltage between the
electrodes, charged particles inside the dielectric tend to dis-
place relative to one another, often accompanied by an elon-
gation of the material in the direction of the electric field. In
the literature, when the strain induced by an electric field in
a dielectric deviates from that predicted by the Maxwell
stress, the strain is called electrostriction. Effort has even
been made to differentiate electrostriction from the strain in-
duced by the Maxwell stress. Within our theory, however, the
Maxwell stress has lost its significance for general dielec-
trics. This is particularly true when the dielectric behavior is
nonlinear, or when the permittivity depends on deformation,
so that the Maxwell stress is not even defined. In general,
once the free-energy function is prescribed, Eqs. �17� and
�18� give the complete material laws.

By definition �7�, the nominal electric displacement field

D̃ is invariant when the entire system in the current state
rotates as a rigid body. The deformation gradient F, however,
varies when the system in the current state rotates as a rigid
body. To ensure that the free energy is invariant under such a
rigid-body rotation, following the usual practice, we invoke
the right Cauchy-Green deformation tensor, CKL=FiKFiL, and

write the free energy as a function, W=W�C , D̃�. Conse-
quently, Eq. �17� becomes

siK = 2FiL
�W�C,D̃�

�CKL
. �23�

Under most types of load, an elastomer can undergo large
shape change without appreciable volumetric change. Fol-
lowing the common practice, we assume that the elastomer is
incompressible, so that

det�F� = 1. �24�

In minimizing the free energy G, the condition of incom-
pressibility can be enforced as a constraint by adding �p�1
−det�F��dV to G, where p�X , t� is a field of Lagrangian mul-
tipliers. Subject to the condition of incompressibility, Eq.
�17� becomes

siK = 2FiL
�W�C,D̃�

�CKL
− pHiK �25�

and Eq. �22� becomes

�ij = 2FjKFjL
�Ws�C�
�CKL

− p�ij + 	EiEj −
	

2
EkEk�ij . �26�

The true stress is a symmetric tensor, and p corresponds to a
state of hydrostatic stress.

Many forms of Ws�C� can be found in the literature on
elastomers.43,44 We adopt an expression developed by Arruda
and Boyce45

Ws�C� = 
	1

2
�I − 3� +

1

20n
�I2 − 9� +

11

1050n2 �I3 − 27� + ¯ 
 ,

�27�

where 
 is the small-strain shear modulus, I=CKK, and n is
the number of links per chain. When n→�, Eq. �27� reduces
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to the Neo-Hookean law, which is derived from the Gaussian
statistics, assuming that the end-to-end distance of a chain is
small compared to the length of the fully stretched chain.
When the end-to-end distance approaches the length of the
fully stretched chain, however, the Gaussian statistics is no
longer applicable, and Eq. �27� provides one form of non-
Gaussian correction. As the chains approach to being fully
stretched, the elastomer stiffens. As we will show below, this
stiffening plays an essential role in stabilizing coexistent
states.

IV. COEXISTENT STATES

We next apply the general theory to analyze an elastomer
layer subject to a weight and a voltage �Fig. 1�. The unde-
formed elastomer is taken to be the reference state, in which
the layer has thickness L and area A. In the current state, a
weight applies a force P to the layer, while through an ex-
ternal circuit a battery applies a voltage � between the two
electrodes. The thickness of the layer becomes l and the area
becomes a. An amount of charge Q flows from the external
circuit from one electrode to the other. Define the stretch by
�= l /L, the nominal stress by s= P /A, the nominal electric

field by Ẽ=� /L, and the nominal electric displacement by

D̃=Q /A. These definitions are the special forms of those in
Sec. II. The true electric field is defined as E=� / l, and the
true electric displacement is defined as D=Q /a. For incom-

pressible materials, AL=al, so that E= Ẽ /� and D=�D̃. Ob-
serve that in the absence of weight, s=0, regardless of
whether the dielectric thins or thickens under the voltage.

Let W�� , D̃� be the free-energy function of the elastomer
in the current state divided by the volume of the elastomer in
the reference state. At constant P and �, the potential energy
of the weight and the battery are, respectively, −Pl and −�Q.
The elastomer, the weight, and the battery together constitute
a thermodynamic system. The free energy of the system is
the sum over the parts, namely,

G = LAW��,D̃� − Pl − �Q . �28�

A state of the system is described by two generalized coor-

dinates, � and D̃. We fix both P and �, and vary � and D̃.
Thermodynamics dictates that when the elastomer equili-

brates with the weight and the battery, the values of � and D̃
should minimize the free energy of the system, G.

When the system changes from a state �� , D̃� to a state

��+��, D̃+�D̃�, the free energy changes by

�G

LA
= � �W

��
− s��� + � �W

�D̃
− Ẽ��D̃ +

�2W

2��2 ����2

+
�2W

2�D̃2
��D̃�2 +

�2W

���D̃
���D̃ . �29�

This is the Taylor expansion to the second order in �� and

�D̃. For the state �� , D̃� to minimize G, the coefficient of the
first-order variation must vanish, so that

s =
�W��,D̃�

��
, Ẽ =

�W��,D̃�

�D̃
. �30�

Furthermore, the second-order variation must be positive for

arbitrary variations �� and �D̃, so that

�2W

��2 
 0,
�2W

�D̃2

 0, � �2W

��2 �� �2W

�D̃2� 
 � �2W

���D̃
�2

.

�31�

Conditions �30� are anticipated because the nominal stress is
work conjugate to the stretch and the nominal electric field is
work conjugate to the nominal electric displacement. Both
Eqs. �30� and �31� have familiar graphical interpretations.

The function W�� , D̃� is a surface in the space spanned by

the coordinates W, �, and D̃. Thus, s and Ẽ are the slopes of

the plane tangent to the surface at �� , D̃�. Conditions �31�
guarantee that the surface W�� , D̃� is convex at �� , D̃�. Of the
three conditions in Eq. �31�, the first ensures mechanical sta-
bility, the second electrical stability, and the third electrome-
chanical stability. As we will see, for typical dielectric elas-
tomers, the first two conditions are satisfied for all values of

�� , D̃�, but the third is violated for some values of �� , D̃�.
In deriving Eq. �30�, we have regarded �s , Ẽ� as the load-

ing parameters set by the weight and the battery. We may

also regard �s , Ẽ� as functions of the generalized coordinates

�� , D̃�. Thus, once the free-energy function W�� , D̃� is pre-
scribed, Eq. �30� gives the equations of state of the elas-
tomer. When the generalized coordinates vary by small

amounts, ��� ,�D̃�, to maintain equilibrium, Eq. �30� dictates

that the loading parameters vary by ��s ,�Ẽ�, such that

	 �s

�Ẽ

 = �

�2W

��2

�2W

���D̃

�2W

���D̃

�2W

�D̃2
�	��

�D̃

 . �32�

The matrix in Eq. �32�, known as the Hessian, linearly maps
the changes in the generalized coordinates to the changes in
the loading parameters. That is, the Hessian is the general-
ized tangent modulus.

Before we turn to the specific material model, we first
outline consequences of a nonconvex free energy. Figure 3
sketches the behavior of an elastomer loaded with a battery

�Ẽ�0� but not a weight �s=0�. Assuming mechanical stabil-

ity, namely, �2W�� , D̃� /��2
0, we conclude that

�W�� , D̃� /�� is a monotonically increasing function, so that

the condition s=�W�� , D̃� /��=0 can be inverted to express

� as a function of D̃. This function is sketched in Fig. 3�a�:
The elastomer thins down as the charge on either electrode
increases.
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Inserting the relation ��D̃� into the function W�� , D̃�, we
obtain the free energy of the elastomer as a function of the

nominal electric displacement, Ŵ�D̃�=W���D̃� , D̃�. This
free-energy function is sketched in Fig. 3�b�; the function is

convex for small and large D̃, but is nonconvex for an inter-

mediate range of D̃. The physical origin of this nonconvex
shape has been discussed in connection with Fig. 2.

Figure 3�c� sketches the free energy of the composite sys-
tem of the elastomer and the battery,

G/LA = Ŵ�D̃� − ẼD̃ . �33�

Each curve corresponds to a nominal electric field, Ẽ=� /L.

For a small or a large Ẽ, the free-energy function has a single
minimum, corresponding to a stable equilibrium state. For an

intermediate range of Ẽ, the function has two minima, with
the lower one corresponding to a stable equilibrium state,
and the higher one a metastable equilibrium state. At a par-

ticular nominal electric field Ẽ*, the two minima have equal

values of the free energy. The significance of Ẽ* is under-
stood as follows. Suppose that the state of the elastomer is no
longer homogenous, but is composed of two states. The ma-
terial of the two states occupies areas A� and A� when unde-
formed. In this simplified treatment, we will neglect the tran-
sition region in the elastomer between the areas of the two
states, so that the total area in the reference state is

A� + A� = A . �34�

Similarly, the electric charge on one of the electrode is

A�D̃� + A�D̃� = Q , �35�

and the free energy of the composite system of the elastomer
and the battery is

G = LA�Ŵ�D̃�� + LA�Ŵ�D̃�� − ��A�D̃� + A�D̃�� . �36�

Thermodynamics requires that in equilibrium this free en-
ergy be minimized subject to the constraint A�+A�=A. Set-

ting �G /�D̃�=�G /�D̃�=0 and �G /�A�=0, we obtain

�

L
=

dŴ

dD̃�
=

dŴ

dD̃�
=

Ŵ�D̃�� − Ŵ�D̃��

D̃� − D̃�
. �37�

These conditions have the familiar graphical interpretations.
The two states equilibrate when they lie on the common
tangent line in Fig. 3�b� or, equivalently, when the two
minima have the same height in Fig. 3�c�. The slope of the

common tangent gives Ẽ*, the nominal electric field under
which the two states coexist in equilibrium.

Figure 3�d� sketches the nominal electric field Ẽ

=dŴ /dD̃ as the function of the nominal electric displace-
ment. Because the free-energy function is nonconvex, its de-

rivative Ẽ�D̃� is not monotonic. Equation �37� has a graphic

interpretation in Fig. 3�d�: The nominal electric field Ẽ* un-
der which the two states coexist in equilibrium is at the level
such that the two shaded regions have the same area. This
interpretation is known as Maxwell’s rule in the theory of
phase transition. A similar interpretation holds for instability
in structures, such as the propagation of bulges along a cy-
lindrical party balloon and buckles along a pipe.46,47
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FIG. 3. �Color online� Schematic behavior of a dielectric elas-
tomer under a constant force and variable voltage. All horizontal

axes are the nominal electric displacement D̃=Q /A. �a� As the
charge increases, the thickness of the electrode reduces. �b� The

free-energy function Ŵ�D̃� is nonconvex. The two states on the

common tangent may coexist at the electric field Ẽ* given by the
slope of the common tangent. �c� The free-energy function of the

composite system of the elastomer and the battery, G /LA=Ŵ�D̃�
− ẼD̃, where Ẽ=� /L is the nominal electric field, i.e., the voltage in
the current state divided by the thickness of the elastomer in the

reference state. For a small or a large Ẽ, the free-energy function
has a single minimum, corresponding to a stable equilibrium state.

For an intermediate Ẽ, the free-energy function has two minima, the
lower one corresponding to a stable equilibrium state, and the

higher one a metastable equilibrium state. At Ẽ*, the two minima
have the equal height, corresponding to the two coexisting states.

�d� The function Ẽ�D̃� is not monotonic. A voltage-controlled load
will result in a hysteretic loop. A charge-controlled load will result

in coexisting states, fixing Ẽ* at a level such that the two shaded
regions have the same area.
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We expect that the experimental consequence of Fig. 3�d�
also parallels that of a phase transition and structural insta-
bility. If the voltage is controlled, we expect that the elas-
tomer exhibits a hysteresis loop, as indicated by the arrows
in Fig. 3�d�. In reality, the hysteresis loop may operate in an

interval narrower than �Ẽvalley , Ẽpeak� because imperfections
in elastomer may lower the barriers for switching from one
state to the other in a small region, and then the area of the
new state expands at the expense of the area of the old state.
If the charge is controlled, we expect that the two states

coexist at the voltage LẼ*. As the charge ramps, the change
of state occurs at a constant voltage.

We next apply our theory to the ideal dielectric elastomer.
We specialize Eqs. �20� and �21� to

s =
dWs

d�
+

�D̃2

	
, Ẽ =

�2D̃

	
. �38�

When the elastomer is under no external force, s=0. When
n=�, the degree of cross-link is low and Ws���=
�I−3� /2
=
��2+2�−1−3� /2. Equation �38� reduces to

� = �1 +
D̃2


	
�−1/3

,
Ẽ



/	
=

D̃


	

�1 +
D̃2


	
�−2/3

. �39�

The function ��D̃� is monotonic �Fig. 4�a��, as expected. Fig-

ure 4�b� shows that the function Ẽ�D̃� has a peak: The left
side of the curve in Fig. 4�b� corresponds to a convex part of
the free energy, and the right side corresponds to a concave

part of the free energy. The true electric field is E= Ẽ /�, and

the function E�D̃� is monotonic �Fig. 4�c��. The peak nomi-

nal electric field is Ẽpeak�0.69

 /	, which occurs when D̃
=
3	
, ��0.63, and E�1.1

 /	. The model suggests that
if a region of the elastomer thins down to a critical thickness,
the region should thin down further without limit.

The shape of the curve in Fig. 4�b� for the neo-Hookean
material �n=��, however, is an exception rather than a rule.
When n is finite, multiple terms in Eq. �27� are needed, lead-
ing to a much stiffer behavior as �→0. Figure 4�b� plots the

function Ẽ�D̃� for several values of n. Below a critical value,

n�2.6, the function Ẽ�D̃� is monotonic and the elastomer is
electromechanically stable for the full range of electric field.

When 2.6�n�� �Fig. 4�b��, the function Ẽ�D̃� has the same
shape as in Fig. 3�d�. This shape is expected for most com-
monly used dielectric elastomers, given the large range of n.

Our theory can be extended to other loading conditions.
As an illustration, let sP be the nominal stress applied biax-
ially in the plane of the elastomer layer. In terms of the
through thickness stretch �, the in-plane stretch is �−1/2, so
that the free energy becomes

G/LA = W��,D̃� − 2sP�−1/2 − ẼD̃ . �40�

For a fixed value of n and sP, the two coexistent states are
subject to the same voltage but have different true electric
fields. In experiment, the true electric field in the thin state
may exceed the electric breakdown strength. As shown in
Fig. 5, imposing a biaxial stress significantly reduces the true
electric field in the thin state and may enable the two states
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FIG. 4. �Color online� Electromechanical behavior of elastomers
for several values of n, the number of links per chain. Various
quantities are normalized by the small-strain shear modulus 
 and

the permittivity 	. �a� The function ��D̃�. �b� The function Ẽ�D̃�
reaches a peak when n=�, is monotonic when n�2.6, and reaches
a peak and a valley when 2.6�n��. �c� The true electric field is a
monotonic function of the charge.

FIG. 5. �Color online� The coexistent states can be tuned by the
degree of cross-link and the state of stress. A state of biaxial stress
sP is imposed in the plane of the elastomer layer. For given n and
sP /
, the coexistent states have different true electric fields; they
are intersections between a curve in the figure and a vertical line
�not shown�. Imposing an in-plane tension markedly reduces the
true electric field in the thin state.
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to coexist. Furthermore, for a given n, the electromechanical
instability can be averted when the biaxial stress is large
enough. These conclusions are consistent with the experi-
mental observations.10

V. CONCLUDING REMARKS

We have specified a material model that is consistent with
the available experimental data and have shown that the free
energy of commonly used dielectric elastomers is noncon-
vex, leading to coexistent states and hysteresis in elastomer
layers. The theory also directs attention to several topics ripe
for exploration. While we have explained the coexistence of
flat and wrinkled states, we have not included wrinkles ex-
plicitly in our theory. When molecular groups in an elas-
tomer can polarize nearly as freely as in liquids, e.g., when
the degree of cross-link is low and the deformation is well
below the fully extended limit, the dielectric behavior of the
elastomer is expected to be liquidlike. It will be interesting to
investigate how well the ideal dielectric elastomer represents
a real one. The large flow of charge associated with the
change of states may also lead to interesting applications. We
hope that more refined experiment and theory will soon suc-
ceed in these explorations.
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APPENDIX: MAXWELL STRESS IN A VACUUM OR IN
AN INCOMPRESSIBLE, LINEARLY DIELECTRIC

FLUID

In his classic text, Maxwell derived an expression of
stress in a vacuum due to an electrostatic field. His derivation
is outlined here, which is referred to in several places in the
body of the text. When a test charge q is placed in the
vacuum, if we find that an external force must be applied on
the charge to keep it stationary, we say that an electric field E
exists in the vacuum, such that

f = qE . �A1�

By convention, f is called the electrostatic force, and the
external force needed to maintain equilibrium is −f. When a
field of charge is present in the vacuum, denote the coordi-
nate of a point in the vacuum by x and the charge per unit
volume by q�x�. Equation �A1� now represents a field of
electrostatic force, with −f�x� being the external force per
unit volume that must be applied to maintain the field of
charge in equilibrium.

The field of charge q�x� generates in the vacuum an elec-
tric field, which is governed by

�Ei

�xj
=

�Ej

�xi
,

�Ei

�xi
=

q

	0
, �A2�

where 	0 is the permittivity of the vacuum.
Equations �A1� and �A2� together form a theory that can

be tested experimentally. Given a field of charge q�x�, we
can use Eq. �A2� to solve the electric field E�x� and then
ascertain if we need to apply a field of external force −f�x�,
as predicted by Eq. �A1�, to maintain the field of charge in
equilibrium.

Inserting Eq. �A2� into Eq. �A1�, one obtains

f i =
�

�xj
�	0EiEj −

	0

2
EkEk�ij� . �A3�

This equation is reminiscent of the equilibrium equation in
continuum mechanics. The quantity

�ij = 	0EiEj −
	0

2
EkEk�ij �A4�

is known as the Maxwell stress.
The above is how Eq. �A4� was derived in Maxwell’s text.

The expression is also valid for an incompressible, linearly
dielectric fluid, provided the permittivity of the vacuum, 	0,
is replaced by that of the fluid, 	. The expression is not valid
for a compressible fluid dielectrics or solid dielectrics. Max-
well said, “I have not been able to make the next step,
namely, to account by mechanical considerations for these
stresses in the dielectric. I therefore leave the theory at this
point…”
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