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Abstract

We introduce a new family of mixed finite elements for incompressible nonlinear elasticity — compatible-
strain mized finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field
mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a
pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity,
which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent
unknown fields. In particular, we define the displacement in H', the displacement gradient in H (curl),
the stress in H(div), and the pressure field in L?. The test spaces of the mixed formulations are chosen
to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the
solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation
spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields.
This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard
compatibility condition and the continuity of traction at the discrete level independently of the refinement
level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good
performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing
very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe
any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical
examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

Keywords: Mixed finite element methods; finite element exterior calculus; nonlinear elasticity; incompressible
elasticity; Hilbert complex.
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1 Introduction

It has been known for quite some time in the finite element literature that internal constraints, and in particular,
incompressibility constraint should be treated very carefully to avoid numerical artifacts and instabilities. One
path for developing efficient and robust numerical schemes for incompressible elasticity is the use of mixed finite
elements.

For incompressible solids, addition of the volume-preserving constraint and the pressure as an extra inde-
pendent unknown results in a saddle-point problem. The well-posedness of a saddle-point problem requires
that the two independent unknowns, which are the displacement and pressure in this context, are defined in
some compatible spaces. This requirement is commonly represented by an inf-sup condition referred to as the
LBB condition after the celebrated works of Ladyzhenskaya [1], Babuska [2], and Brezzi [3]. Satisfaction of this
condition at the discrete level is a necessary condition for the stability of the finite element method and causes
some complications for constructing the finite element spaces of displacement and pressure. There are different
approaches for constructing finite elements that satisfy the LBB conditions, among which are enriching the space
of displacement with some bubble functions in each element, e.g., mini element (triangular with P1 b3 — P1)
[4], using quadratic or higher-order shape functions, e.g., quadrilateral Taylor-Hood element (Q2 — Q1) [5] or
its triangular variant (P2 — IP1) [6], with the proof of stability given for both by Bercovier and Pironneau [7],
pairing a composite displacement element with a piecewise constant pressure element, e.g., [7], and using non-
conforming displacement elements, e.g., Crouzeix and Raviart [8]. All these well-known methods are mainly
developed for the Stokes saddle-point problem and the proofs of stability are given for linear two-field mixed
formulations. Although, these elements can be used for modeling incompressible linear solids, they may not
perform well in nonlinear problems, especially in capturing large strains. It is shown in [9] that some of the above
elements may exhibit some numerical artifacts when used in incompressible nonlinear elasticity. It is further
highlighted that increasing the amplitude of the external loads and the way the incompressibility constraint is
imposed may affect the performance of the above elements in nonlinear problems. As another example, see the
result given in [10, §5.2] obtained by the modified quadratic displacement-linear pressure with hourglass control
(CPE6MH) in ABAQUS, which shows the shortcomings of the above approaches in capturing large strains in
incompressible nonlinear elasticity problems.

Over the years different approaches have been presented to avoid the difficulties associated with a saddle-
point problem, among which are choosing different trial and test spaces (Petrov-Galerkin method), statically
condensing out the pressure from the corresponding matrix formulations, and stabilizing the system by adding
some extra terms to the mixed formulations to alter the saddle-point problem. These approaches may be imple-
mented individually or a combination of more than one approach may be used. Another common saddle-point
problem in elasticity is the stress-displacement mixed formulation associated with the Hellinger-Reissner princi-
ple, which has mostly been implemented for linear elasticity. In this method, spaces of stress and displacement
must be defined carefully. Inspired by the work of Hughes et al. [11] for the Stokes problem, Franca et al. [12]
developed a mixed Petrov-Galerkin finite element method for nearly incompressible linear elastic solids. The
method is based on the modification of the weak formulation associated with the critical point of the Hellinger-
Reissner principle by adding some additional terms to improve stability without compromising consistency. The
goal in such methods is an equal-order conforming approximation of the displacement and the Cauchy stress.

For the (nearly) incompressible nonlinear elasticity problems, Simo et al. [13] proposed a kinematic splitting
of the volumetric and volume-preserving parts of the deformation gradient and used it in a three-field form
of the Hu-Washizu variational principle. For compressible and near incompressible nonlinear solids, Simo and
Armero [14] used an additive decomposition of displacement gradient into a compatible part and an enhanced
part. For a continuum problem the enhanced part vanishes pointwise. However, they observed that at the
discrete level using mixed finite elements the enhanced part does not vanish and leads to a better representation
of strain. For transversely isotropic incompressible solids, Weiss et al. [15] exploited Simo et al. [13]’s idea of
splitting the deformation gradient and used the deformation mapping, dilation, and pressure as independent
variables in their mixed finite element formulation of incompressible transversely isotropic solids. For imposing
the incompressibility constraint, they used an augmented Lagrangian method. Lamichhane [16] developed a
displacement-pressure mixed finite element method for 2D nearly incompressible nonlinear elasticity. Both



the trial and test spaces of displacement are discretized using linear Lagrange finite elements enriched with
standard cubic bubble functions so that the inf-sup condition is satisfied. In addition, using a Petrov-Galerkin
approach, the trial space of pressure is discretized by linear Lagrange finite elements, but the shape functions
of the test space of pressure are obtained by assuming a biorthogonality condition between the trial and test
spaces of pressure. Using this setting, one can statically condense out the pressure from the corresponding
algebraic system and solve a displacement-based problem. Chi et al. [10] used polygonal finite elements to
discretize a two-field mixed formulation of 2D (nearly) incompressible nonlinear elasticity. The displacements
are interpolated by choosing the barycentric coordinates over each polygon as the shape functions and the values
of displacements at the polygon vertices as the degrees of freedom, which results in a C° approximation over the
entire domain. The pressure is approximated by a piecewise constant scalar over each polygon. Their numerical
studies showed that the method is stable and is able to capture very large stretches.

The present work is an extension of [17] to incompressible nonlinear elasticity. We write a four-field mixed
formulation of incompressible nonlinear elastostatics in terms of the displacement, displacement gradient, the
first Piola-Kirchhoff stress, and a pressure-like field by extremizing a Hu-Washizu-type functional. Comparing
with [17], in this work, we use a symmetric mixed formulation, which is computationally more efficient. Elim-
inating the pressure and the incompressibility constraint from the four-field mixed formulation reduces it to a
symmetric version of the three-field mixed formulation of compressible solids given in [17]. In addition, based
on our observation of the numerical examples of both this work and [17], we have concluded that the treat-
ment of the boundary conditions in this work improves the accuracy and robustness of the mixed FEMs and
is also easier to implement. Here, we impose the displacement boundary conditions strongly and the traction
boundary conditions weakly. More specifically, only the displacement boundary condition is imposed by the
standard elimination approach in the system of algebraic equations; the traction boundary condition is built
into the governing equations, and hence, there is no need to directly compute the degrees of freedom of stress
on the boundary. Furthermore, we provide a clearer description of finite element approximations that is easier
to implement and is computationally more efficient. In this work, we prove why some of the combinations of
the finite element spaces do not result in solvable mixed finite element methods, which was also observed in [17]
but was not discussed in detail.

We use the Hilbert complexes of nonlinear elasticity [18, 19] to identify the spaces of the independent field
variables. In particular, we define the displacement in H?, the displacement gradient in H (curl), and the stress
in H(div). This setting is different from the ones that are commonly used for the mixed formulation of linear
elasticity written based on the Hellinger-Reissner principle, where the Cauchy stress and the displacement are
defined in a symmetric H(div) space and L?, respectively, e.g., see [20, 21]. Other variants of the mixed stress-
displacement method for linear elasticity were introduced in [22] and [23]. In [22], the displacement is assumed
in H! and stress in a symmetric L? space, while in [23] the displacement is assumed in H(curl) and stress is
approximated by a symmetric non-conforming H(div) space. Although in some aspects the above-mentioned
formulations are similar to our work, they cannot be used in drawing any conclusion on the convergence or
stability; linear and nonlinear elasticity are quite different and the mixed formulation of the present work is
based on a Hu-Washizu-type functional, which is not directly related to the Hellinger-Reissner principle. The
mixed finite element methods presented in this work can be considered structure preserving in the sense that
the differential complex structure of nonlinear elasticity [18] is preserved at the discrete level. In particular,
in our mixed finite element methods for incompressible nonlinear elasticity both the Hadamard compatibility
condition and the continuity of traction are satisfied at the discrete level independently of the refinement level
of the mesh.

This paper is organized as follows. In §2, we discuss the mixed formulation that we will later use for
introducing CSFEMs. In §2.1, we first discuss some preliminaries and definitions, and then review the Hilbert
complexes that describe the kinematics and the kinetics of 2D nonlinear elasticity. In §2.2, we derive a four-field
mixed formulation for 2D incompressible elastostatics by extremizing a Hu-Washizu-type energy functional. In
§3, we discuss the finite element approximation of the four-field mixed formulation of §2.2. In §3.1, we define
some reference finite elements (shape functions and degrees of freedom) for the displacement, displacement
gradient, stress, and pressure. Next, we discuss some linear bijective mappings and use them to generate the
finite elements of an arbitrary element from their reference counterparts. This provides the relations necessary
for mapping of the shape functions. In §3.2, we define the finite element approximation spaces and use them as
the trial and test spaces of the four-field mixed formulation of §2.2 to introduce CSFEMs in §3.3. The matrix
formulation of CSFEMs is the subject of §3.4. In §3.5, we discuss the solvability and stability of CSFEMs



for different combinations of trial and test spaces. To assess the performance of CSFEMs, we consider several
numerical examples in §4. Some concluding remarks and future work are discussed in §5.

2 A Mixed Formulation for Incompressible Nonlinear Elasticity

In this section, we present a four-field mixed formulation for 2D incompressible nonlinear elasticity, which we
will use for our mixed finite element methods.

2.1 Preliminaries

We first tersely review some definitions and notation, and then discuss the relations between some Hilbert
complexes and the kinematics and kinetics of motion in nonlinear elasticity. Next based on these relationships,
we define the spaces of definition of displacement, displacement gradient, stress, and pressure, the four field
variables that we use in our mixed formulations.

Let X = (X!, X?) € R? be the position of a particle in the reference configuration B, where B = R? is a
bounded domain with boundary ¢B. For any vector field U and any ( ) tensor field T' on B, we define the

following four operators:
(grad(U))!’ := oU’ joX

(div(T))! := o1 JoX,
(c(T)! := o172 /oX — Tt J0X2,
(s(U) := (Ut jox2)s" — (oU* Jox1)5%,

(2.1)

where 8’7 is the Kronecker delta, and we use the summation convention on repeated indices. Note that c is also

known as the 2D curl operator. Let L?(B), L?(TB), and L*(®?TB) be the spaces of square integrable scalar
fields, vector fields, and (g)—tensor fields on B, respectively. Consider the following spaces:

HYTB) :={U e L*(TB) : 0U"JoX” € L*(B), I,J = 1,2},
He(B) := {T € L*(®°TB) : (c(T))" € L*(B), I =1,2},
HY(B) := {T e L*(®°TB) : (div(T))" € L*(B), I =1,2}.

In general, H' is a subset of both H® and H9. Note that the partial derivatives and operators in the above
spaces are defined in the dlstrlbutlonal sense (weak sense) For any distribution f one extends the notion of
derivative to a linear mapping aXI :D(B) 32 ¢ —> SB xrPdA = — SB ﬁ}?f dA € R, where D(B) is the vector
space of smooth functions with compact support in B. In the same context, we similarly extend the operators
defined in (2.1), e.g., the distributional (or weak) divergence is defined as SB divw pdA = — { (v, grad ¢)dA,
where (,) is the standard inner product in R2.

For any vector field V' in H'(TB), one can show that

c(grad(V)) =0 and div(s(V))=0. (2.2)

Owing to the above relations and the definition of the above spaces, one can extend the linear operators of (2.1)
to the following mappings:

grad: HY(TB) — H°(B),  c: H®(B) — L*(TB),

2.3
s: HY(TB) — HY(B), div: HY(B) — L*(TB). 23)
Omne can concisely rewrite (2.2) and (2.3) using the following Hilbert complexes [18, 19]:
0 — HY(TB)ES He(B) - L2(TB) — 0, (2.4a)
0 — HY(TB) % He(B) "2 L2(TB) — 0, (2.4b)



where the first arrows on the left are trivial operators, which send zero to zero, and the last arrows on the
right indicate the zero operator, which maps the L?-space to zero. We use —div instead of div in the second
complex, so that (2.4b) is the dual complex of (2.4a).

Let U, K, and P be the displacement vector, the displacement gradient tensor, and the first Piola-Kirchhoff
stress tensor, respectively. We choose these fields to be the primary variables in our description of nonlinear
elasticity. This mixed formulation allows one to impose compatibility of displacement gradient and to accurately
compute stresses by approximating them in some proper spaces that are given in (2.4). Note that both K and
P are two-point tensors (and hence it does not even make sense to ask if they are symmetric). Therefore,
the difficulties associated with imposing the symmetry of a tensor in finite element approximation will not be
encountered. See [20, 21] for the symmetry imposing issues encountered in finite element approximation of
linear elasticity.

Given a motion of B in 2D, for the displacement field U(X) := ¢(X) — X at X € BB, one has K = grad U,
and c¢(K) = 0 is a necessary condition for the compatibility of K. Therefore, U belongs to the domain of the
operator grad and K belongs to the kernel of the operator ¢. According to the Hilbert complex (2.4a), this is
the case whenever U € H'(TB) and K € ker(c) ¢ H(B). Moreover, in the absence of body force, the static
equilibrium equation divP = 0 is the necessary condition for the existence of a stress function ¥ such that
P = s(W). Therefore, P belongs to the kernel of the operator div, which gives P € ker(d) = H9(B), based on
(2.4b). Note that the Hilbert complex (2.4a) is related to the kinematics of motion, while the Hilbert complex
(2.4b) is related to the kinetics of motion.

Note that the deformation gradient is written as F' = I + K, where I is the identity tensor, and J = det F’
relates the volume elements of the undeformed and deformed configurations as dv = JdV. For incompressible
solids, we need to consider a pressure-like variable p as one more primary field variable, which acts as a Lagrange
multiplier to weakly impose the incompressibility condition J = 1. In a discrete setting, J assigns a scalar to
each element, and hence, it is natural to assume that the discrete p is defined on each element as well and has
no interelement continuity. In general, pressure is a discontinuous scalar-valued field, and thus p € L?(B).

2.2 A Four-Field Mixed Formulation for Incompressible Nonlinear Elasticity

Assume that the mass density of the body B is pg and let B be the body force per unit mass. For the sake of
simplicity, we assume that 0B is a disjoint union of subsets I'y and I'; such that the boundary displacement U
is imposed on I'y and the boundary traction T is imposed on I';. Let N be the unit outward normal vector field
of 0B in the reference configuration. We consider a formulation of nonlinear elasticity in which displacement
U € H'(TB), displacement gradient K € H¢(B), and the first Piola-Kirchhoff stress P € H9(B) are the primary
variables. We build the displacement boundary condition U|Fd = U directly into the space of definition of U,
and define

HYTB,I'4,U):={U e H'(TB): Ulr, =U} and H'(TB,I'4):= H'(TB,T4,0),

where U is of H'?-class. Now, we set U € H'(TB,T'4,U), K € H¢(B), and P € HY(B) and define a Hu-
Washizu functional. The traction boundary condition (PN )|Ft = T will be built into the functional. Let {,)
be the standard inner product of R%. Also, suppose {, ) denotes the L2-inner products of scalar, vector, and
tensor fields, which are defined as (f,g) = {5 fgdA, (Y,Z) := (Y Z'dA, and (S,T) := §, 5"/ T!7dA,
respectively. Let D := HY(TB,Ty,U) x H¢(B) x H4(B) and define a Hu-Washizu-type functional Z : D — R as

I(U,K,P) = L WX, K)dA — (P, K — gradU) — (poB.U) - | (T, Uds, (2.5)

where W(X, K) is the stored energy function of a hyperelastic material. In 2D, the energy function of an
isotropic solid has the form W = W(X, I, I5), where I} = tr C and I = det C are the invariants of the right
Cauchy-Green deformation tensor C = FTF. Our formulation is not restricted to isotropic solids, however, in
all our numerical examples we assume isotropic solids. Note that J = +/I3. If the material is incompressible,
there is no volume change, i.e., J = 1. Accordingly, we modify (2.5) by defining

T(U,K,P,p) = I(U,K,P))J( n JBpC(J(K))dA, (2.6)

K)=1



where p € L?(B) is a pressure-like scalar field that acts as a Lagrange multiplier in (2.6), to which we may
refer simply as pressure, and C' : Rt — R is a smooth function such that C(J) = 0 if and only if J = 1. Two
examples that have been used in the literature are C(J) = J — 1, and C(J) =In J.

Remark 1. One may define a pseudo energy function W (X, K, p) := W(X, Il,Ig)}IFl + pC(J), and replace
W in (2.5) with W to obtain the same Z in (2.6).

Remark 2. One may be tempted to think that an incompressible nonlinear elasticity problem can be numer-
ically solved using a scheme for compressible nonlinear elasticity. This is not the case; a general constitutive
equation for incompressible elasticity cannot be recovered from any compressible constitutive equation when
some parameter(s) becomes larger and larger (or smaller and smaller). Instead, one must enforce the constraint
J =1 and this requires introducing a pressure field p.

To find the critical points of Z we proceed as follows. Let (U+e; Y, K +exk, P+esm, p+esq) € D x L?(B) such
that (U, K,P,p)e D x L*>(B), ;e R fori =1,...,4, and (Y, k,m,q) € H(TB,T4) x H¢(B) x HY(B) x L*(B)
are arbitrary. Next, define

2(61, €2,€3,€64) :=Z(U + 61X, K + ok, P + e3m,p + €4q). (2.7)
Note that

0 [ ~ N

— | W(X,L(K + e2k))dA ={(P(K),k),

862 B ea=0
0

2 pOUK + em)dd| = (K, k),

€2 Jn e2=0

where W = W(X,Il,lg)|12=1, P(K) = (?W/(?K is the constitutive part of the stress, and Q(K) = 0C/0K =
C'(J)(F~1)T comes from enforcing the incompressibility condition J = 1. Extremizing the Hu-Washizu func-
tional requires that

(af o o1 af)

6761787627676376764 :(0,0,0,0)

€5 =0

The result is the following weak formulation of the boundary-value problem for incompressible nonlinear elas-
tostatics:

Given a body force B of L?-class, a boundary displace@entﬁ onTq of H'2-class, and a boundary traction
T on T of L?-class, find (U, K,P,p)e HY(TB,T4,U) x H¢(B) x HY(B) x L*(B) such that

(P,grad Y) = (poB,X) + | (T,Y)ds, VY e H(TB,T,),

Iy
(P(K). k) — (P.r) + (pQK), k) =0, Wk & H¥(B), (2.8)
(gradU, =) - (K, m) =0, v € HY(B),
(C(J).q) =0, Vg e I2(B).

Note that the solution of the above problem is the critical point of the Hu-Washizu-type functional (2.6). In
(2.8), the displacement (essential) boundary condition U|Fd = U is imposed strongly in the solution space

HY(TB,T4,U) while the traction (natural) boundary condition (PN)|Ft =T is imposed weakly in (2.8);.

Remark 3. It is possible to reduce the size of the solution and the test spaces by considering an extra boundary
condition (K T)‘Fd = (grad U)T, where T is the unit tangent vector field of ¢ in the reference configuration.

Then, we define H°(B,T4,TU) := {K e H*(B) : (KT)|,. = (gradﬁ)T} and H¢(B,Tq) := H(B,T4,0), and

seek the solution (U, K, P,p) € HY(TB,T4,U) x H¢(B,T4,U) x HY(B) x L?(B) with arbitrary (Y, k,,q) €
HY(TB,T4) x H®(B,T'y) x HY(B) x L?(B). This results in a slightly smaller discrete system. We have observed
in our numerical examples that this approach may improve the stability of the method at very large strains.



Remark 4. The weak formulation (2.8) corresponds to a saddle point of the Hu-Washizu-type functional (2.6).
*7
667;66]'

To see this, one needs to calculate the 4 x 4 matrix H = [ ] at €,€; = 0. It is straightforward to show

that H is symmetric and has a non-negative determinant. Also, if H is invertible, it has two positive and two
negative eigenvalues.

Green’s formula allows one to write
(divP,Y) = —(P,gradY)) + J (PN,YX)ds, VY e H (TB,T'y). (2.9)
oB
We assume the following weak statement of the traction boundary condition:

(PN, YYds = | (T,Y)ds, VY e H (TB,Ty). (2.10)
oB Ty

Then, it is straightforward to show that (2.8) results in the following set of governing equations for incompressible
nonlinear elastostatics:

divP + pgB =0, (2.11a)
P = P(K) +pQ(K), (2.11b)
K =grad U, on 5, (2.11c)
J=1, (2.11d)
U=U, on I'y, (2.11e)
PN =T, on I';. (2.11f)

Conversely, one can show that (2.11) results in (2.8), see [17, §2.2]. Note that (2.11b) is the constitutive equation
of an incompressible solid. In the current configuration it reads o = P(I()FT + pI, where p = pC’(J) and o
is the Cauchy stress tensor.

Remark 5. For a neo-Hookean solid with W = £(I1 — 2), where p is the shear modulus at the ground state,
one has the constitutive equation P = pF + pC’(J)(F~')T. In the absence of residual stresses, the body is
stress free when there are no external forces. Hence, if F = I, then P = 0. This gives us (u + pC’(1))I = 0,
which implies that p = —p/C’(1) in the absence of external forces. Therefore, one should be careful to choose
C such that C’(1) # 0. Also, the choice of the function C(J) may affect the solution of the discrete system and
may cause numerical instabilities at large deformations [9]. Our numerical examples indicate that our mixed
FEMs work well with both C(J) =J —1 and C(J) =1InJ.

Remark 6. Assume that the reference configuration of the body B is a non-simply-connected domain. More
specifically, it is a connected 2D domain that contains nj holes. In this setting, ¢(K) = 0 is necessary for the
compatibility of K but is not sufficient; in addition to ¢(K) = 0 the following auxiliary compatibility equations
must hold [24]:

KTpyy,ds=0, fori=12..np, (2.12)

oH;

where 0H; is the boundary of the i-th hole and T 54, denotes the unit tangent vector field of 0H; in the reference
configuration. Note that 0#; is chosen for convenience; the above integral for each hole can be taken over an
arbitrary closed-path within the domain that encloses only that hole, i.e., any closed path that is homologous
to 0H; [24]. Note that in our mixed formulation we weakly impose K = grad U, and hence, one does not need
to impose compatibility.

3 Finite Element Approximations

3.1 Finite Elements

Following [25], we define a finite element as a triplet (T, P(T), X)), where T is a triangle in R?, P(T) is a space of
polynomials on T, and X is a set of linear functionals {01, 03, ..., 0,,_} acting on the members of P(T) such that



Vp € P(T), 0:(p) € R, and the liner mapping p — (01(p), 02(p), ..., on.(p)) € R™ is a bijection. Equivalently,
there exists a unique basis {01, 02, ..., 6,,, } in P(T) such that ¢;(6;) = d;5,¢,j = 1,2,...,ns. o;’s and 0;’s are called
the local degrees of freedom (DOF) and the local shape functions, respectively. Following [26], in the definition
of a finite element, we always implicitly assume that there exits a linear space V(7) of functions v : T — R™
such that P(7T) < V(7), and X can be extended to its dual space V(T)*. Then, the local interpolation operator
is defined as

Iy : V(T) — P(T), Ig(v) = i o:(v)0;.
=0

Note that Iy is a projection of V(7) into P(T) that is not bijective, in general. In practice, by having the shape
functions, we accept Iy(v) as an approximation of v and find the degrees of freedom as the unknowns.

' &2 &2
(0,1)@3 (0,1)@3 (0,1)@3
~ ﬁ3
&, &5 % T \fg (0,0.5)06 5 (0.5,0.5)
iy t ) )
ol . -¢! o — . ~¢! ol H s
(0,0) 2, (1,0) (0,0) . (1,0) (0,0) (0.5,0)  (1,0)
1

Figure 1: The three-node reference element and edge numbers and orientations (left), the reference directions for the unit tangent
and normal vectors (middle), and the siz-node reference element (right).

Suppose T as shown in Figure 1 is a reference triangular element with coordinates & = (£, £2). We denote
the edges of T by éi,i = 1,2, 3 and their corresponding lengths by ;i =1,2,3. For an edge joining two vertices
i and j, we define a unique orientation as i — j, where i < j. According to Figure 1, orientations 1 — 2, 1 — 3,
and 2 — 3 are assigned to £, &;, and 3, respectively. Moreover, we define a unit tangent vector t; and a
unit normal vector f; on each edge; t; must agree with the edge orientation, and f; is obtained by a 90 degrees
clockwise rotation of t;, that is fi; = Rt;, where

R [01 (1]]. (3.1)

We consider the following reference finite elements for our four field variables:

(‘j', PT(T‘}), 2{}’1) for displacement U,

(‘j', P, (®2T’})7 2‘3‘) , (‘3’, P (®2T§'), E‘?’Cf) for displacement gradient K,
(‘j', PT(®2T‘§), 2‘}"1) , (‘j', P?(®2T‘j'), Efr’d_> for stress P, 32
(‘j', Pr(‘j'), ZJ(}’E) for the pressure-like field p.

In the following, our main focus is to provide explicit expressions for some bases of the above polynomial spaces,
also known as local shape functions. We will consider » = 1,2 for the corresponding polynomial spaces of U,
K and P, and r = 0,1, 2 for the corresponding polynomial space of p.

The Lagrange polynomials on the three-node 7T are

H=1-¢-¢ B-¢, §-¢ (3.3)

Using (3.3), the Lagrange polynomials on the six-node T can be written as Z=1}2 —1)and 13, = 41},



where i = 1,2,3 and [} = [}. For 7 = 1,2, a basis of PT(T‘j') includes
hl_, - [10] h; = [ZO] i =1,2,...,3n,

and the set of local degrees of freedom is s = {(V1(&),V2(&)), ..., Vi(&s,), V2(&s,)}, where &, is the coordi-

nates of the i-th node of the 3r-node T as shown in Figure 1. We will use PT(T‘}), r = 1,2 spanned by h;I to
construct the approximation space of U.

Table 1: Tensorial analogues of some classical finite elements for vector fields.

Vector Fields Second-Order Tensors
Nédélec 1%-kind (N1) H (curl) element [27] (T, P (R*TT), x7°7)
Nédélec 2"d-kind (N2) H(curl) element [28] (T, P (RPTT), £7°)
Raviart-Thomas (RT) H(div) element [29] (T, PE(R*TT), x797)
Brezzi-Douglas-Marini (BDM) H(div) element [30] (T, P (®*TT), £79)

Remark 7. We have listed some of the common vector-valued finite elements in the literature in the left column
of Table 1. Nédélec’s original finite elements are in R? for both H(curl) and H(div) and for arbitrary polynomial
degree [27, 28]. He introduced N1 and N2 H(curl) elements for R3?. He also generalized RT and BDM elements
to R3 by developing H(div) version of N1 and N2, respectively. Following his works, the 2D version of H(curl)
elements are also called Nédélec elements, but as he himself pointed out in the conclusion of [27], in 2D, H(curl)
elements can be easily obtained by a 90 degree rotation of bases of H(div) elements.

For K € H® and P € HY, we write the tensorial analogues of some classical finite elements for vector fields
as summarized in Table 1 (also see Remark 7). All the finite element spaces given in the left column of Table 1
are generalized by Arnold et al. [31] to two spaces of finite element differential forms with arbitrary order for any
degree of polynomials and any number of dimensions. Moreover, they derived geometric decomposition of these
spaces, which provides explicit local bases for them. See [32, 33] for a more intuitive generalization of these
vector-valued finite elements. Here, based on the results of [31], we write some analogues tensorial bases for the

reference element T and r = 1,2. By using Theorem 7 in [17], one can calculate these tensorial bases implicitly,
e.g., see [17, Examples 9 and 10]. Let us ignore the superscript of I} in (3.3) and let ViI; = [0l;/0¢'  0l;/0€%] be
a row vector. Also, for each edge of a triangular element with orientation ¢ — j, consider the Whitney function

w;; = 11Vlj — ZJVll (34)

The bases for polynomial spaces of N1 and N2, which we respectively denote by P, (T ‘3’) and PT.(T‘}) are given

in Table 2 for the orders r = 1,2 [31]. Local shape functions vg’e’“ associated with the edge gk with orientation

i — 7, which is indicated in Figure 1, and local shape functions v{‘;’{r are associated with the reference element
T itself and defined for r > 2. The tangent component of a shape function v on an edge €; is denoted by (v, t;).
For a given r, both P, (T7) and P,(T7T) contain polynomials of the same order, but

{<v§’é’“,tk> : 'vi’g’“ € P;(T‘}), J=1,2, ...,r} is a basis of Pr—l(ék),

{<vg’£’“,tk> : v(‘;’s’“ € PT(T‘S'), J=1,2,...,r+ 1} is a basis of Pr(gk),
where Pr(gk) denotes the one-dimensional polynomial space of order r on the edge gk Also, for any J, vg’T

is a zero-tangent bubble polynomial of order r on ‘3'7 meaning that its tangent components are zero on all the
three edges. Some examples of these shape functions are depicted in Figure 2. To interpolate K € H®, we



Table 2: Vector valued bases for polynomial spaces of N1 denoted by P, (T‘/J\') and N2 denoted by Py (T‘j’) forr=1,2.

P (TT) P.(TT)
r v?’é’“ vi"} v?’é’“ vi’r}
1 wij liVZj, lell

2 liwij, ljwij lg’wlg, lgwlg ZIQVIJ, l?Vlz, lllJV(lJ - lz) lllQVlg, lll3Vl2, 1213Vll

3
<
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°
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9
[
°
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Figure 2: The illustration of some of the bases given in Table 2.

define the following tensorial shape functions:

Fen _ |07t 580 _| O 55 _ |o)7 55 _| 9. 35
g = 0 v Tog T | FEL | Tig T o Tog = | 79 (3.5)
v 0 vy

Accordingly, P (®*T ‘/f) in (3.2)9 is defined by spanning the set of local shape functions {T‘II,’JS’“, r?j} that is

obtained from P (T‘j') P (T ‘j') in (3.2)3 is defined similarly by using PT(T‘j'). The explicit form of the
spaces P (®2T‘j\') and ’PT(®2T‘3') are given in [17, Example 3]. Suppose Ty := [T T”]T is a column vector

containing the elements of the I-th row of a (g)—tensor T. The sets £7° and £7°" in (3.2)y consist of the
following local degrees of freedom:

=] (7)) @eoas offm = [(@enid (36)

where ¥ 7 is a vector-valued polynomial in R?, see [17, Theorem 7]. Note that qi);]f’“ and QS?JT are associated to

the edges gk and the area of the reference triangle ‘3’, respectively. In practice, degrees of freedom are obtained
by numerically solving the final discrete system so their direct calculation is needed only when we impose some
of the boundary conditions strongly. Hence, in 2D, we do not directly compute the degrees of freedom such as

d){‘IT}T that are defined over the area of elements, and hence specifying ©; is not required. Also, we choose the

polynomials (é/@k)J —1J =1,2,3 to simplify the calculation of qbr‘;’f’“ at the domain boundaries. The choice for
these polynomials is not unique, in general. In finite element approximation, degrees of freedom must be a dual

basis for the space spanned by the shape functions. Hence, we define some modified shape functions 7‘“?5’“ by
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writing a linear combination of rl‘:r;:’“ over J such that

T2, (,f.‘j',ék) _ 1, ifk=land I =M and J = N, (3.7)
M,N\"IJ 0, otherwise. :

In the case of P~ (®2T‘J') we have {‘;Tlg = r?lé’“ for r = 1, and the following shape functions for r = 2:

T8 _ 7,85 T, &k T8, _ T8k JUNC?S
il =4r;y +21'I72 i —76'r171 76r172.

_ Sk {‘Tgk
——67"[1 +6r;y",

for r = 1, and the following for r = 2:

M= orTl sl orfle
Flyk = =367t + 24 ”k+60 T
~T.&p T.ek T,en ‘TSk
st =307t =30r " + 600,

Moreover, by choosing ©; properly in (3.6)2, one can show that

T TT FT (-T8
M,]\)} (TI,J) = ¢M,N (TI,Jk) =0,

(/)“fr,?r (r?r,‘}) {1, ifI'=MandJ=N,
MN\"I.J ) ™) 0, otherwise.

We will use the set of reference shape functions {TITJS",T 7. } to approximate K € HC.

In 2D, the spaces of type H® and H? are transformed to each other by a 90 degree rotation. To see this,
recall the definitions of H¢ and HY in the distributional sense and observe that grad(q) = Rs(q), where ¢ is a
smooth function. Therefore, to construct (3.2)3 for approximating P € HY, we simply need the following shape

functions: ~
_TEr _ =T E&rpT
=7r;7"R7,

T
81y Sy

L“c_p

=r]JR". (3.9)

The corresponding local degrees of freedom are
vp (T = f <Z) @ aas, WTIT) = ﬁ@}, Ry dA. (3.10)
Sk T

Note that wg/l% (s?f’“) = ;\r/[‘sj\’, (7‘“[ JkRT) (']{48]{, (r}rf’“) and thus, the condition (3.7) holds for ’(/J(I 5 and
s?f’“ as well. Similarly, one can write the condition (3.8) for (3.9) and (3.10). The space P9(®2T‘J') in (3.2)3
is spanned by the set {s}rﬁk,s}r}r} which is obtained from a 90 degree rotation of the bases of P, (TiAT) The

same set spans P, (®? T‘J') in (3.2)3 if it is written by a 90 degree rotation of the bases of P, (T‘j') Also, note
that P (®*TT) and PO(®*TT) in (3.2) are transformed to each other by a 90 degree rotation. The explicit
expression of these spaces are given in [17, Example 3].

For the reference finite element of pressure (3.2)4, the set of local shape functions {t?}, which spans P, (‘j'),
is {1} for r = 0, {1,£1,€2} for r = 1, and {1,&1, €2, (€1)2,(£2)2,£1€2} for r = 2. The corresponding local degrees
of freedom are of the form

ooy L e

where p}, i = 1,2,...,n, are polynomials of order r on ‘T which can be calculated by solving w? (t;T) = 0;5.

11



Table 3: Numbers of local degrees of freedom (DOF) in terms of the order of the corresponding polynomial spaces r.
number of DOF

DOF ‘

‘ for each node ‘ for each edge ‘ for T ‘ total
zTt 2 0 0 67
pTes pTd- 0 2r 2(r? —r) 2r(r + 2)
yTe x7d 0 2(r + 1) 2(r2 — 1) 2(r +1)(r + 2)
boR 0 0 (r+1D)r+2)/2 | (r+1)(r+2)/2

However, as was discussed earlier, we do not calculate w; directly, and hence, calculating p is not necessary.

The numbers of local degrees of freedom (the number of local shape functions) for the four types of finite
elements that we discussed above are summarized in Table 3. This holds for the reference finite elements (3.2)
and any finite elements that we will generate from them for an arbitrary triangle 7.

Next we explain how to construct a family of finite elements for a given mesh based on the reference finite
elements (3.2). Let Bj, denote a triangulation (or simply a mesh) of the reference configuration B, where B,
consists of arbitrary triangles T, and h := maxdiam T, VJ € Bj. Note that the intersection of any two distinct
triangles of B can be empty, a common edge joining two common vertices, or only a vertex of those two
triangles. We locally assign the numbers 1,2,3 to vertices of each T € Bj, to which we will refer to as the
ordering of vertices. Let X; = (X}, X?) denote the Cartesian coordinates of the i-th vertex of T. The reference
triangle T shown in Figure 1 can be mapped onto any T € By by an affine transformation T+ given by

T T— T, T5(€):=Js€ +aqg, (3.12)

where

Xl _ Xl Xl _ Xl Xl
Jr =33 L3 1] and ay = [ 1] )
7 [Xg -X? X3-X3 Toxe

The above mapping is bijective and Jg is invertible. Let &) = Tg’(/éi), i = 1,2,3 denote the edges of T. Also,
assume that €7 inherits the orientation of €, i.e., if the orientation of €; in terms of the coordinates is &, — &,
then the orientation of €] is T(€,) = X — X; = To(¢;). Similar to what we discussed for the reference
element, the tangent vector t; defined on €] accepts the orientation of €], and the normal vector on &7 is
obtained by n; = Rt;.

We use the numbering scheme discussed in [34] for convenience in defining global shape functions and degrees
of freedom of conforming H¢ and HY finite elements and also for their efficient assembly. In this scheme, a
global number is assigned to each vertex of the mesh. Then, the ordering of the three vertices of each element
T is defined based on the ascending order of the global numbers associated to them, i.e., the first vertex of each
T has the smallest global number among the three vertices and the third vertex has the largest. Using this
ordering and the edge orientations of the reference element (see Figure 1), the orientation of every edge in the
mesh joining two vertices will be from the vertex with the smaller to the vertex with the larger global number.
The advantage of this scheme is that every two adjacent elements of the mesh agree on the orientation of their
common edge. More precisely, assume that 7 and T’ are adjacent in B, and share a common edge & such that
ENT=¢& and En T = 8;{/. The scheme gaurantees that €7 and Eg/ inherit an identical orientation from
gi and éi/, regardless of their local edge numberings ¢ and ’. For an illustration of this, see [34, Figue 5.1]. It
follows that both the tangent and the normal vectors that are defined on &7 and &7 are identical.

Note that the above scheme violates the standard convention that the three vertices of every element in the
mesh have a counterclockwise ordering. Therefore, one should keep in mind that not all the normal vectors of
the exterior edges lying on the boundaries of the mesh are pointed outward, and not all their tangent vectors
are oriented in the counterclockwise direction. Also, det Jg can be either positive or negative, so it would be
useful to define the following constant for each element:

og = sign (det Jg) .

Note that oy = 1 if the three vertices of T have the counterclockwise ordering, and oy = —1 otherwise.
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In a general setting, let (‘j“, P(‘j'), E(‘AT> be a reference finite element and let V(‘j') be a linear space of R™-

~

valued functions in T such that 77(‘}) c V(‘}) and X7 can be extended to V(T)*. Also, for any T € By,
suppose Vg : V(ﬁ’) —> V(7) is a linear bijective mapping, which preserves the structure between V(‘j') and
its counterpart V' (7), i.e., U is an isomorphism. Then, by using the reference finite element and the following
proposition, one can define a set of finite elements for all T in By, [26].

~

Proposition 8. Let Uy : V(T) — V/(T) be a linear bijection. For any T € By, (T,P(T), X7) defined as

A~

T=Ts(7)
P(T) = {¥s(p) s pe P(T)}
r7 = {017,0{2], o) ol (p) = ai}(\Il‘}l(p)),Vp eP(7),i=1,2, ...,ns}

“ng % A

is a finite element with the local shape functions 9? = \IIT(H?), i = 1,2,....,ns, and the local interpolation
operator

Iy : V(T) —P(T), Ig() =) " ol (v)6]. (3.13)
Proof. By assumption, p = W3'(p) is bijective, Vp € P(T), and the mapping p —> (a?(ﬁ), ...,ags (]3)) is a

bijection, Vp € ’P(‘j') Therefore, the composition mapping p — (o7 (p), ..., on_(p)) is bijective, ¥p € P(T), and

e Oy

(T,P(7),£7) is a finite element. 07 € P and o7 (67) = o7 (V5 (67)) = 07 (67) = 6ij, for i,5 = 1,2,..., s,

and hence, 07, i = 1,2, ..n, are the local shape functions. Next we show that the local interpolation operator

A~ A~

Iy is well-defined. If ¢ € P(7), there exists § € P(T) < V(7) such that ¢ = ¥5(g), so ¢ € V(T), and we

conclude that P(T) < V(7). Also, knowing that a? can be calculated for elements of V(‘j“), one can write
ol (v) = of (V5! (v)) for any v e V(T), and hence, £7 can be extended to V(7)*. O

K3

Consider the reference finite element of displacement (‘}7 Py (T"J\')7 E(}’l). Let V("J\') =C° (T"J\') and define
V(7T) similarly. Use the mapping

TL: CYTT) — CUTT), THV):=VoTs;! (3.14)

and generate the family of finite elements {(‘I, P-(TT), 27’1)} as described in Proposition 8. Accordingly,

TeBy,

the local shape functions are hg = Tflr (hg) It is straightforward to check that hg is a Lagrange polynomial

on T, and members of the set of degrees of freedom X7°! are the values of the interpolated function at the nodes
of 7.

The mapping (3.14) does not transform H¢(TT) into H¢(T'T) or HY(TT) into H(TT). Instead, one needs
to use the Piola transforms. Considering the affine mapping (3.12), the Piola transforms TS and TS are defined
as

TS : HY(TT) — HE(TT), TS(V):=J;TVoT;!, (3.15)
T¢: HYTT) — HYTT), TYV):= L JsVoTsL (3.16)
det J

For a (3)—tensor T, one calculates the Piola transformations separately for each row:

T;@T} . ngW] |

T5(T) = [

The Piola mapping T% is an isomorphism of HC(T‘j') onto H¢(TT), and the Piola mapping T% is an isomorphism
of H4(TT) onto H(T'T). This and other useful properties of these mappings can be summarized in the following
Lemma.
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Lemma 9. Using the numbering scheme discussed above, assume that T = Tfr(‘}) is an arbitrary element with
edge lengths Uy, unit tangent vectors ty,, and unit normal vectors nk Let Ve HS(TT) and U € HYTT), and
set V=T(V) and U = Td( U). Also, assume that q=qoTy", where ge C’O( T). Define vy := 0osTX(d)

and p(8) == X1, (; )Z, and construct py, = progy, - with gi(8) = :;—’”5. Recall the linear operators (2.1) and set
k k

I =1, and note that operators with the hat symbol are written with respect to the reference element coordinates
&€ = (£,€%). The following relations hold:

) §+{e(V),q)dA =055 (&(V),d)dA, and  §.{V,s(q))ydA = o5 §5{V,5(q))dA,
(i) §5{Aiv(U),q)dA = oy §5 (div(U),§)dA, and §,{U,grad(q))dA = oy {5 (U, grad(q)) dA4,
(iii) §o, (V. teyds = §5 pr{V.ti)ds, and §,(V, v,ydA={5{(V, b,)dA,
() §e pr{U.myds =z pp (U, dxyds, and  §;{U,Rv;)dA = {3(U,Ro,)dA,

v) §.{U,V)YdA = o5 §+ (U, V) dA.

Proof. The second identities in (4i7) and (v) can be derived directly form the assumptions. Other identities are
the consequences of the following relations:

(i) e(V) = zi=€(V) o T5', and  s(g) = = d98(9) o T3,
() divU = de“ divUoT 7', and grad(q) = J}Tg/r;i(q)ngl,
(Z’LZ) ty = %Jg’iﬁk,

(iv) ny, = 2 (det Jg) )5 Ay, and i RJg = J7TR.

Consider the two reference finite elements for displacement gradient (‘j', Py (®2T ‘3’), E§’°> and
(‘}, P (®2T‘})72ic7>. Let V(‘j') = HC(‘}) and V(T) = H¢(T7), and use the Piola mapping (3.15), and relation

(3.17);. Then, based on Proposition 8, construct two families of finite elements {(‘J’ P (RPTT), ET’°>} i
TeBn

and { (‘J’, P (®TT), 27’07)} . The local shape functions are 7°1 =TS (r?}gk) 7"1 J - TS (r? J‘I) and

‘TEBh

the local degrees of freedom read qb{‘r 8’“(T) = ( Tk o T _1> (T) and qﬁ?;( ) = (qzﬁ{I T o TS _1) (T). Lemma
9, (¢i7) implies that (;57 S
Similarly, by using the Piola mapping (3.16), (3.17)2, and Proposition 8 generate two families { <7, P (R*TT), Z'{I’d) }

and { (‘I, PO(RPTT), 2“*) }TEB
h
(‘/J\', P?(@QT{]\‘), E(‘Ar’d ) The local shape functions read s(‘T Er Td (s?f") 31 J Td (51 J> Also, accord-

ing to Lemma 9, (iv), the local degrees of freedom ¢;fk, Z/JI‘TJT are (3.10) without the hat symbols.

Recall the reference finite element of the pressure-like field (T, P, (T), 26’5). Set V(T) = L2(T) and V(T) =
L?(T). Then, use the mapping

and ¢7’ I. J are in fact (3.6) with all the hat symbols removed.

(‘TGB;,,
from the two reference finite elements for stress (‘J’, P (R*TT), Eg’d) and

TS L3(T) — LA(T), T5(f):=foTsh (3.18)

and Proposition 8 to generate {(‘J’, Pr(7), Z‘T’e) }7 i . The local shape functions become tJ = T! (t‘I) and by
€Dh

recalling (3.11), it is straightforward to show that the local degrees of freedom are w; (f) = i ST p; f dA, where

Py =pro Ty
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3.2 Finite Element Spaces

In order to define suitable conforming finite element spaces, we first define the following notions of jump across
the edges of a 2D mesh for vector and tensor fields. We denote the set of all interior edges of the mesh by &% .
For an edge € € &}, there exist two elements T, T’ € B, such that &€ = T n J’. Also, let n be the unit normal
vector of € such that it points from T to J’. Let V be a vector-valued function and T a tensor-valued function
that are both defined on B; and have limits on both sides of the edge £&. We define the jump of V across € as

[Vle :=Vg — Vg,

where Vg = Vg and Vg = V|q. Recall that t = R™n is the unit tangent of & and set Ty = T|y and
T3 = T|g. Then, the jump of the tangent traction and the normal traction of T' across € are defined as
[tT]e := (T3 — T9)t,
[[nT]]g = (Tg’/ — Tg’) n
Note that all the above jumps are vector-valued functions in 2D and their domain is the set of interior edges of
the mesh.
We are now in a position to define the following finite element spaces:
Vi, ={Vy, € L*(TBy) : VT € By, Vi|y € Po(T7), VE€ &}, [Vin]e = 0},
V}z; = {Th € L2(®2T8h) VT e By, Th|g' € 'P;(®2T‘I), V€ e 8;” [[tTh]]g = 0},
Vi, = {Tp € L*(Q°TBy) : VT € By, Thly € Pr(R°TT), VE € &}, [tTh]e = 0},
VAT = {Ty € L*(QTBy) : YT € By, Thly € PE(R?TT), VE € &, [nTh]e = 0},
VA = {T), € L*(Q°TBy) : VT € By, Thly € Pr(®°TT), VE € &, [nT}]e = 0},
Vi = A{fne L*(By) : VT € By, fulr € Pr(7)}.

In addition, let V,¢ - be either Vi7" or V;° , and let vd . be either Vhdr or Vh . The above spaces are conforming
according to the followmg theorem.

Theorem 10. V;' . ¢ H'(TB), th,r c H¢(Bp), V}Sr c HY(By), and V!, < L*(Bp).

Proof. Vi, = L?*(By) is trivial. For proof of V}! . < H'(TB) see [26, Proposition 1.74]. ‘“/hcr c H¢(By) and
\u/h‘fr < H4(By) can be proved similarly by following the steps of the proof for V!, = H'(TBj,) and recalling the
distributional definitions of the operators ¢ and div and the Green’s formulas (2.9) and

(c(M), V) = (M,s(V)) + aB<MTﬁBa V)ds,

where M is a (g)—tensor, V is a vector, and T'pp is the oriented unit tangent vector field of 0B. O

To interpolate the four field variables (U, K, P, p) over the entire mesh By, we next define the global shape
functions analogous to the local shape functions ({h(‘T} { (Ijﬁk,r?;} {s?f",sl 3 } {tq}) of an element 7.

Let H T}\r, I = 1,2 denote the two global shape functions of each node N € By,. H HY is defined on B}, such that

T .
N _ h’2(i—1)+l HNNT = Ni,
Hi ‘:r { 0su1, ENAT =g €8

where N; is i-th node of J. Hence, the support of the function H %\r in its domain By, is all those adjacent
elements of Bj, that share the node N. Considering properties of the Lagrange polynomials, one can show that
H }\f is continuous everywhere in By, and hence H }\f € Vhl’r. If we interpolate a vector-valued function on By
by using Vhlm, the global degree of freedom associated with H }\[ is the value of the I-th component of that
vector-valued function at the node N.
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Let R?J, R;J be the global shape functions corresponding to T‘?’f’“, r?}r We define them on By, such that

T, T

_T.Ex .
e _ byt ifENT =&, g _Jry, on7,
RI’J“I { 05y, HENT =, VI € By, and Ry, 0242, otherwise.

Note that €y is an edge of T and k € {1, 2, 3} is its local numbering in T. If € is an exterior edge, i.e., & € By,
the support of R? s in Bp, is only one element that contains &£, and if € is an interior edge, the support of

Ri 7 are two adjacent elements that have € in common. Let L& be the union of the support boundaries of
R‘;, ; and the corresponding edge &, and let t;, be the unit tangent vector field on L&. On L® the function
Ri 7 is multi-valued. However, Ri stz is continuous (single-valued) across L€. Here, we emphasize that the
above description of Ri 7 is valid if we use the numbering scheme discussed in Section 3.1. The support of the
global shape function R{ 7 in By, is the corresponding element 7. R}T) 7 is multi-valued on 07 while R{ stag is
continuous across 07. Based on the above discussion, one can conclude that [[tR? sler = 0 and [tR? jler =0,

V&’ € By, and hence R‘}:)J7 Rr}rJ € Iv/;fr Let us now define the global degrees of freedom. Suppose T and 7’ are
adjacent in By, such that their common edge € is numbered &, in T and &, in 7, where k is not necessary equal
to k’. The numbering scheme of Section 3.1 gaurantees that ¢?§’“ = ;f’e', VI,J. This equivalence enables
one to use either of them for calculating the global degrees of freedom for € (this is also necessary for the
assembly of finite elements). Therefore, it is well-defined to write <I>§’J Vi, — R, <I>§7!,(Th) = ?’f’“(Thh)
as the global degree of freedom associated with Ri 7- Also, the global degree of freedom associated with R; J
is ®F ; : V;fr — R, ®7 ;(Th) := I{‘T}T(Thh) Note that ®f ;, @7 ; € (uh,r)’*7 but they can be extended to
He(Bp)".

Similarly, one can define the global shape functions S? 7 S? 7 and the global degrees of freedom \I/?J,\Il}i J

. . . cTE TT ) T.&x 1 T,T )
based on the corresponding local shape functions 8;°;*, s7’; and degrees of freedom ;" ¢;’; . One can also

obtain the global shape functions directly as SiJ = R?JRT and S;J = RI{IJRT. Therefore, [[nS?JHg/ =0 and

[[nS?J.]]g/ =0,VE € By, and S}C’J, S;J € ‘u/hdm. In Figure 3, we illustrate the first (nonzero) rows of R‘il eVl
and Sfl € VA7 on their supports. See vg’(‘r and 'v;”r’(‘r in Figure 2 for some examples of nonzero rows of R?J
on its support.

To define the global shape function analogous to ¢, consider the function T on Bj, with support T such
that T =t on T. It is straightforward to show that T € V,ﬁr. For interpolating a scaler field f on By, using

V,f,r, one simply uses w] (f|7) as the global degree of freedom associate with T .

—
> > > _» » - [

7= 77 S

S S AN S
f SRS
/oo X
f S 7 T T X

/ P S G G

-

Figure 3: The nonzero row of the global shape functions Rfl € V,f; (left) and Sil € V}?l_ (right), where & is the common edge

of the two adjacent elements. Observe that Sil = Rf,lRT. The tangent (normal) components of the fields, which are shown with
red arrows, are continuous across & in the left (right) plot.

Theorem 11. {H?}NSB}L is a basis for Vh{r, {RiJ,R‘IT’J}EJEsh is a basis for Vi7 -, {S?J,S}r

,J}S,‘J'el’j’h 15a
: 7d T : - ¢
basis for V.., and {T; },‘TGBh is a basis for V.

Proof. See [26, Lemma 1.77 and Proposition 1.78] for the proof of the first statement. The other three statements
can be proved similarly considering [26, Lemma 1.86, Proposition 1.87, Lemma 1.92, and Proposition 1.93]. O
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3.3 Compatible-Strain Mixed Finite Element Methods

Using the approximation spaces defined in the previous section, one writes the following mixed finite element
methods for (2.8):

Given a body force B of L?-class, a boundary dz’splacemgztﬁuon L4 of H'2 class, and a boundary traction
T on Ty of L?-class, find (U}, Ky, Pp,pp) € Vhlm(l“d7 U) x Vien X Vﬁi,r X fo,s such that

(Py,grad ) = (poB, Y1) + J T 05ds, VT e VL (L),

Iy
(P(K), k1) — (Ph.sn) + (pnQ(K 1), k1) =0, Vrn € Vi, (3.19)
(grad Uy, 7)) — (Kp,71) = 0, Ve Vid,,
(C(Jn),an) =0, Yy € Vi .

Remark 12 (Compatibility of Strain and Continuity of Traction).

(1) Let K} be a displacement gradient field on By. The zero jump [tKp]e = 0 is known as the Hadamard
jump condition along the edge . If K, € ‘v/}fr c H¢(By), the Hadamard jump condition is satisfied
for all the internal edges of By, independently of the refinement level of the mesh. This is a necessary
compatibility condition for the existence of a displacement field U;, € H'(TB},) (continuous along edges)
such that K, = grad Uy, [35].

(#4) Suppose Py, is a stress field on Bp,. The zero jump condition [nPp]e = 0 indicates that traction vector
associated with P}, is continuous across the edge &. If P, € VA < HY(B,), the continuity of traction
holds for all the internal edges of B; independently of the refinement level of the mesh. This is required
by localization of the balance of linear momentum.

Inspired by Remark 12 (i), we call the finite element methods introduced in (3.19) the compatible-strain mized
finite element methods (CSFEMs). We also use the following notation for referring to (3.19):
Hmen(n)dr(F)Ls in the case of Vj.,, x Vien(Vin) x V;ST(Vd_) X V,f’s,

h,n h,r

where m,n,r = 1,2 and s = 0,1,2. This results in 96 possible choices of CSFEMs. However, since (3.19)
corresponds to a saddle point of a variational problem (see Remark 4) not all these choices lead to convergent
(consistent and stable) methods as the solution and test spaces need to satisfy certain conditions. We will
discuss this further in Section 3.5 and in the first numerical example. We will conclude that the well-performing
choices of CSFEMs among the first and second-order elements are H1cld1LO and H2c2d2L1. The schematic
diagrams of these two cases are given in Figure 4.

3.4 Matrix Formulation

In this section, we focus on the implementation of CSFEMs. In particular, we discuss how to represent (3.19)
as a nonlinear system of algebraic (polynomial) equations, which can be solved using Newton’s method. We
define the vector representation of a second-order tensor T' and the matrix representation of a vector V' with 4

entries by
Vl V2:|

.
[T):= [T 172 7' 722]" and [V]:= [Vg 4

One can show that (Y, Z) = ([Y],[Z]) = §4,[Y"[Z]dA = (4,[Z]T[Y]|dA. Let [V,fr] = {[Th] : Ty € V}fr}
and define [V4

i | similarly. Then, (3.19) can be rewritten as
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CSFEM U K P P #DOF

\ A \
i \ \ \
H1lcld1LO \ / \ \
\ \
\ / \
$ >
\\ \ \\
H2c2d2L1 \\. \\ 55
\ \
\\ \\ \\
: 3 / U \ / AN \

Figure 4: The schematic diagrams for some first-order and second-order mized finite elements.

Find (U, [K1], [Pyl,pn) € Vi, (Ta, U) x [Vie, ] x [V, ] x Vi such that

J [grad Y, |T[Py]dA — | poX[BdA— | Y]Tds=0, VY, e V), (Ta),

B B Iy

J el ([PKR)] + i [QUEH)]) dA — f [kl T[PA]dA = 0, Vlss] € [VE,],

B Bn (3.20)
L (| [grad U] dA — JB e T[K A dA = 0, V] € VA1,

J qn C(Jp)dA =0, Yan € Vit .
Bhn

The local shape functions are discussed in Section 3.1. Here, to be consistent with (3.20), we define the
following vector representations of the local shape functions:

gh,(X) == [grad h](X)],
T b5 = [T, (3.21)
b (X) = [57.5(X)|, b34(X) = |77 (X))
where j = 1,2, ...,2r for Uy € Vhl,r, and the numberings k and [ are specified as
k:=I+2(J—-1)+2(i—1)maxJ, 1:=1+2(J—1)+ maxk, (3.22)

where ¢ = 1,2,3 and I = 1,2. For K} € thi and Py, € V}gl_, we have J = 1, using Vi7y, V75, Vfgl, and V,g;
we have J = 1,2, and J = 1,2, 3 for V7, and Vh 5. Note that in (3.21), b$ 7, and b3 ; are defined only for second

or higher-order finite element spaces, i.e. Vh - and Vh » with r > 2. These relations can also be realized from
Table 3. Let us write the following sparse matrices using the local shape functions of displacement and pressure
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and (3.21):

By =[h{ hy - Ryl .

Gy = [gm gm A D

B3 = [bS, T gme s (3.23)
B = [b, b il 0

BS = [t‘{ tg SR S

where n', n¢, n¢, and n’ depend on the order of the corresponding approximation spaces and are given in the

last column of Table 3. For a solution or test variable V', one defines V5 := V,|5. Next, recalling (3.13), one
writes the following local interpolation operators for each T

=Glqgl, [Kg|=B%qS, [Py]=B3q$, pr=Biq5,
[grad T‘J’] = G%“t%rv [F‘"‘T] = %t%a [77‘3'] = B(‘Ji“tgv

Uy =Bliq}, [gradUsy]

3.24
Yg = Bith, (3:24)

040
q7 = B‘J't‘J'a

where t{}, 5, t%, and tf} are some column vectors containing arbitrary real numbers. These vectors are associated
with the corresponding test spaces. q%r, qs, qé'}, and q% are vectors of unknown local degrees of freedom, that is

qilr = [q%',l A7 .2 qflr nl]T q‘Tm U (X4),

S =[a$, a5, a5, L a5y =015 (Ko), a%, =67 (Kq), 55
qf = [a5, a9, qg d]T 994 = ¢177’51(P7)7 q5, = 1/);"]7(13‘1)7 .
a5 = [a51 a5, qu]T a5 = wj (pr)-

Note that U/ (X

i), J = 1,2 is the value of the displacement at the i-th node of T, and m := J + 2(i — 1). Also,

qu‘ITf, qS?r‘,T and 1/)}]:’.]&, 1/}{’}7 are given in (3.6) and (3.10) with the hat symbols removed. The numberings k

and [ are defined in (3.22), and the size of the vectors (qk, q5, q2, q%) and (t}, t$, td, t5) is (n

c ,d L
,ne,n% nt).

Inserting (3.24) into the restriction of (3.20) to an element T, and then summing over T € By results in the

following representation of (3.20):

> ()" (ki — Fy — Fiy ) =0,
TeBy, ’
> 5)T (N5 (a5, af) + Ks'ad) =0,
TeBy,
(3.26)
Z (t%)T (Kdl Ly ch ) —0,
TeBy,
> @) (N5 (a5)) —o.
TeBy,
The new local matrices and vectors used in the above relations are defined as
K = f (GH) "B dA, K§' = (KT, (3.27)
Ked —f BS)"BSdA, K9 = (KT, (3.28)
T
NS( Q:nqir J:I B‘J’qﬂ'])] (B‘.Tq‘J') [Q([B‘Iqﬂ'])]> dA, (3.29)
f (BH)TC(J7(a%)) dA,  Jx(qS) = det(I + [BSqS]), (3.30)
T
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Fy = f (By)TpoB dA, (3.31)
T

3.32
0,11, otherwise. ( )

The term €7 in (3.32) denotes the edge of T that lies on the traction boundary I';. Also, to define Bét in (3.32),
consider a zero matrix of size 2 x n', and then substitute 1D Lagrange polynomials over &7 into those columns
that are associated with €] . Let K:Ld = ST (G3)TBS dA and K& = ST (B)TBS dA be the counterparts of (3.27)
and (3.28) for the reference finite element T, where G,I BZ, and B:r are obtained according to (3.23) but using
the reference local shape functions. For all T € By, Lemma 9, (i7) and (v) imply the following relations:

Ky = ogKE, K§? = opKE (3.33)

Therefore, the local matrices Kflrd, Kgl, K%d, and KcTic are independent of the geometry of T and depend only on
the ordering of the three vertices of TJ. In practice, the relations (3.33) enable one to obtain (3.27) and (3.28)
VT € By, with much less computational cost. It is also practical to change the domain variables of the integrals
(3.29)-(3.32) from X € T to & € 7. For example, (3.29) and (3.31) can be obtained as

NS (a5, af) = [det Jo| JA<B§>T ([P(1B5as])] + (BSa%)|@([BSas)) ) a4,

Fl = |deth|f )T po(B o Tg)dA,

where B‘} = BS o Tg, and Bg and Bfl} are actually B% and Bf‘lr but are written using the reference local shape
functions.

Next we assemble (3.27)-(3.32) for all T € B, and then accordingly write the global counterparts of the vectors
of local degrees of freedom (3.25) and t(_lT7 t5, tg, and t%. We use the subscript A for both the assembled and
the global matrices and vectors, e.g., we denote the assembled form of K%d and Filr by K'fld and F;ll, respectively,
and the global counterparts of q}T and ttlT by q;, and t}, respectively. Next, according to (3.26), one defines

q; | t) 0 o K,llj 0
_ qj, T, — ty K, — 0 0 K 0
@ qg ron t;; N I CU GO B I
qh_ th, 0 0 0 0
-~ ) L (3.34)
0 Fj, + Fp,
NC c7 4 0
Nh(@h) _ h(q(})L qh) , ]Fh _ 0 ,
N, (a5) 0

where Qp, includes all the unknown degrees of freedom of the problem and a few known degrees of freedom in
its q;, which comes from the displacement boundary Ulr, = U. Ty, is a vector of arbitrary real numbers with
a few fixed zero elements in its t;, as a result of Y|r, = 0. Suppose n, ng, and ng are the total numbers of
nodes, edges, and elements in the mesh, respectively. The total number of degrees of freedom is

N =2n+ (e° + eDne + (a° + a® + a*)ny,

where e¢ (e?) and a® (a?) are the numbers of local degrees of freedom for displacement gradient K (stress P),
which are defined on each edge and on each element, respectively. Also, a’ is the number of local degrees of
freedom for the pressure-like variable p, which is defined only on each element. These numbers depend on the
choice of CSFEMs and the orders of their approximation spaces; e¢ and e? can be read from the second column
of Table 3 and a®, a?, and a’ from its third column. Recalling n° and n? in (3.23), we have n® = 3¢® + a® and

@ — 3e? + 4. The size of the sparse matrix Kj is N x N, and the size of the vectors T}, Qp, Ny, and, Fy, is
N x 1.
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Remark 13. From (3.33), the symmetric sparse matrix Kj does not depend on the geometry and dimensions,
but only on the connectivity and numbering of the elements of the mesh. That is, the matrix K}, is identical
for homeomorphic (topologically equivalent) meshes.

By using (3.34), one can write (3.26) as T} (Kh(@h + Np(Qp) — Fh) = 0. Since T}, is arbitrary, one obtains
the following nonlinear system of algebraic equations:

KrQn + Nip(Qn) = Fp. (3.35)

Define R, (Qn) = KpQpn + N,(Qp) — Fp, as the residual of the nonlinear equation (3.35). Using Newton’s
method, the solution of (3.35) can be obtained iteratively by QSH) = QS) — Kt_hl (QS)) Ry, (QS)) starting
form an initial guess, where i is the iteration number and K, is the tangent stiffness matrix (Jacobian matrix)
given by
0 o K o
Kk _| 0 HF Ksd HS!
KM K 0 0
0 H° o0 o0

Here, H® = (H$)T, and HS® and HS’ are obtained by assembling the following matrices for all T € By,:

HS* (a5, af) = L(B%)TR( Sa5, Braj ) BS dA,
(3.36)
Hs'(a5) - | (B5)7[@([B5as]) |Bf A,

where R(K ,p) in 2D is a 4 x 4 matrix representation of the 4th-order elasticity tensor obtained form the

derivative of components of the constitutive relation P = P(K) + pQ(K) with respect to components of K.
Note that the tangent stiffness matrix Ky, is symmetric and indefinite; this is closely related to Remark 4.
For our numerical examples, we consider the incompressible neo-Hookean solid with the energy function

W= g(fl —92), (3.37)

where (1 is the shear modulus at the ground state. The constitutive part of stress reads f’(K ) =pnI +K). We
use the following functions to impose the incompressibility condition J = 1: Cy(J) = J — 1, and C3(J) = In J.
We have observed in our numerical examples that Cy(J) has a better performance over Cy(J) in problems
with tension loadings, while in bending problems with very refined meshes C5(J) has a better performance
over C1(J). Recall that the constitutive relation reads P = uF + pC’(J). We need the following relations for
calculating (3.36):

Q. (K)=JF", A(p)=pl—pl,

Qu(K) = FT. Ay(K.p) = pl = LT p[FT|[F T,

- 14
where | is the 4 x 4 identity matrix, and | denotes an anti-diagonal matrix with non-zero components I~ =
41 23 32

I = —land 1~ =1 =1. One can show that F~' = LI+ RKR").

3.5 Solvability and Stability

Theorem 14. The tangent stiffness matriz Ky, is invertible (non-singular) if and only if the following four
conditions hold:

(i) ker(K$™) = {0,111,
(i) ker(K5h) nker(Kit) = {0,051},
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(iii) ker(H5') = {0,051},
(iv) ker(HE®) A K = {Opex1), where K = {x € ker(H) : YTKI®X = 0, VY € ker(K,lld)}.

Proof. Rearrange the rows and the columns of K, to obtain

_[An B} C[HEE o C[HE 0 T+ [HFY K
Kth_[Bh ol Ah_ 0 ol’ B = K(}::c K(}:}l P B, = 1d | -

Then, apply [36, Theorem 3.2.1] and use an argument similar to that of [36, §3.2.5]. O

Corollary 15. The tangent stiffness matriz K, is invertible, if 0 < n? —n! <n® and n® < n°.
Proof. Theorem 14, (i), (ii), and (iii) imply that n! < n?, n? < n°+n', and n’ < n, respectively. O

Remark 16. Given a matrix A,,«,, there exist two unitary matrices U,, x,» and V,,«, and a rectangular diag-
onal matrix S,,x, with non-negative entries on the main diagonal such that A = USV*, where the superscript
* denotes the conjugate transpose. The diagonal entries of S, S; ; with ¢ = j, are known as the singular values
of A. Tt is straightforward to show that ker(A) = {0}, if and only if the smallest singular value of A is non-zero.
This can be used to numerically check the conditions of Theorem 14. In particular, one can compute the smallest

T
singular values of sparse matrices Kgl and [K‘;}c Kgl] to check (i) and (44), respectively.

Remark 17. Conditions of Theorem 14 can be rewritten as inf-sup conditions. For example, ker(Kgl) =
{0,1x1}, where K§ R™ — R"*| is equivalent to the following statement:

YK X
36, > 0, such that inf sup h
XeRn! YeRrn? HX

= Bh.

¥lgna ~

Rnl

Also see [26, Lemmas A.39 and A.40] and note that R™"* can be identified with R"*. One can also show that
By, is the smallest singular value of K, see [26, Remark 2.23] and [36, §3.4.3].

Recall that Hff(q%) and H$°(qS, q%) are nonlinear operators. They depend on the state of deformation of
the body and vary at each iteration of Newton’s method. Hence, it is difficult to draw a general conclusion
for invertibility of K, based on the conditions (ii7) and (iv) of Theorem 14 without considering the physics
of the problem. On the other hand, sz and K,lld are linear operators and remain unchanged throughout the
deformation. Therefore, in the following discussions, we focus on conditions (i) and (i7) of Theorem 14.

Considering different meshes with few elements and counting the total degrees of freedom (n', n¢,n¢, n’), one
can check that all the possible mixed formulations of the first and the second order satisfy n’ < n¢. However,
many of them violate 0 < n?¢ —n! < n¢ and hence, result in a singular tangent stiffness matrix K;,. Those
are H2cmd1Lln, H2cmd1ln, H2cmdlln, H2cmdlln, Hlcld1ln, Hmcld2Ln, Hmcld2Ln, Hmcld2Ln, Hmcld2Ln,

and Hmc2d2Ln for m = 1,2 and n = 0,1,2. In addition, considering several arbitrary meshes and computing

the smallest singular value of [Kj Kgl]T, we conclude that ker(K§%) n ker(K}%) = {0,451} does not hold, in
general, for HmcndnlLr and Hmendnlr with m,n = 1,2 and r = 0,1,2. The cases mentioned above are 75 out
of 96 possible first and second order mixed methods. These cases have solvability issues for any mesh regardless
of its size h.

In [17] based on the observations in several numerical examples it was reported that only 7 out of the 32
possible choices of the first and second-order CSFEMs for compressible solids result in solvable algebraic systems.
Those observations agree with the above arguments because all the remaining 25 mixed methods violate one
or both of the necessary conditions ker(K$) = {0,1,1} and ker(K§9) m ker(K}%) = {0,45;}. In fact, those 25
cases can be obtained directly from the 75 cases we mentioned above by removing the pressure field and the
incompressibility constraint from the mixed formulations.

In view of Theorem 14, (i) and (ii), we have narrowed down the 96 possible choices of mixed FEMs to
the following 21 solvable ones: HlcldIiLm, H1c2dILm, Hlc2d1Lm, H1lc2d1Lm, Hlc2d1Lm, H1c2d2Lm, and
H2c2d2Lm for m = 0,1,2. Satisfaction of the conditions of Theorem 14 for a given mesh is not enough; the
stability of the method requires that all the four conditions hold as the mesh gets refined and h goes to zero.
Our numerical examples suggest that Hlc1d1LO and H2c2d2L1 have an overall good performance among the
first-order and second-order elements, respectively. These elements are illustrated in Figure 4.
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4 Numerical Examples

In this section, we consider six different examples to assess the convergence and accuracy of CSFEMs in the

analysis of incompressible solids. For all the examples, we consider the energy function (3.37). We use the

L?norm to measure the values and the errors of the approximated filed variables (U}, Ky, Py, pp) over the
1

entire mesh. We also use the Frobenius norm of a second-order tensor T', |T'| := (ZI J T”T”) * to show the

distribution of the values of K, and P, in the deformed configurations.

Example 1: Inflation of a Cylindrical Shell. We consider the inflation of an incompressible thick cylindri-
cal shell shown in Figure 5. The inner boundary of the shell is traction free and the outer boundary is subjected
to Uout = (A — 1)X. We assume that there is no body force, i.e., B = 0. Owing to the incompressibility
constraint J = 1, one can obtain the exact solution of the problem as follows:

v.00 - ("G -1)x,

R
B R? p(A2 —1)R2,, 1 1 —T(Rin)
pe(X) = “eme T 2 (T(Rin)2 - r(R)2> el (RinT(R) R) ’

where 7(R) = 4/R?+ (A2 — 1)R2,, and R = |X||. Having U, and p,, one can obtain K. = gradU, and
P, = IB(K ¢) + P.Q(K.). The exact solution enables one to study and verify the accuracy and convergence of
CSFEMs. Note that this is an example of a universal deformation [37]. For our numerical analysis, we assume
that R;, = 0.5mm, Ry = 1 mm, and A = 3. We also assume g = 1 N/mm? in (3.37) and use the constraint
function C(J) = J — 1. Using symmetry of the problem, we model only a quarter of the shell in the numerical
analysis (see the generated unstructured meshes in Figure 5). Using the symmetry and the numerical solutions
of a quarter of the domain, one will be able to recover the solution for the entire domain.

52 elements 544 elements

1052 elements 5056 elements

Figure 5: Inflation of a cylindrical shell: Geometry, boundary conditions, and four unstructured meshes.

As was discussed in §3.5, among the 96 possible choices of the first and second-order CSFEMs, only 21 may
result in a non-singular tangent stiffness matrix K;, and the remaining 75 CSFEMs have solvability issues. We
studied and compared the performance of the 21 solvable CSFEMs using the exact solution of this problem. Our
numerical experiments indicate that the following 8 CSFEMs have good performance: H1lcld1L0, H1c2d1LO,
H1c2d1L1, H1c2d1L0, H1c2d1L0, H2c2d2L0, H2c2d2L1, H2c2d2L2. We do not consider the reaming 13 CSFEMs
further due to their poor performance.
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For the four meshes shown in Figure 5, the relative L?-norm of errors associated with each of the above 8
CSFEMs are given in Table 4. Considering the relative errors of the four primary field variables U, K, P, and
p, H2c2d2L1 (#7) is the most accurate method among all CSFEMs. Based on the number of degrees of freedom
in the fourth column, Hlcld1LO (#1) has the least computational cost among all CSFEMs. Although for an
identical mesh, H1c2d1L0, H1c2d1L1, H1c2d1L0, and H2c2d2L2 (#2 — #4 and #8) have (many) more degrees
of freedom than H1cl1d1LO (#1), none of them has a better relative error in approximating the four primary
variables. For an identical mesh, H1c2d1L0 and H2c2d2L0 (#5 and #6) are more accurate than H1c1d1L0 (#1)
in approximating the four primary variables, but they are computationally much more expensive (more number
of DOFs). In other words, it may be better to refine the mesh and use Hlc1d1LO0 rather than using H1c2d1LO or
H2c2d2L0 with a coarser mesh. Therefore, H2c2d2L1 and H1cld1LO (#1 and #7), which are shown in Figure 4,
have an overall better performance among all CSFEMs. Between these two methods, if we compare Hlc1d1LO
with 56298 #DOF and H2c2d2L1 with 34240 #DOF, we conclude that the latter method results in a more
accurate solution for less computational cost.

To study the convergence order of CSFEMs, we plot the relative errors of the four primary variables versus
the maximum diameter h of some unstructured meshes in Figure 6. Note that our observations in Table 4 also
hold for Figure 6 with regard to accuracy. The convergence order of displacement U is close to 2 for all methods.
The convergence order of displacement gradient K is close to 1 for all methods except H2c2d2L1 and H2c2d2L2,
for which the convergence order is almost 2. For the stress P, the convergence order is close to 1 for all methods
except H2c2d2L1, which has a convergence order of almost 2. We also observe that the convergence order of the
pressure-like variable p and the stress P are the same for all methods. Based on the above discussions, we will
use H1cld1LO and H2c2d2L1 in the following examples.

Example 2: Cook’s Membrane. To assess the performance of CSFEMs in bending analysis, we consider
the standard Cook’s membrane problem shown in Figure 7. We assume p = 1 N/mm? and use the constraint
function C(J) = InJ. We investigate the pointwise convergence of Hlcld1LO and H2c2d2L1 in Figure 8 by
plotting the vertical displacement of point A indicated in Figure 7 for different meshes and for different values
of the shearing force f. We also compare our results with those generated only for f = 0.1 N/mm? in the work
of Chi et al. [10]. We observe that both CSFEMs provide good approximations for relatively coarse meshes and
H2c2d2L1 converges faster than H1c1dILO. Also, there is a good agreement between CSFEMs and the method
used in [10].

To study convergence, in Figure 9, we plot the L?-norms of displacement, displacement gradient, stress, and
pressure using Hlc1d1LO (dashed lines) and H2c2d2L1 (solid lines) and for different values of shearing force f.
Considering the four primary variables and for all values of the shearing force f, one can see that H2c2d2L1
converges rapidly. The convergence of Hlcld1LO0 is comparable to that of H2c2d2L1 in approximating U and
K. However, the convergence of Hlc1d1L0 in approximating P and p becomes slower than that of H2c2d2L1
as the value of the shearing force f increases.

Figures 10 and 11 depict the deformed configurations of Cook’s membrane for the four meshes of Figure 7
and f = 0.3 N/mm? by using H1c1d1LO and H2c2d2L1, receptively. In both figures, colors indicate the values
of | Py in the first row and the values of the pressure pj in the second row with lighter colors corresponding to
larger values. The standard two-field mixed formulation of incompressible elasticity in terms of displacement and
pressure is unstable if displacement is approximated by continuous piecewise linear polynomials and pressure
with piecewise constant polynomials on triangular elements [26, 10]. Although H1c1d1LO uses the same low-order
polynomial spaces for displacement and pressure, as it can be observed from Figure 10, it is convergent and does
not result in any numerical artifacts in the approximation of pressure. Note that in the mixed formulation of
CSFEMs such as H1c1d1L0, displacement and pressure are not coupled directly with a bilinear term. In addition,
comparing with the standard two-field mixed FEMs, H1c1dILO provides a more accurate approximation of strain
and stress by approximating them directly in their domains of definition. In Figure 11, one observes the fast
convergence of H2c2d2L1 in approximating stress and pressure and its accuracy even for a coarse mesh with 46
elements.

Example 3: Bending of an Arch. Following [16], for further testing of Hlc1d1L0O and H2c2d2L1 in bending
problems, we consider bending of the arch shown in Figure 12. Note that f in Figure 12 is a uniformly distributed
load in the radial direction. We assume E = 250 N/mm? and v = 0.5 (u = E/2(1 +v)) and use C(J) =InJ as
the constraint function. Because of the symmetry, we study half of the arch as shown in the generated meshes in

24



H U, — UﬂHLZ
1Tl

107

10

—e— Hic1d110
—A— H1c2d110
—h— H1c2d111
—4— H1c2d110
—w— Hlc2d110

|K),— K|
[ K|

1073

H2c2d210
H2c2d211
10 H2c2d212

10t 10t

1Pz

HPh - P(HLZ
2w — pellz

108 w 3

Figure 6: Relative L2-norms of errors in approzimating displacement, displacement gradient, stress, and pressure versus the
maximum diameter h. In each diagram, different curves are associated with different CSFEMs. In each diagram, the dash-dot
line and the dashed line have the slopes of 1 and 2, respectively.

Figure 12. Figure 13 shows the reference and the deformed states of the arch subjected to f = 20 N/mm? using
H2c2d2L1 and the mesh with 324 elements in Figure 12. The colors indicate the values of | K| with lighter
colors corresponding to larger values. As one expects, the middle portion of the half of the arch at z = 0.3
(x = —0.3) is narrowed and stretched, and hence shows large values of | Kp|.

Figure 14 shows the convergence of Hlc1d1L0 (dashed lines) and H2c2d2L1 (solid lines) for different values
of the load f. We observe that both methods converge considering all the four primary fields and for all values
of the transverse load f. However, H2c2d2L1 has a faster convergence, and hence provides a more accurate
approximation when using coarse meshes. Figure 15 shows the deformed configurations of half of the arch for
f = 20 N/mm? using the meshes of Figure 12. The results are generated using H2c2d2 and colors indicate
the values of || Py in the first row and pj, in the second row, where lighter colors correspond to higher values.
Comparing the mesh with 71 elements with the mesh with 998 elements, one can see the accuracy of H2c2d2 in
approximating stress and pressure even when using a coarse mesh.

Example 4: Stretching a Block with a Hole at its Center. We consider a square block with a hole
at its center as shown in Figure 16. The block is subjected to uniform displacement boundaries of (u,0) at its
right and (—u,0) at its left edge. The top and bottom edges are traction free. The goal of this example is to
test the performance of CSFEMs at very large stretches. We assume y = 1 N/mm? and use C(J) = J — 1. Due
to symmetry, we consider only a quarter of the block as shown in the generated meshes in Figure 16. Figure
17 illustrates the reference and the deformed configurations of the block using H2c2d2L1 and the mesh with
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Figure 7: Cook’s membrane: Geometry, boundary conditions, and four unstructured meshes.

184 elements in Figure 16. The boundary displacement u = 1.5 mm results in a large stretch of 4. The colors
indicate the values of | K| with lighter colors associated with larger values. The maximum of | K| is 6.5 at the
boundary of the hole and 2 = 0. Figure 18 illustrates the convergence of H1c1d1L0 (dashed lines) and H2c2d2L1
(solid lines) for different values of the imposed boundary displacement u. We observe that H2c2d2L1 converges
rapidly considering all the primary variables and for all values of u. Also, considering displacement, displacement
gradient, and stress, H1c1d1L0 has a good convergence, but it has a poor performance in approximating pressure
for stretch = 4 (v = 1.5mm). Figure 19 shows the deformed configurations of a quarter of the block for
u = 1.5 mm using the meshes of Figure 16. The results are obtained using H2c2d2 and colors indicate the values
of |Py| in the first column and py, in the second column, where lighter colors correspond to higher values. As
one can observe, even for stretch = 4 and using a coarse mesh with 48 elements, H2c2d2 provides an accurate
distribution of stress and pressure.

Example 5: Stretching a Block with Randomly Distributed Holes. Next, we consider a block with
randomly distributed holes as shown in Figure 20. The size of the block is 1mm x 1 mm. The left edge of
the block is fixed and the right edge is subjected to a uniform displacement boundary (u,0). The top and the
bottom edges are traction free. Similar to the previous example, this example tests the performance of CSFEMs
at very large stretches but for a more complex geometry. We again consider g = 1N/mm? and C(J) = J — 1.
Figure 21 shows the reference and the deformed configurations of the block using H2c2d2L1 and the mesh
with 184 elements in Figure 20. The colors indicate the values of | K|, where lighter colors correspond to
larger values. The large values of | K| correspond to the boundaries of the middle portion of the holes with
maximum | K| of approximately 5.5 at (0.6,0.5). Figure 22 illustrates the convergence of H1c1d1L0 (dashed
lines) and H2c2d2L1 (solid lines) for different values of u. We observe that H2c2d2L1 converges considering the
four primary variables and for all values of u. We also see that Hlc1d1LO has good convergence, in general,
but it becomes inaccurate in approximating pressure with the increase of stretch to 3 (v = 2mm). Note that
we had similar observations in Figure 14. Using the meshes of Figure 20 and using H2c2d2, in Figure 23 we
illustrate the deformed configurations of the block for v = 2mm. The colors indicate the values of | P} in
the first column and pj, in the second column with lighter colors corresponding to higher values. This mainly
shows the stability of H2c2d2 in approximating the stress and pressure without any numerical artifacts even for
a complex geometry under a large stretch.

Example 6: Rubber Reinforced with Rigid Particles. As was discussed in Remark 12, the discrete
fields Ky, € V,fr and Py, € ‘u/,gr naturally satisfy, respectively, the Hadamard jump condition and the continuity
of traction on all the internal edges of any mesh. This enables one to accurately model heterogeneous solids in
which inhomogeneities do not slide at the interfaces, i.e., the displacement field is continuous at the interfaces.
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More specifically, we generate a mesh for the entire heterogeneous material such that the interfaces between all
inhomogeneities lie completely on some internal edges of the mesh. Then we assign a different material model
to the patch of elements within each inhomogeneity. Regardless of the refinement level of the generated mesh,
CSFEMs naturally satisfy all the interface conditions of the heterogeneous solid at the discrete level.

As an application, we consider a square rubber block with edge length of 1 mm reinforced with 16 rigid
circular particles with area fraction of 20% as it is shown in Figure 24. The left and the right edges of the block
are subjected to uniform traction (—f,0) and (0, f), respectively, and the top and the bottom edges are traction
free. We consider p; = 1 N/mm? for the rubber matrix and us = 1e5N/mm? for the rigid particles, and we use
C(J) = J —1 for both of them.

Figure 25 shows the deformed configuration of the block for the tension load f = 2.8 N/mm? using H2c2d2L1
and the mesh with 4428 elements given in Figure 24. We can see that the stretch due to the imposed boundary
tractions is larger than 2. In the first plot, colors on the matrix indicate values of the norm of displacement
gradient |Kp|. As one expects, we obtain K} = 0 everywhere in the rigid particles. Furthermore, we observe
that the large values of |K| occur in the portion of the matrix between two rigid particles of almost same
vertical positions that were close to one another before deformation. In the second plot, colors on the matrix
indicate values of the norm of stress | P |. As can be seen, those points of the matrix at the left and right sides
of every particle have the large values of stress. The third plot shows the values of pressure p; in the matrix.
Everywhere in the particles, the computed values of p;, is almost —ps. We observe that the positions of large
values of pressure and stress in the matrix are almost the same; this is consistent with our observations of all
the previous examples. Figure 26 shows that H2c2d2L1 is convergent for different values of f.

5 Concluding Remarks

We introduced a new class of mixed finite element methods for incompressible nonlinear elasticity — compatible-
strain mized finite element methods (CSFEMs). This work is an extension of [17] to incompressible nonlinear
elasticity. Furthermore, this work improves [17] by providing a more practical description of the mixed formu-
lations and the finite element approximations, especially, a more efficient way to calculate the shape functions.
We derived a four-field mixed formulation from a Hu-Washizu type functional with the displacement U, the
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displacement gradient K, the first Piola-Kirchhoff stress tensor P, and a pressure-like field p as the four in-
dependent unknowns. For solution spaces, we assumed (U, K, P,p) € HY(TB) x H¢(B) x HY(B) x L*(B),
and to define the corresponding test spaces, we used the same Hilbert spaces. Next, we constructed some con-
forming finite element (piecewise polynomial) subspaces VhlJ < HY(TBy), ‘v/}fr < He(Bp), XV/;:T c HY(By,), and
V,f‘r < L?(By). Then, CSFEMs were obtained by replacing the solution and test spaces of the four-field mixed
formulation with the generated finite element subspaces. Due to interelement continuities of these subspaces,
regardless of the refinement level of the mesh, CSFEMs approximate a continuous displacement and satisfy
both the Hadamard compatibility condition of displacement gradient and the continuity of traction on all the
internal edges.

After solving several numerical examples, we observed that CSFEMs are robust and have good performance
for different geometries and loadings. In particular, CSFEMs perform well in bending problems, do not result in
an unphysical approximation of pressure even when using piecewise constant polynomials, and do not suffer from
numerical artifacts such as locking, checkerboarding of pressure, or hourglass-type instabilities. In capturing
the nonlinear effects, we observed that CSFEMs remain stable up to very large strains and provide an accurate
approximation of stress as an independent variable. Moreover, as we demonstrated, CSFEMs provide an efficient
framework for modeling inhomogeneous solids undergoing large deformations.

In future communications, we will extend CSFEMs to 3D compressible and incompressible nonlinear elasticity
by using H® and H9-conforming tetrahedral elements. Moreover, we will investigate the applicability of CSFEMs
in modeling nonlinear solids with distributed finite eigenstrains. FEigenstrains are created due to a host of
anelastic phenomena in solids such as defects [38], thermal strains [39], biological growth [40], swelling [41], and
the presence of inclusions and inhomogeneities [42, 43]. In particular, we will use the geometric formulation of
anelasticity, in which all the anelastic effects are buried into the material manifold. In this approach, if one
can build a material manifold (where the body is stress-free by construction), then the anelasticity problem is
transformed to a classical nonlinear elasticity problem provided that the nontrivial geometry of the material
manifold is taken into consideration properly.
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Table 4: Convergence and relative error of different CSFEMs for inflation of a cylindrical shell. DOF denotes the degrees of
freedom for each mesh, (Ue, Fe, Pe, pe) is the exact solution, and (Uy, Fp, Py, pn) is the approzimate solution for each
CSFEM.

# CSFEM #Elements #DOF HUh_Ue”LZ ”Kh_KeHL2 HPh—PeHL2 th_PeHL2

HUe”L2 ”K€HL2 HPe”L2 HpeHLQ
52 646 7.3%03  1.19e-01 345001 4.98¢.01
| Hiclgilo 544 6226 7.03004  3.04e-02 8.68¢:02  1.67e-01
1052 11902 3.63¢.04  2.050-02 743602 1.44e-01
5056 56298 T.950-05  9.54e-03  3.20e-02  5.98¢-02
52 854 6.97¢:03  1.38e-01 176001  2.14e-01
s 8402 628004 375602 41102 4.96e-02
2 Hle2dIlo 0 16110 3.28¢.04  2.61e-02 2.80e.02  3.566-02
5056 76522 7.200-05  1.226-02 140002 1.576-02
52 958 720003 1.46e-01 374601 7.29¢-01
s 9490  6.270-04  4.026-02 764002  1.34e.01
3 HledIll o0 18214 3.21e04  2.760-02 521002 8.926-02
5056 86634 T.050-05  1.286-02 995602  3.62e-02
52 1028 7.18¢-03  1.06e-01 373601 4.89¢-01
_ 544 10094 6.86e-04  2.66e-02 1.00e-01 17301
4 Hle2dllo 0 19348 3.56e-04  1.83e-02 8.66e-02  1.44e-01
5056 91860  7.840-05  8.61e-03  3.75¢-02  6.06e-02
52 1306 7.32¢-03  6.80e-02 6.566-02  1.34e-01
544 12874 6.57e-04  1.940-02 185602  4.34e-02
5 Hlc2dllo - 24690 347004 1.366-02 12702 3.06e-02
5056 117310 7.566-05  6.28¢-03  5.64e-03  1.37e-02
52 1688  2.74e-03  4.45e-02 3.456-02  1.09e-01
sy 16742 2.70e-04  1.376-02 115002 3.84e-02
6 H2c2d2L0 9 32136 1.460-04  1.01e-02 829003  2.78¢-02
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Figure 10: The deformed configurations of Cook’s membrane for the shear force f = 0.3 N/mm? using H1c1dILO. Colors indicate
values of | Py, in the first row and pressure py, in the second row, where lighter colors correspond to larger values.
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H2c2d2L1, respectively.
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Figure 15: The deformed configurations of the arch for the bending load f = 20 N/mm? using H2c2d2L1. Colors indicate values of
the norm of stress |Pp,| in the first row and the pressure pp, in the second row, where lighter colors correspond to larger values.
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Figure 16: Stretching a block with a hole at its center: Geometry, boundary conditions, and four unstructured meshes.
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Figure 17: The reference and deformed configurations of a block with a hole for w = 1.5mm (stretch = 4) obtained by using
H2c2d2L1. Colors indicate values of the norm of displacement gradient | K|, where lighter colors correspond to larger values such
that max | K| = 6.5 is indicated by yellow.
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Figure 18: Stretching a block with a hole at its center: L2-norms of displacement, displacement gradient, stress, and pressure
versus the number of elements in the mesh. w in the legend is the horizontal displacement imposed at the right boundary. The
left boundary is subjected to —u simultaneously. The dashed and solid lines are generated by using Hlcld1LO and H2c2d2L1,
respectively.
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Figure 19: The deformed configurations of a quarter of a block with a hole for uw = 1.5mm (stretch = 4) using H2c2d2L1. Colors
indicate values of the norm of stress |Py| in the first column and the pressure py in the second column, where lighter colors
correspond to larger values.

743 elements 1164 elements 2049 elements

Figure 20: Three unstructured meshes for a square block with randomly distributed holes.
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Figure 21: The reference and deformed configurations of the block with randomly distributed holes for w = 2mm (stretch = 3)
obtained using H2c2d2L1. Colors indicate values of the norm of displacement gradient |K |, where lighter colors correspond to
larger values such that max |Kp| = 5.5 is indicated by yellow.
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Figure 22: Stretching a block with randomly distributed holes: L?-norms of displacement, displacement gradient, stress, and
pressure versus the number of elements in the mesh. u in the legend stands for the horizontal displacement imposed at the right
boundary. The dashed and solid lines are generated using Hlc1d1LO and H2c2d2L1, respectively.
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Figure 23: The deformed configurations of the block for w = 2mm (stretch = 3) using H2c2d2L1. Colors indicate values of the
norm of stress | Py| in the first column and the pressure py in the second column, where lighter colors correspond to larger values.
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Figure 24: An unstructured mesh for a square rubber block with 16 particles with 20% area fraction.
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Figure 25: The deformed configuration of the block for f = 2.8 N/mm? using H2c2d2L1 and the mesh with 4428 elements given in
Figure 24. Colors on the matriz indicate values of the norm of displacement gradient in the first plot, the norm of stress in the
second plot, and pressure in the third plot with lighter colors corresponding to larger values.
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Figure 26: Rubber reinforced with rigid particles: L2-norms of displacement over the entire domain and L2-norms of displacement

gradient, stress, and pressure over the matrix versus the number of elements in the mesh. The results are generated by using
H2c2d2L1.

43



	Introduction
	A Mixed Formulation for Incompressible Nonlinear Elasticity
	Preliminaries
	A Four-Field Mixed Formulation for Incompressible Nonlinear Elasticity

	Finite Element Approximations
	Finite Elements
	Finite Element Spaces
	Compatible-Strain Mixed Finite Element Methods
	Matrix Formulation
	Solvability and Stability

	Numerical Examples
	Concluding Remarks

