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Abstract

We introduce a new family of mixed finite elements for incompressible nonlinear elasticity – compatible-
strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field
mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a
pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity,
which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent
unknown fields. In particular, we define the displacement in H1, the displacement gradient in Hpcurlq,
the stress in Hpdivq, and the pressure field in L2. The test spaces of the mixed formulations are chosen
to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the
solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation
spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields.
This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard
compatibility condition and the continuity of traction at the discrete level independently of the refinement
level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good
performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing
very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe
any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical
examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

Keywords: Mixed finite element methods; finite element exterior calculus; nonlinear elasticity; incompressible
elasticity; Hilbert complex.
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1 Introduction

It has been known for quite some time in the finite element literature that internal constraints, and in particular,
incompressibility constraint should be treated very carefully to avoid numerical artifacts and instabilities. One
path for developing efficient and robust numerical schemes for incompressible elasticity is the use of mixed finite
elements.

For incompressible solids, addition of the volume-preserving constraint and the pressure as an extra inde-
pendent unknown results in a saddle-point problem. The well-posedness of a saddle-point problem requires
that the two independent unknowns, which are the displacement and pressure in this context, are defined in
some compatible spaces. This requirement is commonly represented by an inf-sup condition referred to as the
LBB condition after the celebrated works of Ladyzhenskaya [1], Babuška [2], and Brezzi [3]. Satisfaction of this
condition at the discrete level is a necessary condition for the stability of the finite element method and causes
some complications for constructing the finite element spaces of displacement and pressure. There are different
approaches for constructing finite elements that satisfy the LBB conditions, among which are enriching the space
of displacement with some bubble functions in each element, e.g., mini element (triangular with P1

À

b3´ P1)
[4], using quadratic or higher-order shape functions, e.g., quadrilateral Taylor-Hood element (Q2 ´ Q1) [5] or
its triangular variant (P2 ´ P1) [6], with the proof of stability given for both by Bercovier and Pironneau [7],
pairing a composite displacement element with a piecewise constant pressure element, e.g., [7], and using non-
conforming displacement elements, e.g., Crouzeix and Raviart [8]. All these well-known methods are mainly
developed for the Stokes saddle-point problem and the proofs of stability are given for linear two-field mixed
formulations. Although, these elements can be used for modeling incompressible linear solids, they may not
perform well in nonlinear problems, especially in capturing large strains. It is shown in [9] that some of the above
elements may exhibit some numerical artifacts when used in incompressible nonlinear elasticity. It is further
highlighted that increasing the amplitude of the external loads and the way the incompressibility constraint is
imposed may affect the performance of the above elements in nonlinear problems. As another example, see the
result given in [10, §5.2] obtained by the modified quadratic displacement-linear pressure with hourglass control
(CPE6MH) in ABAQUS, which shows the shortcomings of the above approaches in capturing large strains in
incompressible nonlinear elasticity problems.

Over the years different approaches have been presented to avoid the difficulties associated with a saddle-
point problem, among which are choosing different trial and test spaces (Petrov-Galerkin method), statically
condensing out the pressure from the corresponding matrix formulations, and stabilizing the system by adding
some extra terms to the mixed formulations to alter the saddle-point problem. These approaches may be imple-
mented individually or a combination of more than one approach may be used. Another common saddle-point
problem in elasticity is the stress-displacement mixed formulation associated with the Hellinger-Reissner princi-
ple, which has mostly been implemented for linear elasticity. In this method, spaces of stress and displacement
must be defined carefully. Inspired by the work of Hughes et al. [11] for the Stokes problem, Franca et al. [12]
developed a mixed Petrov-Galerkin finite element method for nearly incompressible linear elastic solids. The
method is based on the modification of the weak formulation associated with the critical point of the Hellinger-
Reissner principle by adding some additional terms to improve stability without compromising consistency. The
goal in such methods is an equal-order conforming approximation of the displacement and the Cauchy stress.

For the (nearly) incompressible nonlinear elasticity problems, Simo et al. [13] proposed a kinematic splitting
of the volumetric and volume-preserving parts of the deformation gradient and used it in a three-field form
of the Hu-Washizu variational principle. For compressible and near incompressible nonlinear solids, Simo and
Armero [14] used an additive decomposition of displacement gradient into a compatible part and an enhanced
part. For a continuum problem the enhanced part vanishes pointwise. However, they observed that at the
discrete level using mixed finite elements the enhanced part does not vanish and leads to a better representation
of strain. For transversely isotropic incompressible solids, Weiss et al. [15] exploited Simo et al. [13]’s idea of
splitting the deformation gradient and used the deformation mapping, dilation, and pressure as independent
variables in their mixed finite element formulation of incompressible transversely isotropic solids. For imposing
the incompressibility constraint, they used an augmented Lagrangian method. Lamichhane [16] developed a
displacement-pressure mixed finite element method for 2D nearly incompressible nonlinear elasticity. Both
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the trial and test spaces of displacement are discretized using linear Lagrange finite elements enriched with
standard cubic bubble functions so that the inf-sup condition is satisfied. In addition, using a Petrov-Galerkin
approach, the trial space of pressure is discretized by linear Lagrange finite elements, but the shape functions
of the test space of pressure are obtained by assuming a biorthogonality condition between the trial and test
spaces of pressure. Using this setting, one can statically condense out the pressure from the corresponding
algebraic system and solve a displacement-based problem. Chi et al. [10] used polygonal finite elements to
discretize a two-field mixed formulation of 2D (nearly) incompressible nonlinear elasticity. The displacements
are interpolated by choosing the barycentric coordinates over each polygon as the shape functions and the values
of displacements at the polygon vertices as the degrees of freedom, which results in a C0 approximation over the
entire domain. The pressure is approximated by a piecewise constant scalar over each polygon. Their numerical
studies showed that the method is stable and is able to capture very large stretches.

The present work is an extension of [17] to incompressible nonlinear elasticity. We write a four-field mixed
formulation of incompressible nonlinear elastostatics in terms of the displacement, displacement gradient, the
first Piola-Kirchhoff stress, and a pressure-like field by extremizing a Hu-Washizu-type functional. Comparing
with [17], in this work, we use a symmetric mixed formulation, which is computationally more efficient. Elim-
inating the pressure and the incompressibility constraint from the four-field mixed formulation reduces it to a
symmetric version of the three-field mixed formulation of compressible solids given in [17]. In addition, based
on our observation of the numerical examples of both this work and [17], we have concluded that the treat-
ment of the boundary conditions in this work improves the accuracy and robustness of the mixed FEMs and
is also easier to implement. Here, we impose the displacement boundary conditions strongly and the traction
boundary conditions weakly. More specifically, only the displacement boundary condition is imposed by the
standard elimination approach in the system of algebraic equations; the traction boundary condition is built
into the governing equations, and hence, there is no need to directly compute the degrees of freedom of stress
on the boundary. Furthermore, we provide a clearer description of finite element approximations that is easier
to implement and is computationally more efficient. In this work, we prove why some of the combinations of
the finite element spaces do not result in solvable mixed finite element methods, which was also observed in [17]
but was not discussed in detail.

We use the Hilbert complexes of nonlinear elasticity [18, 19] to identify the spaces of the independent field
variables. In particular, we define the displacement in H1, the displacement gradient in Hpcurlq, and the stress
in Hpdivq. This setting is different from the ones that are commonly used for the mixed formulation of linear
elasticity written based on the Hellinger-Reissner principle, where the Cauchy stress and the displacement are
defined in a symmetric Hpdivq space and L2, respectively, e.g., see [20, 21]. Other variants of the mixed stress-
displacement method for linear elasticity were introduced in [22] and [23]. In [22], the displacement is assumed
in H1 and stress in a symmetric L2 space, while in [23] the displacement is assumed in Hpcurlq and stress is
approximated by a symmetric non-conforming Hpdivq space. Although in some aspects the above-mentioned
formulations are similar to our work, they cannot be used in drawing any conclusion on the convergence or
stability; linear and nonlinear elasticity are quite different and the mixed formulation of the present work is
based on a Hu-Washizu-type functional, which is not directly related to the Hellinger-Reissner principle. The
mixed finite element methods presented in this work can be considered structure preserving in the sense that
the differential complex structure of nonlinear elasticity [18] is preserved at the discrete level. In particular,
in our mixed finite element methods for incompressible nonlinear elasticity both the Hadamard compatibility
condition and the continuity of traction are satisfied at the discrete level independently of the refinement level
of the mesh.

This paper is organized as follows. In §2, we discuss the mixed formulation that we will later use for
introducing CSFEMs. In §2.1, we first discuss some preliminaries and definitions, and then review the Hilbert
complexes that describe the kinematics and the kinetics of 2D nonlinear elasticity. In §2.2, we derive a four-field
mixed formulation for 2D incompressible elastostatics by extremizing a Hu-Washizu-type energy functional. In
§3, we discuss the finite element approximation of the four-field mixed formulation of §2.2. In §3.1, we define
some reference finite elements (shape functions and degrees of freedom) for the displacement, displacement
gradient, stress, and pressure. Next, we discuss some linear bijective mappings and use them to generate the
finite elements of an arbitrary element from their reference counterparts. This provides the relations necessary
for mapping of the shape functions. In §3.2, we define the finite element approximation spaces and use them as
the trial and test spaces of the four-field mixed formulation of §2.2 to introduce CSFEMs in §3.3. The matrix
formulation of CSFEMs is the subject of §3.4. In §3.5, we discuss the solvability and stability of CSFEMs
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for different combinations of trial and test spaces. To assess the performance of CSFEMs, we consider several
numerical examples in §4. Some concluding remarks and future work are discussed in §5.

2 A Mixed Formulation for Incompressible Nonlinear Elasticity

In this section, we present a four-field mixed formulation for 2D incompressible nonlinear elasticity, which we
will use for our mixed finite element methods.

2.1 Preliminaries

We first tersely review some definitions and notation, and then discuss the relations between some Hilbert
complexes and the kinematics and kinetics of motion in nonlinear elasticity. Next based on these relationships,
we define the spaces of definition of displacement, displacement gradient, stress, and pressure, the four field
variables that we use in our mixed formulations.

Let X “ pX1,X2q P R2 be the position of a particle in the reference configuration B, where B Ă R2 is a
bounded domain with boundary BB. For any vector field U and any

`

2
0

˘

-tensor field T on B, we define the
following four operators:

pgradpUqqIJ :“ BU I{BXJ ,

pdivpT qqI :“ BT IJ{BXJ ,

pcpT qqI :“ BT I2{BX1 ´ T I1{BX2,

pspUqqIJ :“ pBU I{BX2qδ
1J
´ pBU I{BX1qδ

2J ,

(2.1)

where δIJ is the Kronecker delta, and we use the summation convention on repeated indices. Note that c is also
known as the 2D curl operator. Let L2pBq, L2pTBq, and L2pb2TBq be the spaces of square integrable scalar
fields, vector fields, and

`

2
0

˘

-tensor fields on B, respectively. Consider the following spaces:

H1pTBq :“
 

U P L2pTBq : BU I{BXJ P L2pBq, I, J “ 1, 2
(

,

HcpBq :“
 

T P L2pb2TBq : pcpT qqI P L2pBq, I “ 1, 2
(

,

HdpBq :“
 

T P L2pb2TBq : pdivpT qqI P L2pBq, I “ 1, 2
(

.

In general, H1 is a subset of both Hc and Hd. Note that the partial derivatives and operators in the above
spaces are defined in the distributional sense (weak sense). For any distribution f one extends the notion of
derivative to a linear mapping Bf

BXI : DpBq Q φ ÞÝÑ
ş

B
Bf
BXI φdA “ ´

ş

B f
Bφ
BXI dA P R, where DpBq is the vector

space of smooth functions with compact support in B. In the same context, we similarly extend the operators
defined in (2.1), e.g., the distributional (or weak) divergence is defined as

ş

B div v φdA “ ´
ş

Bxv,gradφydA,
where x, y is the standard inner product in R2.

For any vector field V in H1pTBq, one can show that

cpgradpV qq “ 0 and divpspV qq “ 0. (2.2)

Owing to the above relations and the definition of the above spaces, one can extend the linear operators of (2.1)
to the following mappings:

grad : H1pTBq Ñ HcpBq, c : HcpBq Ñ L2pTBq,
s : H1pTBq Ñ HdpBq, div : HdpBq Ñ L2pTBq.

(2.3)

One can concisely rewrite (2.2) and (2.3) using the following Hilbert complexes [18, 19]:

0 // H1pTBq
grad
// HcpBq c // L2pTBq // 0, (2.4a)

0 // H1pTBq s // HcpBq´div
// L2pTBq // 0, (2.4b)
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where the first arrows on the left are trivial operators, which send zero to zero, and the last arrows on the
right indicate the zero operator, which maps the L2-space to zero. We use ´div instead of div in the second
complex, so that (2.4b) is the dual complex of (2.4a).

Let U , K, and P be the displacement vector, the displacement gradient tensor, and the first Piola-Kirchhoff
stress tensor, respectively. We choose these fields to be the primary variables in our description of nonlinear
elasticity. This mixed formulation allows one to impose compatibility of displacement gradient and to accurately
compute stresses by approximating them in some proper spaces that are given in (2.4). Note that both K and
P are two-point tensors (and hence it does not even make sense to ask if they are symmetric). Therefore,
the difficulties associated with imposing the symmetry of a tensor in finite element approximation will not be
encountered. See [20, 21] for the symmetry imposing issues encountered in finite element approximation of
linear elasticity.

Given a motion of B in 2D, for the displacement field UpXq :“ ϕpXq ´X at X P B, one has K “ gradU ,
and cpKq “ 0 is a necessary condition for the compatibility of K. Therefore, U belongs to the domain of the
operator grad and K belongs to the kernel of the operator c. According to the Hilbert complex (2.4a), this is
the case whenever U P H1pTBq and K P kerpcq Ă HcpBq. Moreover, in the absence of body force, the static
equilibrium equation divP “ 0 is the necessary condition for the existence of a stress function Ψ such that
P “ spΨq. Therefore, P belongs to the kernel of the operator div, which gives P P kerpdq Ă HdpBq, based on
(2.4b). Note that the Hilbert complex (2.4a) is related to the kinematics of motion, while the Hilbert complex
(2.4b) is related to the kinetics of motion.

Note that the deformation gradient is written as F “ I `K, where I is the identity tensor, and J “ detF
relates the volume elements of the undeformed and deformed configurations as dv “ JdV . For incompressible
solids, we need to consider a pressure-like variable p as one more primary field variable, which acts as a Lagrange
multiplier to weakly impose the incompressibility condition J “ 1. In a discrete setting, J assigns a scalar to
each element, and hence, it is natural to assume that the discrete p is defined on each element as well and has
no interelement continuity. In general, pressure is a discontinuous scalar-valued field, and thus p P L2pBq.

2.2 A Four-Field Mixed Formulation for Incompressible Nonlinear Elasticity

Assume that the mass density of the body B is ρ0 and let B be the body force per unit mass. For the sake of
simplicity, we assume that BB is a disjoint union of subsets Γd and Γt such that the boundary displacement U
is imposed on Γd and the boundary traction T is imposed on Γt. Let N be the unit outward normal vector field
of BB in the reference configuration. We consider a formulation of nonlinear elasticity in which displacement
U P H1pTBq, displacement gradient K P HcpBq, and the first Piola-Kirchhoff stress P P HdpBq are the primary
variables. We build the displacement boundary condition U

ˇ

ˇ

Γd
“ U directly into the space of definition of U ,

and define

H1pTB,Γd,Uq :“
 

U P H1pTBq : U |Γd
“ U

(

and H1pTB,Γdq :“ H1pTB,Γd,0q,

where U is of H1{2-class. Now, we set U P H1pTB,Γd,Uq, K P HcpBq, and P P HdpBq and define a Hu-
Washizu functional. The traction boundary condition pPNq

ˇ

ˇ

Γt
“ T will be built into the functional. Let x, y

be the standard inner product of R2. Also, suppose ⟪, ⟫ denotes the L2-inner products of scalar, vector, and
tensor fields, which are defined as ⟪f, g⟫ :“

ş

B fg dA, ⟪Y ,Z⟫ :“
ş

B Y
IZIdA, and ⟪S,T⟫ :“

ş

B S
IJT IJdA,

respectively. Let D :“ H1pTB,Γd,UqˆHcpBqˆHdpBq and define a Hu-Washizu-type functional I : DÑ R as

IpU ,K,P q “

ż

B
W pX,KqdA´ ⟪P ,K ´ gradU⟫´ ⟪ρ0B,U⟫´

ż

Γt

xT ,Uyds, (2.5)

where W pX,Kq is the stored energy function of a hyperelastic material. In 2D, the energy function of an

isotropic solid has the form W “ xW pX, I1, I2q, where I1 “ trC and I2 “ detC are the invariants of the right
Cauchy-Green deformation tensor C “ F TF . Our formulation is not restricted to isotropic solids, however, in
all our numerical examples we assume isotropic solids. Note that J “

?
I2. If the material is incompressible,

there is no volume change, i.e., J “ 1. Accordingly, we modify (2.5) by defining

IpU ,K,P , pq “ IpU ,K,P q
ˇ

ˇ

ˇ

JpKq“1
`

ż

B
pC

`

JpKq
˘

dA, (2.6)
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where p P L2pBq is a pressure-like scalar field that acts as a Lagrange multiplier in (2.6), to which we may
refer simply as pressure, and C : R` Ñ R is a smooth function such that CpJq “ 0 if and only if J “ 1. Two
examples that have been used in the literature are CpJq “ J ´ 1, and CpJq “ ln J .

Remark 1. One may define a pseudo energy function W pX,K, pq :“ xW pX, I1, I2q
ˇ

ˇ

I2“1
` pCpJq, and replace

W in (2.5) with W to obtain the same I in (2.6).

Remark 2. One may be tempted to think that an incompressible nonlinear elasticity problem can be numer-
ically solved using a scheme for compressible nonlinear elasticity. This is not the case; a general constitutive
equation for incompressible elasticity cannot be recovered from any compressible constitutive equation when
some parameter(s) becomes larger and larger (or smaller and smaller). Instead, one must enforce the constraint
J “ 1 and this requires introducing a pressure field p.

To find the critical points of I we proceed as follows. Let pU`ε1Υ,K`ε2κ,P`ε3π, p`ε4qq P DˆL
2pBq such

that pU ,K,P , pq P Dˆ L2pBq, εi P R for i “ 1, ..., 4, and pΥ,κ,π, qq P H1pTB,Γdq ˆHcpBq ˆHdpBq ˆ L2pBq
are arbitrary. Next, define

pIpε1, ε2, ε3, ε4q :“ IpU ` ε1Υ,K ` ε2κ,P ` ε3π, p` ε4qq. (2.7)

Note that

B

Bε2

ż

B
ĂW
`

X, I1pK ` ε2κq
˘

dA
ˇ

ˇ

ˇ

ε2“0
“ ⟪rP pKq,κ⟫,

B

Bε2

ż

B
pC

`

JpK ` ε2κq
˘

dA
ˇ

ˇ

ˇ

ε2“0
“ ⟪pQpKq,κ⟫,

where ĂW “ xW pX, I1, I2q
ˇ

ˇ

I2“1
, rP pKq “ BĂW {BK is the constitutive part of the stress, and QpKq “ BC{BK “

C 1pJqpF´1
qT comes from enforcing the incompressibility condition J “ 1. Extremizing the Hu-Washizu func-

tional requires that
˜

BpI
Bε1

,
BpI
Bε2

,
BpI
Bε3

,
BpI
Bε4

¸
ˇ

ˇ

ˇ

ˇ

ˇ

εi“0

“ p0, 0, 0, 0q.

The result is the following weak formulation of the boundary-value problem for incompressible nonlinear elas-
tostatics:

Given a body force B of L2-class, a boundary displacement U on Γd of H1{2-class, and a boundary traction
T on Γt of L2-class, find pU ,K,P , pq P H1pTB,Γd,Uq ˆHcpBq ˆHdpBq ˆ L2pBq such that

⟪P ,grad Υ⟫ “ ⟪ρ0B,Υ⟫`
ż

Γt

xT ,Υyds, @Υ P H1pTB,Γdq,

⟪rP pKq,κ⟫´ ⟪P ,κ⟫` ⟪pQpKq,κ⟫ “ 0, @κ P HcpBq,
⟪gradU ,π⟫´ ⟪K,π⟫ “ 0, @π P HdpBq,

⟪CpJq, q⟫ “ 0, @q P L2pBq.

(2.8)

Note that the solution of the above problem is the critical point of the Hu-Washizu-type functional (2.6). In
(2.8), the displacement (essential) boundary condition U

ˇ

ˇ

Γd
“ U is imposed strongly in the solution space

H1pTB,Γd,Uq while the traction (natural) boundary condition pPNq
ˇ

ˇ

Γt
“ T is imposed weakly in (2.8)1.

Remark 3. It is possible to reduce the size of the solution and the test spaces by considering an extra boundary
condition pKT q

ˇ

ˇ

Γd
“ pgradUqT , where T is the unit tangent vector field of BB in the reference configuration.

Then, we define HcpB,Γd,Uq :“
!

K P HcpBq : pKT q
ˇ

ˇ

Γd
“ pgradUqT

)

and HcpB,Γdq :“ HcpB,Γd,0q, and

seek the solution pU ,K,P , pq P H1pTB,Γd,Uq ˆHcpB,Γd,Uq ˆHdpBq ˆ L2pBq with arbitrary pΥ,κ,π, qq P
H1pTB,ΓdqˆHcpB,ΓdqˆHdpBqˆL2pBq. This results in a slightly smaller discrete system. We have observed
in our numerical examples that this approach may improve the stability of the method at very large strains.
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Remark 4. The weak formulation (2.8) corresponds to a saddle point of the Hu-Washizu-type functional (2.6).

To see this, one needs to calculate the 4 ˆ 4 matrix H “

”

B
2
pI

BεiBεj

ı

at εi, εj “ 0. It is straightforward to show

that H is symmetric and has a non-negative determinant. Also, if H is invertible, it has two positive and two
negative eigenvalues.

Green’s formula allows one to write

⟪divP ,Υ⟫ “ ´⟪P ,gradΥ⟫`
ż

BB
xPN ,Υyds, @Υ P H1pTB,Γdq. (2.9)

We assume the following weak statement of the traction boundary condition:

ż

BB
xPN ,Υyds “

ż

Γt

xT ,Υyds, @Υ P H1pTB,Γdq. (2.10)

Then, it is straightforward to show that (2.8) results in the following set of governing equations for incompressible
nonlinear elastostatics:

divP ` ρ0B “ 0, (2.11a)

P “ rP pKq ` pQpKq, (2.11b)

,

/

/

/

.

/

/

/

-

on B,
K “ grad U , (2.11c)

J “ 1, (2.11d)

U “ U , on Γd, (2.11e)

PN “ T , on Γt. (2.11f)

Conversely, one can show that (2.11) results in (2.8), see [17, §2.2]. Note that (2.11b) is the constitutive equation

of an incompressible solid. In the current configuration it reads σ “ rP pKqF T
` p̄I, where p̄ “ pC 1pJq and σ

is the Cauchy stress tensor.

Remark 5. For a neo-Hookean solid with ĂW “
µ
2 pI1 ´ 2q, where µ is the shear modulus at the ground state,

one has the constitutive equation P “ µF ` pC 1pJqpF´1
qT. In the absence of residual stresses, the body is

stress free when there are no external forces. Hence, if F “ I, then P “ 0. This gives us pµ ` pC 1p1qqI “ 0,
which implies that p “ ´µ{C 1p1q in the absence of external forces. Therefore, one should be careful to choose
C such that C 1p1q ‰ 0. Also, the choice of the function CpJq may affect the solution of the discrete system and
may cause numerical instabilities at large deformations [9]. Our numerical examples indicate that our mixed
FEMs work well with both CpJq “ J ´ 1 and CpJq “ ln J .

Remark 6. Assume that the reference configuration of the body B is a non-simply-connected domain. More
specifically, it is a connected 2D domain that contains nh holes. In this setting, cpKq “ 0 is necessary for the
compatibility of K but is not sufficient; in addition to cpKq “ 0 the following auxiliary compatibility equations
must hold [24]:

ż

BHi

KT BHids “ 0, for i “ 1, 2, ..., nh, (2.12)

where BHi is the boundary of the i-th hole and T BHi denotes the unit tangent vector field of BHi in the reference
configuration. Note that BHi is chosen for convenience; the above integral for each hole can be taken over an
arbitrary closed-path within the domain that encloses only that hole, i.e., any closed path that is homologous
to BHi [24]. Note that in our mixed formulation we weakly impose K “ grad U , and hence, one does not need
to impose compatibility.

3 Finite Element Approximations

3.1 Finite Elements

Following [25], we define a finite element as a triplet pT,PpTq,Σq, where T is a triangle in R2, PpTq is a space of
polynomials on T, and Σ is a set of linear functionals tσ1, σ2, ..., σns

u acting on the members of PpTq such that
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@p P PpTq, σippq P R, and the liner mapping p ÞÝÑ pσ1ppq, σ2ppq, ..., σns
ppqq P Rns is a bijection. Equivalently,

there exists a unique basis tθ1, θ2, ..., θns
u in PpTq such that σipθjq “ δij , i, j “ 1, 2, ..., ns. σi’s and θi’s are called

the local degrees of freedom (DOF) and the local shape functions, respectively. Following [26], in the definition
of a finite element, we always implicitly assume that there exits a linear space V pTq of functions v : T Ñ Rm
such that PpTq Ă V pTq, and Σ can be extended to its dual space V pTq‹. Then, the local interpolation operator
is defined as

IT : V pTq ÝÑ PpTq, ITpvq “
ns
ÿ

i“0

σipvqθi.

Note that IT is a projection of V pTq into PpTq that is not bijective, in general. In practice, by having the shape
functions, we accept ITpvq as an approximation of v and find the degrees of freedom as the unknowns.

Figure 1: The three-node reference element and edge numbers and orientations (left), the reference directions for the unit tangent
and normal vectors (middle), and the six-node reference element (right).

Suppose pT as shown in Figure 1 is a reference triangular element with coordinates ξ “ pξ1, ξ2q. We denote

the edges of pT by pEi, i “ 1, 2, 3 and their corresponding lengths by ˆ̀
i, i “ 1, 2, 3. For an edge joining two vertices

i and j, we define a unique orientation as iÑ j, where i ă j. According to Figure 1, orientations 1 Ñ 2, 1 Ñ 3,
and 2 Ñ 3 are assigned to pE1, pE2, and pE3, respectively. Moreover, we define a unit tangent vector t̂i and a
unit normal vector n̂i on each edge; t̂i must agree with the edge orientation, and n̂i is obtained by a 90 degrees
clockwise rotation of t̂i, that is n̂i “ Rt̂i, where

R “

„

0 1
´1 0



. (3.1)

We consider the following reference finite elements for our four field variables:

´

pT,PrpT pTq,Σ
pT,1

¯

for displacement U ,
´

pT,Prpb2T pTq,Σ
pT,c

¯

,
´

pT,P´r pb2T pTq,Σ
pT,c´

¯

for displacement gradient K,
´

pT,Prpb2T pTq,Σ
pT,d

¯

,
´

pT,Par pb2T pTq,Σ
pT,d´

¯

for stress P ,
´

pT,PrppTq,Σ
pT,`

¯

for the pressure-like field p.

(3.2)

In the following, our main focus is to provide explicit expressions for some bases of the above polynomial spaces,
also known as local shape functions. We will consider r “ 1, 2 for the corresponding polynomial spaces of U ,
K and P , and r “ 0, 1, 2 for the corresponding polynomial space of p.

The Lagrange polynomials on the three-node pT are

l11 “ 1´ ξ1 ´ ξ2, l12 “ ξ1, l13 “ ξ2. (3.3)

Using (3.3), the Lagrange polynomials on the six-node pT can be written as l2i “ l1i p2l
1
i ´ 1q and l23`i “ 4l1i l

1
i`1,
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where i “ 1, 2, 3 and l14 “ l11. For r “ 1, 2, a basis of PrpT pTq includes

h
pT
2i´1 “

„

lri
0



, h
pT
2i “

„

0
lri



, i “ 1, 2, ..., 3r,

and the set of local degrees of freedom is Σ
pT,1
“ tV 1pξ1q, V

2pξ1q, ..., V
1pξ3rq, V

2pξ3rqu, where ξi is the coordi-

nates of the i-th node of the 3r-node pT as shown in Figure 1. We will use PrpT pTq, r “ 1, 2 spanned by h
pT
i to

construct the approximation space of U .

Table 1: Tensorial analogues of some classical finite elements for vector fields.

Vector Fields Second-Order Tensors

Nédélec 1st-kind (N1) Hpcurlq element [27] pT,P´r pb2TTq,ΣT,c´
q

Nédélec 2nd-kind (N2) Hpcurlq element [28] pT,Prpb2TTq,ΣT,c
q

Raviart-Thomas (RT) Hpdivq element [29] pT,Par pb2TTq,ΣT,d´
q

Brezzi-Douglas-Marini (BDM) Hpdivq element [30] pT,Prpb2TTq,ΣT,d
q

Remark 7. We have listed some of the common vector-valued finite elements in the literature in the left column
of Table 1. Nédélec’s original finite elements are in R3 for both H(curl) and H(div) and for arbitrary polynomial
degree [27, 28]. He introduced N1 and N2 H(curl) elements for R3. He also generalized RT and BDM elements
to R3 by developing H(div) version of N1 and N2, respectively. Following his works, the 2D version of H(curl)
elements are also called Nédélec elements, but as he himself pointed out in the conclusion of [27], in 2D, H(curl)
elements can be easily obtained by a 90 degree rotation of bases of H(div) elements.

For K P Hc and P P Hd, we write the tensorial analogues of some classical finite elements for vector fields
as summarized in Table 1 (also see Remark 7). All the finite element spaces given in the left column of Table 1
are generalized by Arnold et al. [31] to two spaces of finite element differential forms with arbitrary order for any
degree of polynomials and any number of dimensions. Moreover, they derived geometric decomposition of these
spaces, which provides explicit local bases for them. See [32, 33] for a more intuitive generalization of these
vector-valued finite elements. Here, based on the results of [31], we write some analogues tensorial bases for the

reference element pT and r “ 1, 2. By using Theorem 7 in [17], one can calculate these tensorial bases implicitly,
e.g., see [17, Examples 9 and 10]. Let us ignore the superscript of l1i in (3.3) and let ∇li “

“

Bli{Bξ
1 Bli{Bξ

2
‰

be
a row vector. Also, for each edge of a triangular element with orientation iÑ j, consider the Whitney function

wij “ li∇lj ´ lj∇li. (3.4)

The bases for polynomial spaces of N1 and N2, which we respectively denote by P´r pT pTq and PrpT pTq are given

in Table 2 for the orders r “ 1, 2 [31]. Local shape functions v
pT,pEk

J associated with the edge pEk with orientation

iÑ j, which is indicated in Figure 1, and local shape functions v
pT,pT
J are associated with the reference element

pT itself and defined for r ě 2. The tangent component of a shape function v on an edge Ei is denoted by xv, tiy.

For a given r, both P´r pT pTq and PrpT pTq contain polynomials of the same order, but

!A

v
pT,pEk

J , tk
E

: v
pT,pEk

J P P´r pT pTq, J “ 1, 2, ..., r
)

is a basis of Pr´1p
pEkq,

!A

v
pT,pEk

J , tk
E

: v
pT,pEk

J P PrpT pTq, J “ 1, 2, ..., r ` 1
)

is a basis of PrppEkq,

where PrppEkq denotes the one-dimensional polynomial space of order r on the edge pEk. Also, for any J , v
pT,pT
J

is a zero-tangent bubble polynomial of order r on pT, meaning that its tangent components are zero on all the
three edges. Some examples of these shape functions are depicted in Figure 2. To interpolate K P Hc, we
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Table 2: Vector valued bases for polynomial spaces of N1 denoted by P´
r pT pTq and N2 denoted by PrpT pTq for r “ 1, 2.

P´r pT pTq PrpT pTq

r v
pT,pEk

J v
pT,pT
J v

pT,pEk

J v
pT,pT
J

1 wij li∇lj , lj∇li
2 liwij , ljwij l3w12, l2w13 l2i∇lj , l2j∇li, lilj∇plj ´ liq l1l2∇l3, l1l3∇l2, l2l3∇l1

P´
r pT pTq PrpT pTq

1

2

r v
pT,pE3
1 v

pT,pT
3v

pT,pE3
1 v

pT,pT
2

Figure 2: The illustration of some of the bases given in Table 2.

define the following tensorial shape functions:

r
pT,pEk

1,J “

«

v
pT,pEk

J

0

ff

, r
pT,pEk

2,J “

«

0

v
pT,pEk

J

ff

, r
pT,pT
1,J “

«

v
pT,pT
J

0

ff

, r
pT,pT
2,J “

«

0

v
pT,pT
J

ff

. (3.5)

Accordingly, P´r pb2T pTq in (3.2)2 is defined by spanning the set of local shape functions
!

r
pT,pEk

I,J , r
pT,pT
I,J

)

that is

obtained from P´r pT pTq. Prpb2T pTq in (3.2)2 is defined similarly by using PrpT pTq. The explicit form of the

spaces P´r pb2T pTq and Prpb2T pTq are given in [17, Example 3]. Suppose
ÝÑ
TI :“

“

T I1 T I2
‰T

is a column vector

containing the elements of the I-th row of a
`

2
0

˘

-tensor T . The sets Σ
pT,c and Σ

pT,c´ in (3.2)2 consist of the
following local degrees of freedom:

φ
pT,pEk

I,J pT q “

ż

pEk

´ ŝ

ˆ̀
k

¯J´1

x
ÝÑ
TI , t̂ky dŝ, φ

pT,pT
I,J pT q “

ż

pT

x
ÝÑ
TI , v̂Jy dÂ, (3.6)

where v̂J is a vector-valued polynomial in R2, see [17, Theorem 7]. Note that φ
pT,pEk

I,J and φ
pT,pT
I,J are associated to

the edges pEk and the area of the reference triangle pT, respectively. In practice, degrees of freedom are obtained
by numerically solving the final discrete system so their direct calculation is needed only when we impose some
of the boundary conditions strongly. Hence, in 2D, we do not directly compute the degrees of freedom such as

φ
pT,pT
I,J that are defined over the area of elements, and hence specifying v̂J is not required. Also, we choose the

polynomials pŝ{ˆ̀kq
J´1, J “ 1, 2, 3 to simplify the calculation of φ

pT,pEk

I,J at the domain boundaries. The choice for
these polynomials is not unique, in general. In finite element approximation, degrees of freedom must be a dual

basis for the space spanned by the shape functions. Hence, we define some modified shape functions r̄
pT,pEk

I,J by
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writing a linear combination of r
pT,pEk

I,J over J such that

φ
pT,pEl

M,N

´

r̄
pT,pEk

I,J

¯

“

"

1, if k “ l and I “M and J “ N,
0, otherwise.

(3.7)

In the case of P´r pb2T pTq, we have r̄
pT,pEk

I,1 “ r
pT,pEk

I,1 for r “ 1, and the following shape functions for r “ 2:

r̄
pT,pEk

I,1 “ 4 r
pT,pEk

I,1 ` 2 r
pT,pEk

I,2 , r̄
pT,pEk

I,2 “ ´6 r
pT,pEk

I,1 ´ 6 r
pT,pEk

I,2 .

Considering Prpb2T pTq, one obtains

r̄
pT,pEk

I,1 “ 4 r
pT,pEk

I,1 ´ 2 r
pT,pEk

I,2 , r̄
pT,pEk

I,2 “ ´6 r
pT,pEk

I,1 ` 6 r
pT,pEk

I,2 ,

for r “ 1, and the following for r “ 2:

r̄
pT,pEk

I,1 “ 9 r
pT,pEk

I,1 ´ 3 r
pT,pEk

I,2 ´ 9 r
pT,pEk

I,3 ,

r̄
pT,pEk

I,2 “ ´36 r
pT,pEk

I,1 ` 24 r
pT,pEk

I,2 ` 60 r
pT,pEk

I,3 ,

r̄
pT,pEk

I,3 “ 30 r
pT,pEk

I,1 ´ 30 r
pT,pEk

I,2 ` 60 r
pT,pEk

I,3 .

Moreover, by choosing v̂J properly in (3.6)2, one can show that

φ
pT,pEk

M,N

´

r
pT,pT
I,J

¯

“ φ
pT,pT
M,N

´

r̄
pT,pEk

I,J

¯

“ 0,

φ
pT,pT
M,N

´

r
pT,pT
I,J

¯

“

"

1, if I “M and J “ N,
0, otherwise.

(3.8)

We will use the set of reference shape functions
!

r̄
pT,pEk

I,J , r
pT,pT
I,J

)

to approximate K P Hc.

In 2D, the spaces of type Hc and Hd are transformed to each other by a 90 degree rotation. To see this,
recall the definitions of Hc and Hd in the distributional sense and observe that gradpqq “ R spqq, where q is a
smooth function. Therefore, to construct (3.2)3 for approximating P P Hd, we simply need the following shape
functions:

s̄
pT,pEk

I,J “ r̄
pT,pEk

I,J RT, s
pT,pT
I,J “ r

pT,pT
I,J R

T. (3.9)

The corresponding local degrees of freedom are

ψ
pT,pEk

I,J pT q “

ż

pEk

´ ŝ

ˆ̀
k

¯J´1

x
ÝÑ
TI , n̂ky dŝ, ψ

pT,pT
I,J pT q “

ż

pT

x
ÝÑ
TI ,Rv̂Jy dÂ. (3.10)

Note that ψ
pT,pEl

M,N

´

s̄
pT,pEk

I,J

¯

“ ψ
pT,pEl

M,N

´

r̄
pT,pEk

I,J RT
¯

“ φ
pT,pEl

M,N

´

r̄
pT,pEk

I,J

¯

, and thus, the condition (3.7) holds for ψ
pT,pEk

I,J and

s̄
pT,pEk

I,J as well. Similarly, one can write the condition (3.8) for (3.9) and (3.10). The space Par pb2T pTq in (3.2)3

is spanned by the set
!

s̄
pT,pEk

I,J , s
pT,pT
I,J

)

, which is obtained from a 90 degree rotation of the bases of P´r pT pTq. The

same set spans Prpb2T pTq in (3.2)3 if it is written by a 90 degree rotation of the bases of PrpT pTq. Also, note

that P´r pb2T pTq and Par pb2T pTq in (3.2) are transformed to each other by a 90 degree rotation. The explicit
expression of these spaces are given in [17, Example 3].

For the reference finite element of pressure (3.2)4, the set of local shape functions
 

t
pT
i

(

, which spans PrppTq,
is t1u for r “ 0, t1, ξ1, ξ2u for r “ 1, and t1, ξ1, ξ2, pξ1q2, pξ2q2, ξ1ξ2u for r “ 2. The corresponding local degrees
of freedom are of the form

ω
pT
i pfq “

1

Â

ż

pT

p̂ri f dÂ, (3.11)

where p̂ri , i “ 1, 2, ..., ns are polynomials of order r on pT, which can be calculated by solving ω
pT
i pt

pT
j q “ δij .
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Table 3: Numbers of local degrees of freedom (DOF) in terms of the order of the corresponding polynomial spaces r.

DOF
number of DOF

for each node for each edge for T total

Σ
T,1 2 0 0 6r

Σ
T,c´, ΣT,d´ 0 2r 2pr2 ´ rq 2rpr ` 2q

Σ
T,c, ΣT,d 0 2pr ` 1q 2pr2 ´ 1q 2pr ` 1qpr ` 2q

Σ
T,` 0 0 pr ` 1qpr ` 2q{2 pr ` 1qpr ` 2q{2

However, as was discussed earlier, we do not calculate ω
pT
i directly, and hence, calculating p̂ri is not necessary.

The numbers of local degrees of freedom (the number of local shape functions) for the four types of finite
elements that we discussed above are summarized in Table 3. This holds for the reference finite elements (3.2)
and any finite elements that we will generate from them for an arbitrary triangle T.

Next we explain how to construct a family of finite elements for a given mesh based on the reference finite
elements (3.2). Let Bh denote a triangulation (or simply a mesh) of the reference configuration B, where Bh
consists of arbitrary triangles T, and h :“ max diamT, @T P Bh. Note that the intersection of any two distinct
triangles of Bh can be empty, a common edge joining two common vertices, or only a vertex of those two
triangles. We locally assign the numbers 1, 2, 3 to vertices of each T P Bh, to which we will refer to as the
ordering of vertices. Let Xi “ pX

1
i ,X

2
i q denote the Cartesian coordinates of the i-th vertex of T. The reference

triangle pT shown in Figure 1 can be mapped onto any T P Bh by an affine transformation TT given by

TT : pT ÝÑ T, TTpξq :“ JTξ ` aT, (3.12)

where

JT “

„

X1
2 ´X1

1 X1
3 ´X1

1

X2
2 ´X2

1 X2
3 ´X2

1



and aT “

„

X1
1

X2
1



.

The above mapping is bijective and JT is invertible. Let ET
i “ TTp

pEiq, i “ 1, 2, 3 denote the edges of T. Also,

assume that ET
i inherits the orientation of pEi, i.e., if the orientation of pEi in terms of the coordinates is ξk Ñ ξl,

then the orientation of ET
i is TTpξkq “ Xk Ñ Xl “ TTpξlq. Similar to what we discussed for the reference

element, the tangent vector ti defined on ET
i accepts the orientation of ET

i , and the normal vector on ET
i is

obtained by ni “ Rti.
We use the numbering scheme discussed in [34] for convenience in defining global shape functions and degrees

of freedom of conforming Hc and Hd finite elements and also for their efficient assembly. In this scheme, a
global number is assigned to each vertex of the mesh. Then, the ordering of the three vertices of each element
T is defined based on the ascending order of the global numbers associated to them, i.e., the first vertex of each
T has the smallest global number among the three vertices and the third vertex has the largest. Using this
ordering and the edge orientations of the reference element (see Figure 1), the orientation of every edge in the
mesh joining two vertices will be from the vertex with the smaller to the vertex with the larger global number.
The advantage of this scheme is that every two adjacent elements of the mesh agree on the orientation of their
common edge. More precisely, assume that T and T1 are adjacent in Bh and share a common edge E such that
E X T “ ET

i and E X T1 “ ET1

i1 . The scheme gaurantees that ET
i and ET1

i1 inherit an identical orientation from
pEi and pEi1 , regardless of their local edge numberings i and i1. For an illustration of this, see [34, Figue 5.1]. It
follows that both the tangent and the normal vectors that are defined on ET

i and ET1

i1 are identical.
Note that the above scheme violates the standard convention that the three vertices of every element in the

mesh have a counterclockwise ordering. Therefore, one should keep in mind that not all the normal vectors of
the exterior edges lying on the boundaries of the mesh are pointed outward, and not all their tangent vectors
are oriented in the counterclockwise direction. Also, det JT can be either positive or negative, so it would be
useful to define the following constant for each element:

oT “ sign pdet JTq .

Note that oT “ 1 if the three vertices of T have the counterclockwise ordering, and oT “ ´1 otherwise.
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In a general setting, let
´

pT,PppTq,Σ pT
¯

be a reference finite element and let V ppTq be a linear space of Rm-

valued functions in pT such that PppTq Ă V ppTq and Σ
pT can be extended to V ppTq‹. Also, for any T P Bh,

suppose ΨT : V ppTq ÝÑ V pTq is a linear bijective mapping, which preserves the structure between V ppTq and
its counterpart V pTq, i.e., ΨT is an isomorphism. Then, by using the reference finite element and the following
proposition, one can define a set of finite elements for all T in Bh [26].

Proposition 8. Let ΨT : V ppTq ÝÑ V pTq be a linear bijection. For any T P Bh,
`

T,PpTq,Σ T
˘

defined as

$

’

’

&

’

’

%

T “ TTp
pTq

PpTq “
!

ΨTpp̂q : p̂ P PppTq
)

Σ
T “

!

σT
1 , σ

T
2 , ...σ

T
ns

: σT
i ppq “ σ

pT
i

`

Ψ´1
T ppq

˘

,@p P PpTq, i “ 1, 2, ..., ns

)

is a finite element with the local shape functions θTi “ ΨT

`

θ
pT
i

˘

, i “ 1, 2, ..., ns, and the local interpolation
operator

IT : V pTq ÝÑ PpTq, ITpvq “
ÿns

i“0
σT
i pvqθ

T
i . (3.13)

Proof. By assumption, p̂ “ Ψ´1
T ppq is bijective, @p P PpTq, and the mapping p̂ ÞÝÑ

´

σ
pT
1 pp̂q, ..., σ

pT
ns
pp̂q

¯

is a

bijection, @p̂ P PppTq. Therefore, the composition mapping p ÞÝÑ
`

σT
1 ppq, ..., σ

T
ns
ppq

˘

is bijective, @p P PpTq, and
`

T,PpTq,Σ T
˘

is a finite element. θTi P PT and σT
j

`

θTi
˘

“ σ
pT
j

`

Ψ´1
T

`

θTi
˘˘

“ σ
pT
j

`

θ
pT
i

˘

“ δij , for i, j “ 1, 2, ..., ns,

and hence, θTi , i “ 1, 2, ..ns are the local shape functions. Next we show that the local interpolation operator

IT is well-defined. If q P P pTq, there exists q̂ P P ppTq Ă V ppTq such that q “ ΨTpq̂q, so q P V pTq, and we

conclude that P pTq Ă V pTq. Also, knowing that σ
pT
i can be calculated for elements of V ppTq, one can write

σT
i pvq “ σ

pT
i

`

Ψ´1
T pvq

˘

for any v P V pTq, and hence, Σ T can be extended to V pTq‹.

Consider the reference finite element of displacement
´

pT,PrpT pTq,Σ
pT,1

¯

. Let V ppTq “ C0pT pTq and define

V pTq similarly. Use the mapping

T1
T : C0pT pTq ÝÑ C0pTTq, T1

Tp
pV q :“ pV ˝ T´1

T , (3.14)

and generate the family of finite elements
!´

T,PrpTTq,ΣT,1
¯)

TPBh

as described in Proposition 8. Accordingly,

the local shape functions are hT
k “ T1

T

´

h
pT
k

¯

. It is straightforward to check that hT
k is a Lagrange polynomial

on T, and members of the set of degrees of freedom ΣT,1 are the values of the interpolated function at the nodes
of T.

The mapping (3.14) does not transform HcpT pTq into HcpTTq or HdpT pTq into HdpTTq. Instead, one needs
to use the Piola transforms. Considering the affine mapping (3.12), the Piola transforms Tc

T and Td
T are defined

as

Tc
T : HcpT pTq ÝÑ HcpTTq, Tc

Tp
pV q :“ J´T

T
pV ˝ T´1

T , (3.15)

Td
T : HdpT pTq ÝÑ HdpTTq, Td

Tp
pV q :“

1

det JT
JT pV ˝ T´1

T . (3.16)

For a
`

2
0

˘

-tensor T , one calculates the Piola transformations separately for each row:

Tc
TpT q “

«

Tc
Tp
ÝÑ
T1q

T

Tc
Tp
ÝÑ
T2q

T

ff

, Td
TpT q “

«

Td
Tp
ÝÑ
T1q

T

Td
Tp
ÝÑ
T2q

T

ff

. (3.17)

The Piola mapping Tc
T is an isomorphism of HcpT pTq onto HcpTTq, and the Piola mapping Td

T is an isomorphism

of HdpT pTq onto HdpTTq. This and other useful properties of these mappings can be summarized in the following
Lemma.
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Lemma 9. Using the numbering scheme discussed above, assume that T “ TTp
pTq is an arbitrary element with

edge lengths `k, unit tangent vectors tk, and unit normal vectors nk. Let pV P HcpT pTq and pU P HdpT pTq, and

set V “ Tc
Tp

pV q and U “ Td
Tp

pUq. Also, assume that q “ q̂ ˝ T´1
T , where q̂ P C0ppTq. Define vJ :“ oTT

d
Tpv̂Jq

and p̂kpŝq :“
řn
i“0

`

ŝ
ˆ̀
k

˘i
, and construct pk “ p̂k ˝ g

´1
k with gkpŝq “

`k
ˆ̀
k
ŝ. Recall the linear operators (2.1) and set

I “ 1, and note that operators with the hat symbol are written with respect to the reference element coordinates
ξ “ pξ1, ξ2q. The following relations hold:

piq
ş

T

@

cpV q, q
D

dA “ oT
ş

pT

@

pcp pV q, q̂
D

dÂ, and
ş

T

@

V , spqq
D

dA “ oT
ş

pT

@

pV ,pspq̂q
D

dÂ,

piiq
ş

T

@

divpUq, q
D

dA “ oT
ş

pT

@

ydivp pUq, q̂
D

dÂ, and
ş

T

@

U ,gradpqq
D

dA “ oT
ş

pT

@

pU , zgradpq̂q
D

dÂ,

piiiq
ş

Ek
pk

@

V , tk
D

ds “
ş

pEk
p̂k

@

pV , t̂k
D

dŝ, and
ş

T

@

V ,vJ
D

dA “
ş

pT

@

pV , v̂J
D

dÂ,

pivq
ş

Ek
pk

@

U ,nk
D

ds “
ş

pEk
p̂k

@

pU , n̂k
D

dŝ, and
ş

T

@

U ,RvJ
D

dA “
ş

pT

@

pU ,Rv̂J
D

dÂ,

pvq
ş

T

@

U ,V
D

dA “ oT
ş

pT

@

pU , pV
D

dÂ.

Proof. The second identities in piiiq and pvq can be derived directly form the assumptions. Other identities are
the consequences of the following relations:

piq cpV q “ 1
det JT

pcp pV q ˝ T´1
T , and spqq “ 1

det JT
JTpspq̂q ˝ T

´1
T ,

piiq div U “ 1
det JT

ydiv pU ˝ T´1
T , and gradpqq “ J´T

T
zgradpqq ˝ T´1

T ,

piiiq tk “
ˆ̀
k

`k
JT t̂k,

pivq nk “
ˆ̀
k

`k
pdet JTqJ

´T
T n̂k, and 1

det JT
RJT “ J´T

T R.

Consider the two reference finite elements for displacement gradient
´

pT,Prpb2T pTq,Σ
pT,c

¯

and
´

pT,P´r pb2T pTq,Σ
pT,c´

¯

. Let V ppTq “ HcppTq and V pTq “ HcpTq, and use the Piola mapping (3.15), and relation

(3.17)1. Then, based on Proposition 8, construct two families of finite elements
!´

T,Prpb2TTq,ΣT,c
¯)

TPBh

and
!´

T,P´r pb2TTq,ΣT,c´
¯)

TPBh

. The local shape functions are r̄T,Ek

I,J “ Tc
T

´

r̄
pT,pEk

I,J

¯

, rT,TI,J “ Tc
T

´

r
pT,pT
I,J

¯

, and

the local degrees of freedom read φT,Ek

I,J pT q “
´

φ
pT,pEk

I,J ˝ Tc
T
´1

¯

pT q and φT,TI,J pT q “
´

φ
pT,pT
I,J ˝ T

c
T
´1

¯

pT q. Lemma

9, piiiq implies that φT,Ek

I,J and φT,TI,J are in fact (3.6) with all the hat symbols removed.

Similarly, by using the Piola mapping (3.16), (3.17)2, and Proposition 8 generate two families
!´

T,Prpb2TTq,ΣT,d
¯)

TPBh

and
!´

T,Par pb2TTq,ΣT,d´
¯)

TPBh

from the two reference finite elements for stress
´

pT,Prpb2T pTq,Σ
pT,d

¯

and
´

pT,Par pb2T pTq,Σ
pT,d´

¯

. The local shape functions read s̄T,Ek

I,J “ Td
T

´

s̄
pT,pEk

I,J

¯

, sT,TI,J “ Td
T

´

s
pT,pT
I,J

¯

. Also, accord-

ing to Lemma 9, pivq, the local degrees of freedom ψT,Ek

I,J , ψT,T
I,J are (3.10) without the hat symbols.

Recall the reference finite element of the pressure-like field ppT,PrppTq,Σ
pT,`
q. Set V ppTq “ L2ppTq and V pTq “

L2pTq. Then, use the mapping

T`T : L2ppTq ÝÑ L2pTq, T`Tpf̂q :“ f̂ ˝ T´1
T . (3.18)

and Proposition 8 to generate
!´

T,PrpTq,ΣT,`
¯)

TPBh

. The local shape functions become tTi “ T`Tpt
pT
i q, and by

recalling (3.11), it is straightforward to show that the local degrees of freedom are ωT
i pfq “

1
A

ş

T
pri f dA, where

pri “ p̂ri ˝ T
´1
T .
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3.2 Finite Element Spaces

In order to define suitable conforming finite element spaces, we first define the following notions of jump across
the edges of a 2D mesh for vector and tensor fields. We denote the set of all interior edges of the mesh by Eih.
For an edge E P Eih, there exist two elements T,T1 P Bh such that E “ T X T1. Also, let n be the unit normal
vector of E such that it points from T to T1. Let V be a vector-valued function and T a tensor-valued function
that are both defined on Bh and have limits on both sides of the edge E. We define the jump of V across E as

JV KE :“ V T1 ´ V T,

where V T “ V |T and V T1 “ V |T1 . Recall that t “ RTn is the unit tangent of E and set T T “ T |T and
T T1 “ T |T1 . Then, the jump of the tangent traction and the normal traction of T across E are defined as

JtT KE :“ pT T1 ´ T Tq t,

JnT KE :“ pT T1 ´ T Tqn.

Note that all the above jumps are vector-valued functions in 2D and their domain is the set of interior edges of
the mesh.

We are now in a position to define the following finite element spaces:

V 1
h,r :“

 

V h P L
2pTBhq : @T P Bh, V h|T P PrpTTq, @E P Eih, JV hKE “ 0

(

,

V c´
h,r :“

 

T h P L
2pb2TBhq : @T P Bh, T h|T P P´r pb2TTq, @E P Eih, JtT hKE “ 0

(

,

V c
h,r :“

 

T h P L
2pb2TBhq : @T P Bh, T h|T P Prpb2TTq, @E P Eih, JtT hKE “ 0

(

,

V d´
h,r :“

 

T h P L
2pb2TBhq : @T P Bh, T h|T P Par pb2TTq, @E P Eih, JnT hKE “ 0

(

,

V d
h,r :“

 

T h P L
2pb2TBhq : @T P Bh, T h|T P Prpb2TTq, @E P Eih, JnT hKE “ 0

(

,

V `h,r :“
 

fh P L
2pBhq : @T P Bh, fh|T P PrpTq

(

.

In addition, let V̆ c
h,r be either V c´

h,r or V c
h,r, and let V̆ d

h,r be either V d´
h,r or V d

h,r. The above spaces are conforming
according to the following theorem.

Theorem 10. V 1
h,r Ă H1pTBhq, V̆ c

h,r Ă HcpBhq, V̆ d
h,r Ă HdpBhq, and V `h,r Ă L2pBhq.

Proof. V `h,r Ă L2pBhq is trivial. For proof of V 1
h,r Ă H1pTBhq see [26, Proposition 1.74]. V̆ c

h,r Ă HcpBhq and

V̆ d
h,r Ă HdpBhq can be proved similarly by following the steps of the proof for V 1

h,r Ă H1pTBhq and recalling the
distributional definitions of the operators c and div and the Green’s formulas (2.9) and

⟪cpMq,V ⟫ “ ⟪M , spV q⟫`
ż

BB
xMT BB,V yds,

where M is a
`

2
0

˘

-tensor, V is a vector, and T BB is the oriented unit tangent vector field of BB.

To interpolate the four field variables pU ,K,P , pq over the entire mesh Bh, we next define the global shape

functions analogous to the local shape functions
´!

hT
k

)

,
!

r̄T,Ek

I,J , rT,TI,J

)

,
!

s̄T,Ek

I,J , sT,TI,J

)

,
 

tTi
(

¯

of an element T.

Let HN
I , I “ 1, 2 denote the two global shape functions of each node N P Bh. HN is defined on Bh such that

HN
I

ˇ

ˇ

ˇ

T
“

"

hT
2pi´1q`I if N X T “ Ni,

02ˆ1, if N X T “ H,
@T P Bh,

where Ni is i-th node of T. Hence, the support of the function HN
I in its domain Bh is all those adjacent

elements of Bh that share the node N. Considering properties of the Lagrange polynomials, one can show that
HN

I is continuous everywhere in Bh, and hence HN
I P V

1
h,r. If we interpolate a vector-valued function on Bh

by using V 1
h,r, the global degree of freedom associated with HN

I is the value of the I-th component of that
vector-valued function at the node N.
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Let RE
I,J , RT

I,J be the global shape functions corresponding to r̄T,Ek

I,J , rT,TI,J . We define them on Bh such that

RE
I,J

ˇ

ˇ

ˇ

T
“

"

r̄T,Ek

I,J , if EX T “ Ek,

02ˆ2, if EX T “ H,
@T P Bh, and RT

I,J “

"

rT,TI,J , on T,

02ˆ2, otherwise.

Note that Ek is an edge of T and k P t1, 2, 3u is its local numbering in T. If E is an exterior edge, i.e., E P BBh,
the support of RE

I,J in Bh is only one element that contains E, and if E is an interior edge, the support of

RE
I,J are two adjacent elements that have E in common. Let LE be the union of the support boundaries of

RE
I,J and the corresponding edge E, and let tL be the unit tangent vector field on LE. On LE the function

RE
I,J is multi-valued. However, RE

I,JtL is continuous (single-valued) across LE. Here, we emphasize that the

above description of RE
I,J is valid if we use the numbering scheme discussed in Section 3.1. The support of the

global shape function RT
I,J in Bh is the corresponding element T. RT

I,J is multi-valued on BT while RT
I,JtBT is

continuous across BT. Based on the above discussion, one can conclude that JtRE
I,JKE1 “ 0 and JtRT

I,JKE1 “ 0 ,

@E1 P Bh, and hence RE
I,J ,R

T
I,J P V̆

c
h,r. Let us now define the global degrees of freedom. Suppose T and T1 are

adjacent in Bh such that their common edge E is numbered Ek in T and Ek1 in T1, where k is not necessary equal

to k1. The numbering scheme of Section 3.1 gaurantees that φT,Ek

I,J “ φ
T1,Ek1

I,J , @I, J . This equivalence enables
one to use either of them for calculating the global degrees of freedom for E (this is also necessary for the

assembly of finite elements). Therefore, it is well-defined to write ΦE
I,J : V̆ c

h,r ÝÑ R, ΦE
I,JpT hq :“ φT,Ek

I,J pT h|Tq

as the global degree of freedom associated with RE
I,J . Also, the global degree of freedom associated with RT

I,J

is ΦT
I,J : V̆ c

h,r ÝÑ R, ΦT
I,JpT hq :“ φT,TI,J pT h|Tq. Note that ΦE

I,J ,Φ
T
I,J P pV̆

c
h,rq

‹, but they can be extended to

HcpBhq‹.
Similarly, one can define the global shape functions SE

I,J , ST
I,J and the global degrees of freedom ΨE

I,J ,ΨT
I,J

based on the corresponding local shape functions s̄T,Ek

I,J , sT,TI,J and degrees of freedom ψT,Ek

I,J , ψT,T
I,J . One can also

obtain the global shape functions directly as SE
I,J “ R

E
I,JR

T and ST
I,J “ R

T
I,JR

T. Therefore, JnSE
I,JKE1 “ 0 and

JnST
I,J .KE1 “ 0 , @E1 P Bh, and SE

I,J ,S
T
I,J P V̆

d
h,r. In Figure 3, we illustrate the first (nonzero) rows of RE

1,1 P V
c´
h,1

and SE
1,1 P V

d´
h,1 on their supports. See v

pT,pT
2 and v

pT,pT
3 in Figure 2 for some examples of nonzero rows of RT

I,J

on its support.
To define the global shape function analogous to tTi , consider the function TT

i on Bh with support T such
that TT

i “ tTi on T. It is straightforward to show that TT
i P V

`
h,r. For interpolating a scaler field f on Bh using

V `h,r, one simply uses ωT
i pf |Tq as the global degree of freedom associate with TT

i .

Figure 3: The nonzero row of the global shape functions RE
1,1 P V c´

h,1 (left) and SE
1,1 P V d´

h,1 (right), where E is the common edge

of the two adjacent elements. Observe that SE
1,1 “ RE

1,1R
T. The tangent (normal) components of the fields, which are shown with

red arrows, are continuous across E in the left (right) plot.

Theorem 11.
 

HN
I

(

NPBh
is a basis for V 1

h,r,
 

RE
I,J ,R

T
I,J

(

E,TPBh
is a basis for V̆ c

h,r ,
 

SE
I,J ,S

T
I,J

(

E,TPBh
is a

basis for V̆ d
h,r, and

 

TT
i

(

TPBh
is a basis for V `h,r.

Proof. See [26, Lemma 1.77 and Proposition 1.78] for the proof of the first statement. The other three statements
can be proved similarly considering [26, Lemma 1.86, Proposition 1.87, Lemma 1.92, and Proposition 1.93].
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3.3 Compatible-Strain Mixed Finite Element Methods

Using the approximation spaces defined in the previous section, one writes the following mixed finite element
methods for (2.8):

Given a body force B of L2-class, a boundary displacement U on Γd of H1{2-class, and a boundary traction
T on Γt of L2-class, find pUh,Kh,P h, phq P V

1
h,mpΓd,Uq ˆ V̆

c
h,n ˆ V̆

d
h,r ˆ V

`
h,s such that

⟪P h,grad Υh⟫ “ ⟪ρ0B,Υh⟫`
ż

Γt

xT ,Υhyds, @Υh P V
1
h,mpΓdq,

⟪rP pKhq,κh⟫´ ⟪P h,κh⟫` ⟪phQpKhq,κh⟫ “ 0, @κh P V̆
c
h,n,

⟪gradUh,πh⟫´ ⟪Kh,πh⟫ “ 0, @πh P V̆
d
h,r,

⟪CpJhq, qh⟫ “ 0, @qh P V
`
h,s.

(3.19)

Remark 12 (Compatibility of Strain and Continuity of Traction).

piq Let Kh be a displacement gradient field on Bh. The zero jump JtKhKE “ 0 is known as the Hadamard
jump condition along the edge E. If Kh P V̆

c
h,r Ă HcpBhq, the Hadamard jump condition is satisfied

for all the internal edges of Bh independently of the refinement level of the mesh. This is a necessary
compatibility condition for the existence of a displacement field Uh P H

1pTBhq (continuous along edges)
such that Kh “ gradUh [35].

piiq Suppose P h is a stress field on Bh. The zero jump condition JnP hKE “ 0 indicates that traction vector
associated with P h is continuous across the edge E. If P h P V̆

d
h,r Ă HdpBhq, the continuity of traction

holds for all the internal edges of Bh independently of the refinement level of the mesh. This is required
by localization of the balance of linear momentum.

Inspired by Remark 12 (i), we call the finite element methods introduced in (3.19) the compatible-strain mixed
finite element methods (CSFEMs). We also use the following notation for referring to (3.19):

Hmcnpn̄qdrpr̄qLs in the case of V 1
h,m ˆ V

c
h,npV

c´
h,nq ˆ V

d
h,rpV

d´
h,r q ˆ V

`
h,s,

where m,n, r “ 1, 2 and s “ 0, 1, 2. This results in 96 possible choices of CSFEMs. However, since (3.19)
corresponds to a saddle point of a variational problem (see Remark 4) not all these choices lead to convergent
(consistent and stable) methods as the solution and test spaces need to satisfy certain conditions. We will
discuss this further in Section 3.5 and in the first numerical example. We will conclude that the well-performing
choices of CSFEMs among the first and second-order elements are H1c1d1̄L0 and H2c2d2̄L1. The schematic
diagrams of these two cases are given in Figure 4.

3.4 Matrix Formulation

In this section, we focus on the implementation of CSFEMs. In particular, we discuss how to represent (3.19)
as a nonlinear system of algebraic (polynomial) equations, which can be solved using Newton’s method. We
define the vector representation of a second-order tensor T and the matrix representation of a vector V with 4
entries by

rT s :“
“

T 11 T 12 T 21 T 22
‰T

and rV s :“

„

V 1 V 2

V 3 V 4



.

One can show that ⟪Y ,Z⟫ “ ⟪rY s, rZs⟫ “ ş

BrY sTrZsdA “
ş

BrZsTrY sdA. Let rV̆ c
h,rs :“

 

rT hs : T h P V̆
c
h,r

(

and define rV̆ d
h,rs similarly. Then, (3.19) can be rewritten as
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K PUCSFEM #DOF

55

25

p

H1c1d1̄L0

H2c2d2̄L1

Figure 4: The schematic diagrams for some first-order and second-order mixed finite elements.

Find pUh, rKhs, rP hs, phq P V
1
h,mpΓd,Uq ˆ rV̆ c

h,nsˆ rV̆ d
h,rsˆ V

`
h,s such that

ż

Bh

rgrad ΥhsTrP hs dA´

ż

Bh

ρ0Υ
T
hB dA´

ż

Γt

ΥT
hT ds “ 0, @Υh P V

1
h,mpΓdq,

ż

Bh

rκhsT
´

P

rP pKhq
T

` ph
P

QpKhq
T

¯

dA´

ż

Bh

rκhsTrP hs dA “ 0, @rκhs P rV̆ c
h,ns,

ż

Bh

rπhsT
P

gradUh

T

dA´

ż

Bh

rπhsTrKhs dA “ 0, @rπhs P rV̆ d
h,rs,

ż

Bh

qh CpJhq dA “ 0, @qh P V
`
h,s.

(3.20)

The local shape functions are discussed in Section 3.1. Here, to be consistent with (3.20), we define the
following vector representations of the local shape functions:

g1
T,jpXq :“

Q

gradhT
j pXq

U

,

bcT,kpXq :“
Q

r̄T,Ei

I,J pXq
U

, bcT,lpXq :“
Q

rT,TI,J pXq
U

,

bdT,kpXq :“
Q

s̄T,Ei

I,J pXq
U

, bdT,lpXq :“
Q

sT,TI,J pXq
U

,

(3.21)

where j “ 1, 2, ..., 2r for Uh P V
1
h,r, and the numberings k and l are specified as

k :“ I ` 2pJ ´ 1q ` 2pi´ 1qmax J, l :“ I ` 2pJ ´ 1q `max k, (3.22)

where i “ 1, 2, 3 and I “ 1, 2. For Kh P V
c´
h,1 and P h P V

d´
h,1 , we have J “ 1, using V c

h,1, V c´
h,2 , V d

h,1, and V d´
h,2

we have J “ 1, 2, and J “ 1, 2, 3 for V c
h,2 and V d

h,2. Note that in (3.21), bdT,l and bcT,l are defined only for second

or higher-order finite element spaces, i.e., V̆ c
h,r and V̆ d

h,r with r ě 2. These relations can also be realized from
Table 3. Let us write the following sparse matrices using the local shape functions of displacement and pressure
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and (3.21):
B1

T “
“

hT
1 hT

2 ¨ ¨ ¨ hT
n1

‰

2ˆn1 ,

G1
T “

“

g1
T,1 g1

T,2 ¨ ¨ ¨ g1
T,n1

‰

4ˆn1 ,

Bc
T “

“

bcT,1 bcT,2 ¨ ¨ ¨ bcT,nc

‰

4ˆnc ,

Bd
T “

“

bdT,1 bdT,1 ¨ ¨ ¨ bdT,nd

‰

4ˆnd
,

B`T “
“

tT1 tT2 ¨ ¨ ¨ tTn`

‰

1ˆn` ,

(3.23)

where n1, nc, nd, and n` depend on the order of the corresponding approximation spaces and are given in the
last column of Table 3. For a solution or test variable V h, one defines V T :“ V h|T. Next, recalling (3.13), one
writes the following local interpolation operators for each T:

UT “ B1
Tq

1
T,

P

gradUT

T

“ G1
Tq

1
T, rKTs “ Bc

Tq
c
T, rP Ts “ Bd

Tq
d
T, pT “ B`Tq

`
T,

ΥT “ B1
Tt

1
T,

P

grad ΥT

T

“ G1
Tt

1
T, rκTs “ Bc

Tt
c
T, rπTs “ Bd

Tt
d
T, qT “ B`Tt

`
T,

(3.24)

where t1T, tcT, tdT, and t`T are some column vectors containing arbitrary real numbers. These vectors are associated
with the corresponding test spaces. q1

T, qcT, qdT, and q`T are vectors of unknown local degrees of freedom, that is

q1
T “

“

q1
T,1 q1

T,2 ¨ ¨ ¨ q1
T,n1

‰T
, q1

T,m “ UJh pXiq,

qcT “
“

qcT,1 qcT,2 ¨ ¨ ¨ qcT,nc

‰T
, qcT,k “ φT,Ei

I,J pKTq, qcT,l “ φT,TI,J pKTq,

qdT “
“

qdT,1 qdT,2 ¨ ¨ ¨ qd
T,nd

‰T
, qdT,k “ ψT,Ei

I,J pP Tq, qdT,l “ ψT,T
I,J pP Tq,

q`T “
“

q`T,1 q`T,2 ¨ ¨ ¨ q`
T,n`

‰T
, q`T,i “ ωT

i ppTq.

(3.25)

Note that UJh pXiq, J “ 1, 2 is the value of the displacement at the i-th node of T, and m :“ J ` 2pi´ 1q. Also,

φT,Ei

I,J , φT,TI,J and ψT,Ei

I,J , ψT,T
I,J are given in (3.6) and (3.10) with the hat symbols removed. The numberings k

and l are defined in (3.22), and the size of the vectors (q1
T, qcT, qdT, q`T) and (t1T, tcT, tdT, t`T) is pn1, nc, nd, n`q.

Inserting (3.24) into the restriction of (3.20) to an element T, and then summing over T P Bh results in the
following representation of (3.20):

ÿ

TPBh

pt1Tq
T
´

K1d
T qdT ´ F1

T ´ F1
ET

t

¯

“ 0,

ÿ

TPBh

ptcTq
T
´

Nc
Tpq

c
T,q

`
Tq `Kcd

T qdT

¯

“ 0,

ÿ

TPBh

ptdTq
T
´

Kd1
T q1

T `Kdc
T qcT

¯

“ 0,

ÿ

TPBh

pt`Tq
T
´

N`
Tpq

c
Tq

¯

“ 0.

(3.26)

The new local matrices and vectors used in the above relations are defined as

K1d
T “

ż

T

pG1
Tq

TBd
T dA, Kd1

T “ pK1d
T q

T, (3.27)

Kcd
T “

ż

T

pBc
Tq

TBd
T dA, Kdc

T “ pKcd
T q

T, (3.28)

Nc
Tpq

c
T,q

`
Tq “

ż

T

pBc
Tq

T
´Q

rP
`

rBc
Tq

c
Ts
˘

U

`
`

B`Tq
`
T

˘

Q

Q
`

rBc
Tq

c
Ts
˘

U¯

dA, (3.29)

N`
Tpq

c
Tq “

ż

T

pB`Tq
TC

`

JTpq
c
Tq
˘

dA, JTpq
c
Tq “ detpI ` rBc

Tq
c
Tsq, (3.30)
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F1
T “

ż

T

pB1
Tq

Tρ0B dA, (3.31)

F1
ET

t
“

"
ş

ET
t
pB1

ET
t
qT T ds, if T X Γt “ ET

t ,

0n1ˆ1, otherwise.
(3.32)

The term ET
t in (3.32) denotes the edge of T that lies on the traction boundary Γt. Also, to define B1

Et
in (3.32),

consider a zero matrix of size 2ˆ n1, and then substitute 1D Lagrange polynomials over ET
t into those columns

that are associated with ET
t . Let K1d

pT
“
ş

pT
pG1

pT
qTBd

pT
dÂ and Kcd

pT
“

ş

pT
pBc

pT
qTBd

pT
dÂ be the counterparts of (3.27)

and (3.28) for the reference finite element pT, where G1
pT
, Bc

pT
, and Bd

pT
are obtained according to (3.23) but using

the reference local shape functions. For all T P Bh, Lemma 9, piiq and pvq imply the following relations:

K1d
T “ oTK

1d
pT
, Kcd

T “ oTK
cd
pT
. (3.33)

Therefore, the local matrices K1d
T , Kd1

T , Kcd
T , and Kdc

T are independent of the geometry of T and depend only on
the ordering of the three vertices of T. In practice, the relations (3.33) enable one to obtain (3.27) and (3.28)
@T P Bh with much less computational cost. It is also practical to change the domain variables of the integrals
(3.29)-(3.32) from X P T to ξ P pT. For example, (3.29) and (3.31) can be obtained as

Nc
Tpq

c
T,q

`
Tq “

ˇ

ˇdet JT
ˇ

ˇ

ż

pT

pB̄
c
Tq

T
´Q

rP
`

rB̄
c
Tq

c
Ts
˘

U

`
`

B`
pT
q`T

˘

Q

Q
`

rB̄
c
Tq

c
Ts
˘

U¯

dÂ,

F1
T “

ˇ

ˇdet JT
ˇ

ˇ

ż

pT

pB1
pT
qTρ0pB ˝ TTq dÂ,

where B̄
c
T “ Bc

T ˝ TT, and B`
pT

and B1
pT

are actually B`T and B1
T but are written using the reference local shape

functions.
Next we assemble (3.27)-(3.32) for all T P Bh and then accordingly write the global counterparts of the vectors

of local degrees of freedom (3.25) and t1T, tcT, tdT, and t`T. We use the subscript h for both the assembled and

the global matrices and vectors, e.g., we denote the assembled form of Kcd
T and F1

T by Kcd
h and F1

h, respectively,
and the global counterparts of q1

T and t1T by q1
h and t1h, respectively. Next, according to (3.26), one defines

Qh “

»

—

—

–

q1
h

qch
qdh
q`h

fi

ffi

ffi

fl

, Th “

»

—

—

–

t1h
tch
tdh
t`h

fi

ffi

ffi

fl

, Kh “

»

—

—

–

0 0 K1d
h 0

0 0 Kcd
h 0

Kd1
h Kdc

h 0 0
0 0 0 0

fi

ffi

ffi

fl

,

NhpQhq “

»

—

—

–

0
Nc
hpq

c
h,q

`
hq

0

N`
hpq

c
hq

fi

ffi

ffi

fl

, Fh “

»

—

—

–

F1
h ` F1

Γt

0
0
0

fi

ffi

ffi

fl

,

(3.34)

where Qh includes all the unknown degrees of freedom of the problem and a few known degrees of freedom in
its q1

h, which comes from the displacement boundary U |Γd
“ U . Th is a vector of arbitrary real numbers with

a few fixed zero elements in its t1h as a result of Υ|Γd
“ 0. Suppose n, nE, and nT are the total numbers of

nodes, edges, and elements in the mesh, respectively. The total number of degrees of freedom is

N “ 2n` pec ` edqnE ` pa
c ` ad ` a`qnT,

where ec (ed) and ac (ad) are the numbers of local degrees of freedom for displacement gradient K (stress P ),
which are defined on each edge and on each element, respectively. Also, a` is the number of local degrees of
freedom for the pressure-like variable p, which is defined only on each element. These numbers depend on the
choice of CSFEMs and the orders of their approximation spaces; ec and ed can be read from the second column
of Table 3 and ac, ad, and a` from its third column. Recalling nc and nd in (3.23), we have nc “ 3ec ` ac and
nd “ 3ed ` ad. The size of the sparse matrix Kh is N ˆN , and the size of the vectors Th, Qh, Nh, and, Fh is
N ˆ 1.
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Remark 13. From (3.33), the symmetric sparse matrix Kh does not depend on the geometry and dimensions,
but only on the connectivity and numbering of the elements of the mesh. That is, the matrix Kh is identical
for homeomorphic (topologically equivalent) meshes.

By using (3.34), one can write (3.26) as TT
h

´

KhQh ` NhpQhq ´ Fh
¯

“ 0. Since Th is arbitrary, one obtains

the following nonlinear system of algebraic equations:

KhQh ` NhpQhq “ Fh. (3.35)

Define RhpQhq :“ KhQh ` NhpQhq ´ Fh as the residual of the nonlinear equation (3.35). Using Newton’s

method, the solution of (3.35) can be obtained iteratively by Qpi`1q
h “ Qpiqh ´ K´1

th

´

Qpiqh
¯

Rh
´

Qpiqh
¯

starting

form an initial guess, where i is the iteration number and Kth is the tangent stiffness matrix (Jacobian matrix)
given by

Kth “

»

—

—

–

0 0 K1d
h 0

0 Hcc
h Kcd

h Hc`
h

Kd1
h Kdc

h 0 0

0 H`c
h 0 0

fi

ffi

ffi

fl

.

Here, H`c
h “ pH

c`
h q

T, and Hcc
h and Hc`

h are obtained by assembling the following matrices for all T P Bh:

Hcc
T pq

c
T,q

`
Tq “

ż

T

pBc
Tq

T
rA
´

Bc
Tq

c
T,B

`
Tq

`
T

¯

Bc
T dA,

Hc`
T pq

c
Tq “

ż

T

pBc
Tq

T
Q

Q
`

rBc
Tq

c
Ts
˘

U

B`T dA,

(3.36)

where rApK, pq in 2D is a 4 ˆ 4 matrix representation of the 4th-order elasticity tensor obtained form the

derivative of components of the constitutive relation P “ rP pKq ` pQpKq with respect to components of K.
Note that the tangent stiffness matrix Kth is symmetric and indefinite; this is closely related to Remark 4.

For our numerical examples, we consider the incompressible neo-Hookean solid with the energy function

ĂW “
µ

2
pI1 ´ 2q, (3.37)

where µ is the shear modulus at the ground state. The constitutive part of stress reads rP pKq “ µpI `Kq. We
use the following functions to impose the incompressibility condition J “ 1: C1pJq “ J ´ 1, and C2pJq “ ln J .
We have observed in our numerical examples that C1pJq has a better performance over C1pJq in problems
with tension loadings, while in bending problems with very refined meshes C2pJq has a better performance
over C1pJq. Recall that the constitutive relation reads P “ µF ` pC 1pJq. We need the following relations for
calculating (3.36):

Q1pKq “ JF´T, rA1ppq “ µI´ pI,

Q2pKq “ F
´T, rA2pK, pq “ µI´

p

J
I´ p

P

F´T
TP

F´T
TT
,

where I is the 4 ˆ 4 identity matrix, and I denotes an anti-diagonal matrix with non-zero components I
14
“

I
41
“ ´1 and I

23
“ I

32
“ 1. One can show that F´T

“ 1
J pI ` RKRT

q.

3.5 Solvability and Stability

Theorem 14. The tangent stiffness matrix Kth is invertible (non-singular) if and only if the following four
conditions hold:

piq kerpKd1
h q “ t0n1ˆ1u,

piiq kerpKcd
h q X kerpK1d

h q “ t0ndˆ1u,
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piiiq kerpHc`
h q “ t0n`ˆ1u,

pivq kerpHcc
h q XK “ t0ncˆ1u, where K “

!

X P kerpH`c
h q : YTKdc

h X “ 0,@Y P kerpK1d
h q

)

.

Proof. Rearrange the rows and the columns of Kth to obtain

Kth “
„

Ah BT
h

Bh 0



, Ah “
„

Hcc
h 0
0 0



, B “
„

H`c
h 0

Kdc
h Kd1

h



, BT
h “

„

Hc`
h Kcd

h

0 K1d
h



.

Then, apply [36, Theorem 3.2.1] and use an argument similar to that of [36, §3.2.5].

Corollary 15. The tangent stiffness matrix Kth is invertible, if 0 ď nd ´ n1 ď nc and n` ď nc.

Proof. Theorem 14, piq, piiq, and piiiq imply that n1 ď nd, nd ď nc ` n1, and n` ď nc, respectively.

Remark 16. Given a matrix Amˆn, there exist two unitary matrices Umˆm and Vnˆn and a rectangular diag-
onal matrix Smˆn with non-negative entries on the main diagonal such that A “ USV˚, where the superscript
˚ denotes the conjugate transpose. The diagonal entries of S, Si,j with i “ j, are known as the singular values
of A. It is straightforward to show that kerpAq “ t0u, if and only if the smallest singular value of A is non-zero.
This can be used to numerically check the conditions of Theorem 14. In particular, one can compute the smallest

singular values of sparse matrices Kd1
h and

“

Kdc
h Kd1

h

‰T
to check piq and piiq, respectively.

Remark 17. Conditions of Theorem 14 can be rewritten as inf-sup conditions. For example, kerpKd1
h q “

t0n1ˆ1u, where Kd1
h : Rn1

Ñ Rnd

, is equivalent to the following statement:

Dβh ą 0, such that inf
XPRn1

sup
YPRnd

YTKd1
h X

}X}Rn1 }Y}Rnd

ě βh.

Also see [26, Lemmas A.39 and A.40] and note that Rnd
‹ can be identified with Rnd

. One can also show that
βh is the smallest singular value of Kd1

h , see [26, Remark 2.23] and [36, §3.4.3].

Recall that Hc`
h pq

c
Tq and Hcc

h pq
c
T,q

`
Tq are nonlinear operators. They depend on the state of deformation of

the body and vary at each iteration of Newton’s method. Hence, it is difficult to draw a general conclusion
for invertibility of Kth based on the conditions piiiq and pivq of Theorem 14 without considering the physics
of the problem. On the other hand, Kcd

h and K1d
h are linear operators and remain unchanged throughout the

deformation. Therefore, in the following discussions, we focus on conditions piq and piiq of Theorem 14.
Considering different meshes with few elements and counting the total degrees of freedom pn1, nc, nd, n`q, one

can check that all the possible mixed formulations of the first and the second order satisfy n` ď nc. However,
many of them violate 0 ď nd ´ n1 ď nc, and hence, result in a singular tangent stiffness matrix Kth . Those
are H2cm̄d1̄Ln, H2cmd1̄Ln, H2cm̄d1Ln, H2cmd1Ln, H1c1̄d1Ln, Hmc1̄d2̄Ln, Hmc1̄d2Ln, Hmc1d2̄Ln, Hmc1d2Ln,
and Hmc2̄d2Ln for m “ 1, 2 and n “ 0, 1, 2. In addition, considering several arbitrary meshes and computing

the smallest singular value of
“

Kdc
h Kd1

h

‰T
, we conclude that kerpKcd

h q X kerpK1d
h q “ t0ndˆ1u does not hold, in

general, for Hmcn̄dn̄Lr and HmcndnLr with m,n “ 1, 2 and r “ 0, 1, 2. The cases mentioned above are 75 out
of 96 possible first and second order mixed methods. These cases have solvability issues for any mesh regardless
of its size h.

In [17] based on the observations in several numerical examples it was reported that only 7 out of the 32
possible choices of the first and second-order CSFEMs for compressible solids result in solvable algebraic systems.
Those observations agree with the above arguments because all the remaining 25 mixed methods violate one
or both of the necessary conditions kerpKd1

h q “ t0n1ˆ1u and kerpKcd
h q X kerpK1d

h q “ t0ndˆ1u. In fact, those 25
cases can be obtained directly from the 75 cases we mentioned above by removing the pressure field and the
incompressibility constraint from the mixed formulations.

In view of Theorem 14, piq and piiq, we have narrowed down the 96 possible choices of mixed FEMs to
the following 21 solvable ones: H1c1d1̄Lm, H1c2̄d1̄Lm, H1c2̄d1Lm, H1c2d1̄Lm, H1c2d1Lm, H1c2d2̄Lm, and
H2c2d2̄Lm for m “ 0, 1, 2. Satisfaction of the conditions of Theorem 14 for a given mesh is not enough; the
stability of the method requires that all the four conditions hold as the mesh gets refined and h goes to zero.
Our numerical examples suggest that H1c1d1̄L0 and H2c2d2̄L1 have an overall good performance among the
first-order and second-order elements, respectively. These elements are illustrated in Figure 4.
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4 Numerical Examples

In this section, we consider six different examples to assess the convergence and accuracy of CSFEMs in the
analysis of incompressible solids. For all the examples, we consider the energy function (3.37). We use the
L2-norm to measure the values and the errors of the approximated filed variables pUh,Kh,P h, phq over the

entire mesh. We also use the Frobenius norm of a second-order tensor T , }T } :“
´

ř

I,J T
IJT IJ

¯
1
2

to show the

distribution of the values of Kh and P h in the deformed configurations.

Example 1: Inflation of a Cylindrical Shell. We consider the inflation of an incompressible thick cylindri-
cal shell shown in Figure 5. The inner boundary of the shell is traction free and the outer boundary is subjected
to Uout “ pλ ´ 1qX. We assume that there is no body force, i.e., B “ 0. Owing to the incompressibility
constraint J “ 1, one can obtain the exact solution of the problem as follows:

U epXq “

ˆ

rpRq

R
´ 1

˙

X,

pepXq “ ´µ
R2

rpRq2
`
µpλ2 ´ 1qR2

out

2

ˆ

1

rpRinq
2
´

1

rpRq2

˙

` µ ln

ˆ

rpRinq

RinrpRq
R

˙

,

where rpRq “
a

R2 ` pλ2 ´ 1qR2
out and R “ }X}. Having U e and pe, one can obtain Ke “ gradU e and

P e “ rP pKeq ` peQpKeq. The exact solution enables one to study and verify the accuracy and convergence of
CSFEMs. Note that this is an example of a universal deformation [37]. For our numerical analysis, we assume
that Rin “ 0.5 mm, Rout “ 1 mm, and λ “ 3. We also assume µ “ 1 N{mm2 in (3.37) and use the constraint
function CpJq “ J ´ 1. Using symmetry of the problem, we model only a quarter of the shell in the numerical
analysis (see the generated unstructured meshes in Figure 5). Using the symmetry and the numerical solutions
of a quarter of the domain, one will be able to recover the solution for the entire domain.

Figure 5: Inflation of a cylindrical shell: Geometry, boundary conditions, and four unstructured meshes.

As was discussed in §3.5, among the 96 possible choices of the first and second-order CSFEMs, only 21 may
result in a non-singular tangent stiffness matrix Kth and the remaining 75 CSFEMs have solvability issues. We
studied and compared the performance of the 21 solvable CSFEMs using the exact solution of this problem. Our
numerical experiments indicate that the following 8 CSFEMs have good performance: H1c1d1̄L0, H1c2̄d1̄L0,
H1c2̄d1̄L1, H1c2̄d1L0, H1c2d1L0, H2c2d2̄L0, H2c2d2̄L1, H2c2d2̄L2. We do not consider the reaming 13 CSFEMs
further due to their poor performance.
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For the four meshes shown in Figure 5, the relative L2-norm of errors associated with each of the above 8
CSFEMs are given in Table 4. Considering the relative errors of the four primary field variables U , K, P , and
p, H2c2d2̄L1 (#7) is the most accurate method among all CSFEMs. Based on the number of degrees of freedom
in the fourth column, H1c1d1̄L0 (#1) has the least computational cost among all CSFEMs. Although for an
identical mesh, H1c2̄d1̄L0, H1c2̄d1̄L1, H1c2̄d1L0, and H2c2d2̄L2 (#2 ´#4 and #8) have (many) more degrees
of freedom than H1c1d1̄L0 (#1), none of them has a better relative error in approximating the four primary
variables. For an identical mesh, H1c2d1L0 and H2c2d2̄L0 (#5 and #6) are more accurate than H1c1d1̄L0 (#1)
in approximating the four primary variables, but they are computationally much more expensive (more number
of DOFs). In other words, it may be better to refine the mesh and use H1c1d1̄L0 rather than using H1c2d1L0 or
H2c2d2̄L0 with a coarser mesh. Therefore, H2c2d2̄L1 and H1c1d1̄L0 (#1 and #7), which are shown in Figure 4,
have an overall better performance among all CSFEMs. Between these two methods, if we compare H1c1d1̄L0
with 56298 #DOF and H2c2d2̄L1 with 34240 #DOF, we conclude that the latter method results in a more
accurate solution for less computational cost.

To study the convergence order of CSFEMs, we plot the relative errors of the four primary variables versus
the maximum diameter h of some unstructured meshes in Figure 6. Note that our observations in Table 4 also
hold for Figure 6 with regard to accuracy. The convergence order of displacement U is close to 2 for all methods.
The convergence order of displacement gradient K is close to 1 for all methods except H2c2d2̄L1 and H2c2d2̄L2,
for which the convergence order is almost 2. For the stress P , the convergence order is close to 1 for all methods
except H2c2d2̄L1, which has a convergence order of almost 2. We also observe that the convergence order of the
pressure-like variable p and the stress P are the same for all methods. Based on the above discussions, we will
use H1c1d1̄L0 and H2c2d2̄L1 in the following examples.

Example 2: Cook’s Membrane. To assess the performance of CSFEMs in bending analysis, we consider
the standard Cook’s membrane problem shown in Figure 7. We assume µ “ 1 N{mm2 and use the constraint
function CpJq “ ln J . We investigate the pointwise convergence of H1c1d1̄L0 and H2c2d2̄L1 in Figure 8 by
plotting the vertical displacement of point A indicated in Figure 7 for different meshes and for different values
of the shearing force f . We also compare our results with those generated only for f “ 0.1 N{mm2 in the work
of Chi et al. [10]. We observe that both CSFEMs provide good approximations for relatively coarse meshes and
H2c2d2̄L1 converges faster than H1c1d1̄L0. Also, there is a good agreement between CSFEMs and the method
used in [10].

To study convergence, in Figure 9, we plot the L2-norms of displacement, displacement gradient, stress, and
pressure using H1c1d1̄L0 (dashed lines) and H2c2d2̄L1 (solid lines) and for different values of shearing force f .
Considering the four primary variables and for all values of the shearing force f , one can see that H2c2d2̄L1
converges rapidly. The convergence of H1c1d1̄L0 is comparable to that of H2c2d2̄L1 in approximating U and
K. However, the convergence of H1c1d1̄L0 in approximating P and p becomes slower than that of H2c2d2̄L1
as the value of the shearing force f increases.

Figures 10 and 11 depict the deformed configurations of Cook’s membrane for the four meshes of Figure 7
and f “ 0.3 N{mm2 by using H1c1d1̄L0 and H2c2d2̄L1, receptively. In both figures, colors indicate the values
of }P h} in the first row and the values of the pressure ph in the second row with lighter colors corresponding to
larger values. The standard two-field mixed formulation of incompressible elasticity in terms of displacement and
pressure is unstable if displacement is approximated by continuous piecewise linear polynomials and pressure
with piecewise constant polynomials on triangular elements [26, 10]. Although H1c1d1̄L0 uses the same low-order
polynomial spaces for displacement and pressure, as it can be observed from Figure 10, it is convergent and does
not result in any numerical artifacts in the approximation of pressure. Note that in the mixed formulation of
CSFEMs such as H1c1d1̄L0, displacement and pressure are not coupled directly with a bilinear term. In addition,
comparing with the standard two-field mixed FEMs, H1c1d1̄L0 provides a more accurate approximation of strain
and stress by approximating them directly in their domains of definition. In Figure 11, one observes the fast
convergence of H2c2d2̄L1 in approximating stress and pressure and its accuracy even for a coarse mesh with 46
elements.

Example 3: Bending of an Arch. Following [16], for further testing of H1c1d1̄L0 and H2c2d2̄L1 in bending
problems, we consider bending of the arch shown in Figure 12. Note that f in Figure 12 is a uniformly distributed
load in the radial direction. We assume E “ 250 N{mm2 and ν “ 0.5 (µ “ E{2p1` νq) and use CpJq “ ln J as
the constraint function. Because of the symmetry, we study half of the arch as shown in the generated meshes in

24



10-1

10-5

10-4

10-3

10-1

10-3

10-2

10-1

10-1
10-3

10-2

10-1

10-1

10-2

10-1

100

Figure 6: Relative L2-norms of errors in approximating displacement, displacement gradient, stress, and pressure versus the
maximum diameter h. In each diagram, different curves are associated with different CSFEMs. In each diagram, the dash-dot
line and the dashed line have the slopes of 1 and 2, respectively.

Figure 12. Figure 13 shows the reference and the deformed states of the arch subjected to f “ 20 N{mm2 using
H2c2d2̄L1 and the mesh with 324 elements in Figure 12. The colors indicate the values of }Kh} with lighter
colors corresponding to larger values. As one expects, the middle portion of the half of the arch at x “ 0.3
(x “ ´0.3) is narrowed and stretched, and hence shows large values of }Kh}.

Figure 14 shows the convergence of H1c1d1̄L0 (dashed lines) and H2c2d2̄L1 (solid lines) for different values
of the load f . We observe that both methods converge considering all the four primary fields and for all values
of the transverse load f . However, H2c2d2̄L1 has a faster convergence, and hence provides a more accurate
approximation when using coarse meshes. Figure 15 shows the deformed configurations of half of the arch for
f “ 20 N{mm2 using the meshes of Figure 12. The results are generated using H2c2d2̄ and colors indicate
the values of }P h} in the first row and ph in the second row, where lighter colors correspond to higher values.
Comparing the mesh with 71 elements with the mesh with 998 elements, one can see the accuracy of H2c2d2̄ in
approximating stress and pressure even when using a coarse mesh.

Example 4: Stretching a Block with a Hole at its Center. We consider a square block with a hole
at its center as shown in Figure 16. The block is subjected to uniform displacement boundaries of pu, 0q at its
right and p´u, 0q at its left edge. The top and bottom edges are traction free. The goal of this example is to
test the performance of CSFEMs at very large stretches. We assume µ “ 1 N{mm2 and use CpJq “ J ´ 1. Due
to symmetry, we consider only a quarter of the block as shown in the generated meshes in Figure 16. Figure
17 illustrates the reference and the deformed configurations of the block using H2c2d2̄L1 and the mesh with
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Figure 7: Cook’s membrane: Geometry, boundary conditions, and four unstructured meshes.

184 elements in Figure 16. The boundary displacement u “ 1.5 mm results in a large stretch of 4. The colors
indicate the values of }Kh} with lighter colors associated with larger values. The maximum of }Kh} is 6.5 at the
boundary of the hole and x “ 0. Figure 18 illustrates the convergence of H1c1d1̄L0 (dashed lines) and H2c2d2̄L1
(solid lines) for different values of the imposed boundary displacement u. We observe that H2c2d2̄L1 converges
rapidly considering all the primary variables and for all values of u. Also, considering displacement, displacement
gradient, and stress, H1c1d1̄L0 has a good convergence, but it has a poor performance in approximating pressure
for stretch “ 4 (u “ 1.5 mm). Figure 19 shows the deformed configurations of a quarter of the block for
u “ 1.5 mm using the meshes of Figure 16. The results are obtained using H2c2d2̄ and colors indicate the values
of }P h} in the first column and ph in the second column, where lighter colors correspond to higher values. As
one can observe, even for stretch “ 4 and using a coarse mesh with 48 elements, H2c2d2̄ provides an accurate
distribution of stress and pressure.

Example 5: Stretching a Block with Randomly Distributed Holes. Next, we consider a block with
randomly distributed holes as shown in Figure 20. The size of the block is 1 mm ˆ 1 mm. The left edge of
the block is fixed and the right edge is subjected to a uniform displacement boundary pu, 0q. The top and the
bottom edges are traction free. Similar to the previous example, this example tests the performance of CSFEMs
at very large stretches but for a more complex geometry. We again consider µ “ 1 N{mm2 and CpJq “ J ´ 1.
Figure 21 shows the reference and the deformed configurations of the block using H2c2d2̄L1 and the mesh
with 184 elements in Figure 20. The colors indicate the values of }Kh}, where lighter colors correspond to
larger values. The large values of }Kh} correspond to the boundaries of the middle portion of the holes with
maximum }Kh} of approximately 5.5 at p0.6, 0.5q. Figure 22 illustrates the convergence of H1c1d1̄L0 (dashed
lines) and H2c2d2̄L1 (solid lines) for different values of u. We observe that H2c2d2̄L1 converges considering the
four primary variables and for all values of u. We also see that H1c1d1̄L0 has good convergence, in general,
but it becomes inaccurate in approximating pressure with the increase of stretch to 3 (u “ 2 mmq. Note that
we had similar observations in Figure 14. Using the meshes of Figure 20 and using H2c2d2̄, in Figure 23 we
illustrate the deformed configurations of the block for u “ 2 mm. The colors indicate the values of }P h} in
the first column and ph in the second column with lighter colors corresponding to higher values. This mainly
shows the stability of H2c2d2̄ in approximating the stress and pressure without any numerical artifacts even for
a complex geometry under a large stretch.

Example 6: Rubber Reinforced with Rigid Particles. As was discussed in Remark 12, the discrete
fields Kh P V̆

c
h,r and P h P V̆

d
h,r naturally satisfy, respectively, the Hadamard jump condition and the continuity

of traction on all the internal edges of any mesh. This enables one to accurately model heterogeneous solids in
which inhomogeneities do not slide at the interfaces, i.e., the displacement field is continuous at the interfaces.
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Figure 8: Cook’s membrane: Vertical displacement of point A in Figure 7 for different values of the shearing force f versus the
number of elements in the mesh. The dashed and the solid lines are generated using H1c1d1̄L0 and H2c2d2̄L1, respectively. The
dotted line indicates the results of [10].

More specifically, we generate a mesh for the entire heterogeneous material such that the interfaces between all
inhomogeneities lie completely on some internal edges of the mesh. Then we assign a different material model
to the patch of elements within each inhomogeneity. Regardless of the refinement level of the generated mesh,
CSFEMs naturally satisfy all the interface conditions of the heterogeneous solid at the discrete level.

As an application, we consider a square rubber block with edge length of 1 mm reinforced with 16 rigid
circular particles with area fraction of 20% as it is shown in Figure 24. The left and the right edges of the block
are subjected to uniform traction p´f, 0q and p0, fq, respectively, and the top and the bottom edges are traction
free. We consider µ1 “ 1 N{mm2 for the rubber matrix and µ2 “ 1e5 N{mm2 for the rigid particles, and we use
CpJq “ J ´ 1 for both of them.

Figure 25 shows the deformed configuration of the block for the tension load f “ 2.8 N{mm2 using H2c2d2̄L1
and the mesh with 4428 elements given in Figure 24. We can see that the stretch due to the imposed boundary
tractions is larger than 2. In the first plot, colors on the matrix indicate values of the norm of displacement
gradient }Kh}. As one expects, we obtain Kh “ 0 everywhere in the rigid particles. Furthermore, we observe
that the large values of }Kh} occur in the portion of the matrix between two rigid particles of almost same
vertical positions that were close to one another before deformation. In the second plot, colors on the matrix
indicate values of the norm of stress }P h}. As can be seen, those points of the matrix at the left and right sides
of every particle have the large values of stress. The third plot shows the values of pressure ph in the matrix.
Everywhere in the particles, the computed values of ph is almost ´µ2. We observe that the positions of large
values of pressure and stress in the matrix are almost the same; this is consistent with our observations of all
the previous examples. Figure 26 shows that H2c2d2̄L1 is convergent for different values of f .

5 Concluding Remarks

We introduced a new class of mixed finite element methods for incompressible nonlinear elasticity – compatible-
strain mixed finite element methods (CSFEMs). This work is an extension of [17] to incompressible nonlinear
elasticity. Furthermore, this work improves [17] by providing a more practical description of the mixed formu-
lations and the finite element approximations, especially, a more efficient way to calculate the shape functions.
We derived a four-field mixed formulation from a Hu-Washizu type functional with the displacement U , the
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Figure 9: Cook’s membrane: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of elements
in the mesh for different values of the shearing force f . The dashed and the solid lines are obtained by using H1c1d1̄L0 and
H2c2d2̄L1, respectively.

displacement gradient K, the first Piola-Kirchhoff stress tensor P , and a pressure-like field p as the four in-
dependent unknowns. For solution spaces, we assumed pU ,K,P , pq P H1pTBq ˆ HcpBq ˆ HdpBq ˆ L2pBq,
and to define the corresponding test spaces, we used the same Hilbert spaces. Next, we constructed some con-
forming finite element (piecewise polynomial) subspaces V 1

h,r Ă H1pTBhq, V̆ c
h,r Ă HcpBhq, V̆ d

h,r Ă HdpBhq, and

V `h,r Ă L2pBhq. Then, CSFEMs were obtained by replacing the solution and test spaces of the four-field mixed
formulation with the generated finite element subspaces. Due to interelement continuities of these subspaces,
regardless of the refinement level of the mesh, CSFEMs approximate a continuous displacement and satisfy
both the Hadamard compatibility condition of displacement gradient and the continuity of traction on all the
internal edges.

After solving several numerical examples, we observed that CSFEMs are robust and have good performance
for different geometries and loadings. In particular, CSFEMs perform well in bending problems, do not result in
an unphysical approximation of pressure even when using piecewise constant polynomials, and do not suffer from
numerical artifacts such as locking, checkerboarding of pressure, or hourglass-type instabilities. In capturing
the nonlinear effects, we observed that CSFEMs remain stable up to very large strains and provide an accurate
approximation of stress as an independent variable. Moreover, as we demonstrated, CSFEMs provide an efficient
framework for modeling inhomogeneous solids undergoing large deformations.

In future communications, we will extend CSFEMs to 3D compressible and incompressible nonlinear elasticity
by usingHc andHd-conforming tetrahedral elements. Moreover, we will investigate the applicability of CSFEMs
in modeling nonlinear solids with distributed finite eigenstrains. Eigenstrains are created due to a host of
anelastic phenomena in solids such as defects [38], thermal strains [39], biological growth [40], swelling [41], and
the presence of inclusions and inhomogeneities [42, 43]. In particular, we will use the geometric formulation of
anelasticity, in which all the anelastic effects are buried into the material manifold. In this approach, if one
can build a material manifold (where the body is stress-free by construction), then the anelasticity problem is
transformed to a classical nonlinear elasticity problem provided that the nontrivial geometry of the material
manifold is taken into consideration properly.
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Table 4: Convergence and relative error of different CSFEMs for inflation of a cylindrical shell. DOF denotes the degrees of
freedom for each mesh, (Ue, F e, P e, pe) is the exact solution, and (Uh, F h, P h, ph) is the approximate solution for each
CSFEM.

# CSFEM #Elements #DOF
‖Uh´Ue‖L2

‖Ue‖L2

‖Kh´Ke‖L2

‖Ke‖L2

‖P h´P e‖L2

‖P e‖L2

‖ph´pe‖L2

‖pe‖L2

1 H1c1d1̄L0

52 646 7.38e-03 1.19e-01 3.45e-01 4.98e-01
544 6226 7.03e-04 3.04e-02 8.68e-02 1.67e-01
1052 11902 3.63e-04 2.05e-02 7.43e-02 1.44e-01
5056 56298 7.95e-05 9.54e-03 3.20e-02 5.98e-02

2 H1c2̄d1̄L0

52 854 6.97e-03 1.38e-01 1.76e-01 2.14e-01
544 8402 6.28e-04 3.75e-02 4.11e-02 4.96e-02
1052 16110 3.28e-04 2.61e-02 2.89e-02 3.56e-02
5056 76522 7.20e-05 1.22e-02 1.40e-02 1.57e-02

3 H1c2̄d1̄L1

52 958 7.29e-03 1.46e-01 3.74e-01 7.29e-01
544 9490 6.27e-04 4.02e-02 7.64e-02 1.34e-01
1052 18214 3.21e-04 2.76e-02 5.21e-02 8.92e-02
5056 86634 7.05e-05 1.28e-02 2.25e-02 3.62e-02

4 H1c2̄d1L0

52 1028 7.18e-03 1.06e-01 3.73e-01 4.89e-01
544 10094 6.86e-04 2.66e-02 1.00e-01 1.73e-01
1052 19348 3.56e-04 1.83e-02 8.66e-02 1.44e-01
5056 91860 7.84e-05 8.61e-03 3.75e-02 6.06e-02

5 H1c2d1L0

52 1306 7.32e-03 6.80e-02 6.56e-02 1.34e-01
544 12874 6.57e-04 1.94e-02 1.85e-02 4.34e-02
1052 24690 3.47e-04 1.36e-02 1.27e-02 3.06e-02
5056 117310 7.56e-05 6.28e-03 5.64e-03 1.37e-02

6 H2c2d2̄L0

52 1688 2.74e-03 4.45e-02 3.45e-02 1.09e-01
544 16742 2.70e-04 1.37e-02 1.15e-02 3.84e-02
1052 32136 1.46e-04 1.01e-02 8.29e-03 2.78e-02
5056 152872 3.17e-05 4.64e-03 3.84e-03 1.29e-02

7 H2c2d2̄L1

52 1792 1.16e-03 1.96e-02 5.41e-02 1.21e-01
544 17830 8.51e-05 1.97e-03 8.70e-03 1.88e-02
1052 34240 4.57e-05 1.07e-03 4.91e-03 1.06e-02
5056 162984 1.02e-05 2.75e-04 1.42e-03 3.16e-03

8 H2c2d2̄L2

52 1948 1.32e-03 3.21e-02 3.25e-01 1.07
544 19462 9.42e-05 4.58e-03 1.07e-01 2.69e-01
1052 37396 4.85e-05 2.53e-03 6.42e-02 1.51e-01
5056 178152 1.04e-05 7.03e-04 2.35e-02 5.03e-02
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Figure 10: The deformed configurations of Cook’s membrane for the shear force f “ 0.3 N{mm2 using H1c1d1̄L0. Colors indicate
values of }P h} in the first row and pressure ph in the second row, where lighter colors correspond to larger values.
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Figure 11: The deformed configurations of Cook’s membrane for the shear force f “ 0.3 N{mm2 using H2c2d2̄L1. Colors indicate
values of }P h} in the first row and pressure ph in the second row, where lighter colors correspond to larger values.
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Figure 12: Bending of an arch: Geometry, boundary conditions, and three unstructured meshes.

Figure 13: The reference and deformed configurations of the arch for the bending load f “ 20 N{mm2 using H2c2d2̄L1. Colors
indicate values of the norm of displacement gradient }Kh}, where lighter colors correspond to larger values.
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Figure 14: Bending of an arch: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of
elements in the mesh for different values of the bending force f . The dashed and the solid lines are obtained using H1c1d1̄L0 and
H2c2d2̄L1, respectively.

Figure 15: The deformed configurations of the arch for the bending load f “ 20 N{mm2 using H2c2d2̄L1. Colors indicate values of
the norm of stress }P h} in the first row and the pressure ph in the second row, where lighter colors correspond to larger values.
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Figure 16: Stretching a block with a hole at its center: Geometry, boundary conditions, and four unstructured meshes.

Figure 17: The reference and deformed configurations of a block with a hole for u “ 1.5 mm (stretch “ 4) obtained by using
H2c2d2̄L1. Colors indicate values of the norm of displacement gradient }Kh}, where lighter colors correspond to larger values such
that max }Kh} “ 6.5 is indicated by yellow.
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Figure 18: Stretching a block with a hole at its center: L2-norms of displacement, displacement gradient, stress, and pressure
versus the number of elements in the mesh. u in the legend is the horizontal displacement imposed at the right boundary. The
left boundary is subjected to ´u simultaneously. The dashed and solid lines are generated by using H1c1d1̄L0 and H2c2d2̄L1,
respectively.
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Figure 19: The deformed configurations of a quarter of a block with a hole for u “ 1.5 mm (stretch “ 4) using H2c2d2̄L1. Colors
indicate values of the norm of stress }P h} in the first column and the pressure ph in the second column, where lighter colors
correspond to larger values.

Figure 20: Three unstructured meshes for a square block with randomly distributed holes.
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Figure 21: The reference and deformed configurations of the block with randomly distributed holes for u “ 2 mm (stretch “ 3)
obtained using H2c2d2̄L1. Colors indicate values of the norm of displacement gradient }Kh}, where lighter colors correspond to
larger values such that max }Kh} “ 5.5 is indicated by yellow.
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Figure 22: Stretching a block with randomly distributed holes: L2-norms of displacement, displacement gradient, stress, and
pressure versus the number of elements in the mesh. u in the legend stands for the horizontal displacement imposed at the right
boundary. The dashed and solid lines are generated using H1c1d1̄L0 and H2c2d2̄L1, respectively.
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Figure 23: The deformed configurations of the block for u “ 2 mm (stretch “ 3) using H2c2d2̄L1. Colors indicate values of the
norm of stress }P h} in the first column and the pressure ph in the second column, where lighter colors correspond to larger values.

Figure 24: An unstructured mesh for a square rubber block with 16 particles with 20% area fraction.
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Figure 25: The deformed configuration of the block for f “ 2.8 N{mm2 using H2c2d2̄L1 and the mesh with 4428 elements given in
Figure 24. Colors on the matrix indicate values of the norm of displacement gradient in the first plot, the norm of stress in the
second plot, and pressure in the third plot with lighter colors corresponding to larger values.

42



4000 6000 8000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

4000 6000 8000

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

4000 6000 8000
1.5

2

2.5

3

3.5

4000 6000 8000

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 26: Rubber reinforced with rigid particles: L2-norms of displacement over the entire domain and L2-norms of displacement
gradient, stress, and pressure over the matrix versus the number of elements in the mesh. The results are generated by using
H2c2d2̄L1.

43


	Introduction
	A Mixed Formulation for Incompressible Nonlinear Elasticity
	Preliminaries
	A Four-Field Mixed Formulation for Incompressible Nonlinear Elasticity

	Finite Element Approximations
	Finite Elements
	Finite Element Spaces
	Compatible-Strain Mixed Finite Element Methods
	Matrix Formulation
	Solvability and Stability

	Numerical Examples
	Concluding Remarks

