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The compliance matrix for a general anisotropic material is usually expressed in an arbi-
trarily chosen coordinate system, which brings some confusion or inconvenience in iden-
tifying independent elastic material constants and comparing elastic properties between
different materials. In this paper, a unique stiffest orientation-based standardized com-
pliance matrix is established, and 18 independent elastic material constants are clearly
shown. During the searching process for the stiffest orientation, it is interesting to find
from our theoretical analysis and an example that a material with isotropic tensile stiff-
ness does not definitely possess isotropic elasticity. Therefore, the ratio between the max-
imum and minimum tensile stiffnesses, although widely used, is not a correct measure
of anisotropy degree. Alternatively, a simple and correct measure of anisotropy degree
based on the maximum shear-extension coupling coefficient in all orientations is pro-
posed. However, for a two-dimensional constitutive relation, both the stiffness ratio and
the shear-extension coupling coefficient can be adopted as proper measures of anisotropy
degree.
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anisotropic degree.
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1. Introduction

The generalized Hooke’s law relating stresses to strains for anisotropic elastic mate-
rials can be written as



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, (1.1)

where σij , εij and Sij are stress, strain and compliance matrix components, respec-
tively. The compliance matrix S is a symmetric matrix, i.e., Sij = Sji. In many text-
books [Ting, 1996; Kaw, 1997; Jones, 1999; Bower, 2011], it is written that a general
anisotropic material has 21 independent elastic constants in a compliance matrix.
If a material possesses orientational symmetries, the number of independent elastic
constants will reduce. For example, an orthotropic material, with three orthogonal
planes of material symmetry, has only nine independent elastic constants. In these
textbooks, the compliance matrix of orthotropic material is written as

Sortho =




S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66




. (1.2)

When we observe these two compliance matrices [Eqs. (1.1) and (1.2)], we
find that there is some inconsistence between them. The compliance matrix for
orthotropic elastic material is usually expressed in a special coordinate system
accounting for the intrinsic orientational symmetry, but the compliance matrix for
general anisotropic elastic materials is expressed in an arbitrarily chosen coordinate
system. The compliance matrix varies with different coordinate systems. If there
is a standardized coordinate system without orientational arbitrariness, as in an
orthotropic material, the compliance matrix becomes a standardized one, which
provides convenience in comparing the elastic properties among different materials.
This standardized compliance matrix can also clearly reveal the number of inde-
pendent elastic material constants, e.g., 9 for orthotropic materials. Hence, such a
straightforward and easy-use standardized compliance matrix for general anisotropic
elastic materials is needed and should be included in textbooks or handbooks for
students and engineers.
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The number of elastic constants has been a basic problem for a long time. The
21 independent elastic constants of anisotropic material are widely accepted after
Green introduced the concept of strain energy and Lord Kelvin proved the exis-
tence of Green’s strain energy function [Herakovich, 2012]. However, Fedorov [1968]
showed that a definite choice of coordinate system may impose three conditions on
elastic constants of anisotropic material, resulting in that the number of independent
constants cannot exceed 18. Some other researchers also demonstrated the situa-
tion of 18 independent constants. Based on the theory of existence of longitudinal
wave by Truesdell [1966, 1968], Boulanger and Hayes [1995] discovered two compo-
nents will vanish when the coordinate axis is the direction making young’s modulus
reach an extremum value. The same phenomena occurred when the coordinate axis
was set as the direction making the axial elastic coefficient extremum by Cowin
and Mehrabadi [1995]. They also found the third vanishing component through a
specific rotation of coordinate system. It has also been pointed out that the 21 inde-
pendent elastic constants are consisted of 6 Kelvin moduli, 12 stiffness distributors
and 3 orientation angles [Cowin and Mehrabadi, 1992; Rychlewski, 1995; Dellinger
et al., 1998; Kowalczyk-Gajewska and Ostrowska-Maciejewska, 2009]. Hence, 18
independent elastic constants are proved, which however has not been clearly
presented to students through most textbooks due to the involvement of tensor
computation.

In this paper, we propose a unique standardized compliance matrix for general
anisotropic materials to show the elastic properties, such as independent elastic
constants, in a unified way to avoid confusion. The paper is structured as follows.
In Sec. 2, we propose a unique stiffest orientation-based standardized compliance
matrix, and compare it with the symmetry orientation-based standardized compli-
ance matrix. We investigate the relation between the symmetry of tensile stiffness
and the symmetry of the elastic properties in Sec. 3. By interestingly noting that the
ratio between the maximum and minimum tensile stiffnesses is not a correct measure
of anisotropy degree, we propose a simple and correct measure of anisotropy degree
based on the maximum shear-extension coupling coefficient in Sec. 4. Conclusions
are summarized in Sec. 5.

2. The Definition and Characteristics of a Standardized
Compliance Matrix for General Anisotropic Materials

2.1. The definition of the stiffest orientation-based standardized

compliance matrix

To exclude the orientational arbitrariness of a coordinate system and obtain a unique
standardized compliance matrix, a special coordinate system based on the material
intrinsic orientation is needed. For orthotropic materials, the orientational sym-
metry can be adopted in choosing the coordinate system. For general anisotropic
materials, however, there is no orientational symmetry. To deal with this situation,
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we propose that the material intrinsic orientation with extreme stiffness is used in
establishing a standardized coordinate system x̂1−x̂2−x̂3, and the specific rules or
conditions are suggested as follows.

Condition I: The x̂1-axis makes S11 reach the global minimum, i.e., the stiffest
direction in the whole orientations.

Condition II: The x̂2-axis makes S22 global minimum within the plane perpen-
dicular to x̂1-axis.

Condition III: The x̂3-axis complies with the right-hand coordinate system rule.

Condition IV: S14 and S25 reach their minimum values under above conditions.

The coordinate system x̂1−x̂2−x̂3 satisfying Conditions I–IV is named as the
stiffest orientation-based standardized coordinate system, or STF standardized
coordinate system for abbreviation. The corresponding compliance matrix in this
coordinate system is named as the stiffest orientation-based standardized
compliance matrix, or STF standardized compliance matrix for abbrevi-
ation, and denoted as Ŝ. The first three conditions are obvious. For a general
anisotropic material, as shown in Fig. 1, there are four coordinate systems sat-
isfying Conditions I–III, since one stiffest direction has two options for x̂1-axis,
or x̂2-axis. The relations among these four candidate coordinate systems (a)–(d)
are also shown in Fig. 1. Rotating Coordinate system (a) π angle around x̂a

1-axis
yields Coordinate system (b). Rotating Coordinate system (a) π angle around x̂a

2-
axis yields Coordinate system (c). Rotating Coordinate system (a) π angle around
x̂a

3-axis yields Coordinate system (d). The compliance matrices under coordinate

ˆ2
aaround x - axis

ˆ1
a

Rotate π Rotate π

Rotate π

around x - axis ˆ3
aaround x - axis

( )Coordinate system a

( )Coordinate system b

( )Coordinate system c

( )Coordinate system d

ˆ1
ax

ˆ 2
ax

ˆ 3
ax

ˆ1
bx

ˆ 2
bx

ˆ 3
bx

ˆ1
cx

ˆ 2
cx

ˆ 3
cx ˆ1

dx

ˆ 2
dx

ˆ 3
dx

Fig. 1. The four coordinate systems satisfying Conditions I–III.
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systems (a)–(d) are denoted as Sa, Sb, Sc and Sd, respectively. Supposing

Sa =




Sa
11 Sa

12 Sa
13 Sa

14 Sa
15 Sa

16

Sa
22 Sa

23 Sa
24 Sa

25 Sa
26

Sa
33 Sa

34 Sa
35 Sa

36

(sym) Sa
44 Sa

45 Sa
46

Sa
55 Sa

56

Sa
66




. (2.1)

According to transformation relation among the four coordinate systems (see
Appendix A), Sb, Sc and Sd can be represented by the components of Sa as
follows

Sb =




Sa
11 Sa

12 Sa
13 Sa

14 −Sa
15 −Sa

16

Sa
22 Sa

23 Sa
24 −Sa

25 −Sa
26

Sa
33 Sa

34 −Sa
35 −Sa

36

(sym) Sa
44 −Sa

45 −Sa
46

Sa
55 Sa

56

Sa
66



, (2.2)

Sc =




Sa
11 Sa

12 Sa
13 −Sa

14 Sa
15 −Sa

16

Sa
22 Sa

23 −Sa
24 Sa

25 −Sa
26

Sa
33 −Sa

34 Sa
35 −Sa

36

(sym) Sa
44 −Sa

45 Sa
46

Sa
55 −Sa

56

Sa
66




, (2.3)

Sd =




Sa
11 Sa

12 Sa
13 −Sa

14 −Sa
15 Sa

16

Sa
22 Sa

23 −Sa
24 −Sa

25 Sa
26

Sa
33 −Sa

34 −Sa
35 Sa

36

(sym) Sa
44 Sa

45 −Sa
46

Sa
55 −Sa

56

Sa
66




. (2.4)

Obviously, the compliance matrices under these four coordinate systems are differ-
ent. Therefore, we propose that the unique standardized compliance matrix is the
one with minimal S14 and S25 among these four matrices, i.e., Condition IV.

Conditions I–IV can ensure the uniqueness of this standardized compliance
matrix for a general anisotropic material. However, for some materials with spe-
cial symmetries, the uniqueness of STF standardized compliance matrix may not
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11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

(sym)

S S S S S S

S S S S S

S S S S

S S S

S S

S

→ → → →

→ → →

→ →

→

Fig. 2. The specified sequence of compliance matrix components.

be guaranteed by Conditions I–IV. Therefore, a more general rule in determining a
unique standardized compliance matrix is proposed as follows. Firstly, a specified
sequence of compliance matrix components is introduced as

(S11, S22, S33, S44, S55, S66, S12, S13, S14, S15, S16,

S23, S24, S25, S26, S34, S35, S36, S45, S46, S56),

and is schematically shown in Fig. 2. Similar to Conditions I–IV, we first find
coordinate systems to make S11 global minimum. For the rest components in the
sequence, we then sequently search for their global minimums while keeping the
previous components unchanged. It should be pointed out that for most situa-
tions, Conditions I–IV are consistent with this general rule, and are relatively easier
to use.

For any anisotropic material, adopting such unique STF standardized com-
pliance matrix can eliminate the arbitrariness brought from different coordinate
systems, and make it convenient to compare the elastic properties between dif-
ferent materials. For a general anisotropic material, the unique STF standardized
compliance matrix corresponds to the unique STF standardized coordinate sys-
tem. However, for materials with some symmetry, the STF standardized coordinate
system might not be unique. More discussion about this situation will be given
in Sec. 3.1.

2.2. The characteristic of the stiffest orientation-based

standardized compliance matrix for general anisotropic

materials

For general anisotropic materials, we will illustrate and prove that there are three
zeroes in the upper triangle of the standardized compliance matrix.

We adopt an example to understand the origin of these zero compliance compo-
nents. Figure 3 shows an initially rectangular representative volume element (RVE)
subject to a uniaxial tensile stress σ11 along the x̂1-direction. In the following, we
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σ σ11 11

x̂1

x̂2 θ3

×
σ σ11 11

x̂1

x̂2

(a) (b)

Fig. 3. The deformation of RVE subject to a uniaxial tensile stress σ11 along the x̂1-direction:
(a) deformed RVE in parallelogram shape and (b) deformed RVE in rectangle shape.

use proof by contradiction to demonstrate that the deformed RVE is still a rectan-
gle. Firstly, we assume that the deformed RVE under σ11 becomes a parallelogram
as shown in Fig. 3(a), and we can note that the direction rotating anticlockwise
slightly from x̂1-direction (denoted as a dotted line) is less stretchable and therefore
has a larger tensile stiffness, which is contradictory to the condition that the global
maximum stiffness is achieved in x̂1-direction. Hence the deformed RVE must be a
rectangle as shown in Fig. 3(b), which implies that the σ11 along the x̂1-direction
cannot lead to the shear strain γ12, i.e., Ŝ16 = 0. Similarly, Ŝ15 = 0 and Ŝ24 = 0 can
be obtained. These conclusions can also be proved strictly in an analytical way.

Compliance components vary with the rotation of the coordinate system. When
rotating the STF standardized coordinate system x̂1−x̂2−x̂3 around x̂3-axis through
an angle θ3 (in this paper all rotations follow the right-hand rule), the compliance
component S11 can be expressed as

S11(Ŝij , θ3) = cos4(θ3)Ŝ11 + sin4(θ3)Ŝ22 + sin2(θ3) cos2(θ3)(Ŝ66 + 2Ŝ12)

+ 2 sin(θ3) cos3(θ3)Ŝ16 + 2 sin3(θ3) cos(θ3)Ŝ26. (2.5)

According to Condition I and the above equation, Ŝ11 is the global minimum of
S11, and is achieved along x̂1-axis, i.e.,

∂S11

∂θ3

∣∣∣∣
θ3=0

= 2Ŝ16 = 0. (2.6)

Similarly,

∂S11

∂θ2

∣∣∣∣
θ2=0

= −2Ŝ15 = 0. (2.7)

According to Condition II, Ŝ22 is the minimum of S22 in the plane perpendicular
to x̂1-axis, and is achieved along x̂2-axis, i.e.,

∂S22

∂θ1

∣∣∣∣
θ1=0

= 2Ŝ24 = 0. (2.8)
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Based on the above discussions, the final form of the STF standardized compliance
matrix for general anisotropic materials is

Ŝ =




Ŝ11 Ŝ12 Ŝ13 Ŝ14 0 0

Ŝ22 Ŝ23 0 Ŝ25 Ŝ26

Ŝ33 Ŝ34 Ŝ35 Ŝ36

(sym) Ŝ44 Ŝ45 Ŝ46

Ŝ55 Ŝ56

Ŝ66




. (2.9)

Obviously, there are only 18 nonzero components in the upper triangle of the stan-
dardized compliance matrix, which can be naturally selected as 18 independent
elastic material constants. Here, we intentionally use “elastic material constants” to
reflect their material intrinsic feature, which is independent of the coordinate ori-
entation. Therefore, 18 independent elastic material constants together with three
arbitrariness of the coordinate orientation result in 21 independent elastic con-
stants in the usual form of the compliance matrix for general anisotropic mate-
rials. We suggest including these statements in the textbooks to avoid possible
confusions.

It should be mentioned that there are many choices for these 18 independent
elastic material constants. For example, some researchers [Cowin and Mehrabadi,
1992; Rychlewski, 1995; Dellinger et al., 1998; Kowalczyk-Gajewska and Ostrowska-
Maciejewska, 2009] had pointed out that the 21 independent elastic constants in
Kelvin notation are consisted of 6 Kelvin moduli, 12 stiffness distributors and 3
orientation angles. The 6 Kelvin moduli are the eigenvalues of the compliance matrix
and do not vary with the coordinate system. The advantage of using the group of
independent elastic material constants from Kelvin notation is the reflection of
mathematical essences of an elastic constitutive tensor, such as eigenvalues and
tensor invariants. However, the independent elastic material constants based on the
components of a standardized compliance matrix proposed in this paper have more
straightforward physical meaning, since each constant represents the strain–stress
ratio under uniaxial loading and it is obtained directly and easily in experiments
[Cazzani and Rovati, 2003; Rovati and Taliercio, 2003]. We therefore recommend
using the proposed elastic material constants, just like the Young’s modulus and
Poisson ratio for isotropic materials are widely used, but they are not elastic material
constants from Kelvin notation.

2.3. The number of independent elastic material constants for

symmetric materials and two-dimensional materials

When a material has some orientational symmetry, more material intrinsic
directions can be used to set up a standardized coordinate system without the
arbitrariness of the coordinate orientation. As demonstrated above, only under a
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standardized coordinate system, the number of independent elastic material con-
stants can be correctly exhibited.

For a material with a single symmetry plane (or monoclinic symmetry), if x1-
axis is taken as the normal direction of the symmetric plane, and x2-axis is taken
as the stiffest direction in the plane, a standardized coordinate system is then set
up. The corresponding standardized compliance matrix is

Ssym =




Ssym
11 Ssym

12 Ssym
13 Ssym

14 0 0

Ssym
22 Ssym

23 0 0 0

Ssym
33 Ssym

34 0 0

(sym) Ssym
44 0 0

Ssym
55 Ssym

56

Ssym
66



. (2.10)

The superscript “sym” implies that the material orientational symmetry is used in
selecting the coordinate system, and the corresponding compliance matrix is called
as the symmetry orientation-based standardized compliance matrix, or
SYM standardized compliance matrix for abbreviation. In the above equation
Ssym

24 = 0 has been used according to Eq. (2.8), and noting that Ssym
22 is the min-

imum of S22 in the symmetry plane. It is noted from Eq. (2.10) that a material
with a single symmetry plane has only 12 independent elastic material constants,
different from the statement in the textbooks that there are 13 independent elastic
constants, since the arbitrariness of the coordinate orientation is usually not empha-
sized. Cowin [1995] also proved that the appropriate selection of the coordinate
system may reduce the number of the distinct constants for monoclinic symmetry
by one.

For an orthotropic material with three orthogonal symmetry planes, x1-axis
and x2-axis are usually taken as two normal directions of the orthogonal symme-
try planes, and the three arbitrariness of the coordinate orientation are naturally
excluded. The corresponding SYM standardized compliance matrix equation (1.2)
can correctly exhibit nine independent elastic material constants, as presented in
the textbooks.

When only the two-dimensional anisotropic elasticity is under consideration, the
sub-compliance-matrix S2D has six components, i.e., S11, S22, S66, S12, S16 and S26.
The corresponding STF standardized compliance matrix is easily obtained as

Ŝ2D =



Ŝ11 Ŝ12 0

Ŝ12 Ŝ22 Ŝ26

0 Ŝ26 Ŝ66


. (2.11)

This standardized compliance matrix clearly reveals that there are only five inde-
pendent elastic material constants, not six.
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2.4. Comparison between two types of standardized compliance

matrices: The stiffest orientation-based one and symmetry

orientation-based one

As mentioned above, two types of material intrinsic directions, i.e., the direction
with an extreme stiffness and the one related to some symmetries, can be used to
establish a special coordinate system. The corresponding compliance matrix without
the arbitrariness of coordinate system orientation is called a standardized one in
this paper. If only the stiffest directions are adopted in establishing the special
coordinate system, a STF standardized compliance matrix is obtained, while if any
direction related to some symmetries is adopted, a SYM standardized compliance
matrix is obtained.

The STF standardized compliance matrix and SYM standardized compliance
matrix have different advantages and applications. The former exists for any
anisotropic material and has a unique expression, which is convenient in comparing
among different materials. The latter only exists for materials with orientational
symmetry, but can exhibit the number of independent material constants more
clearly than the former.

For materials with some symmetry planes, one might speculate that the special
coordinate system based on the extreme stiffness direction coincides with the one
based on the normal directions of the symmetry planes. This is not always true,
and will be demonstrated by the following example.

An overall orthotropic laminate material is composed of unidirectional fiber-
reinforced laminas, as shown in Fig. 4. The composite laminate has four laminas

40°

40°

stiffest direction

compositeE

1x

2x

( )sym axis

( )sym axis

( )degree

0

30

60
90

120

150

180

210

240
270

300

330

1x

3x

(a) (b)

Fig. 4. The distribution of values of Ecompostie for composite laminate in different directions:
(a) top view of the composite laminate and (b) side view of the composite laminate.
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with equal thickness and the set of fiber orientations [40◦,−40◦,−40◦, 40◦]. The
compliance matrix of the unidirectional fiber-reinforced lamina under its local prin-
ciple coordinate system (aligned with the fiber direction) is supposed as

Slamina =
1

Elamina
1




1 −0.3 0

−0.3 100 0

0 0 8


, (2.12)

where Elamina
1 is the Young’s modulus of the fiber-reinforced lamina along the

direction of fiber orientation. According to the classical laminate theory, the in-
plane strains for different laminas are the same, thus the compliance matrix for
the laminate can be obtained. The effective Young’s modulus in different directions
Ecomposite for composite laminate is shown in Fig. 4(a). It is found that the stiffest
direction (or the direction with the maximum Ecomposite) is not along any symmet-
ric axis, x1-axis or x2-axis. Therefore, the STF standardized compliance matrix and
the SYM standardized compliance matrix of this composite laminate are different.

3. Determining Material Orientational Symmetry Through the
Searching Process of the Stiffest Orientation-Based
Standardized Compliance Matrix

Materials sometimes do not show their orientational symmetry in their appearance.
In this case, we may firstly treat it as a general anisotropic material, and measure its
compliance components in an arbitrarily chosen coordinate system. We then search
for the STF standardized coordinate system and the corresponding STF standard-
ized compliance matrix. During this searching process, some information, such as
the number of STF standardized coordinate systems and a sphere of orientation
colored by the values of uniaxial tensile stiffness, can be obtained and may provide
hints on the material orientational symmetry, but it is interesting to find that not all
these hints can definitely lead to positive results, as discussed later in this section.

3.1. Symmetry investigation on materials with two stiffest

orientation-based standardized coordinate systems

According to Conditions I–IV in Sec. 2, any material has a unique STF standardized
compliance matrix. For general anisotropic materials, this standardized compliance
matrix can only be obtained under a single standardized coordinate system. If the
STF standardized compliance matrix can be obtained under two STF standardized
coordinate systems, we will prove that the material has a symmetry plane.

The two STF standardized coordinate systems are assumed x̂
(1)
1 −x̂

(1)
2 −x̂

(1)
3 and

x̂
(2)
1 −x̂

(2)
2 −x̂

(2)
3 , under which the STF standardized compliance matrices Ŝ are iden-

tical. For convenience, a reference coordinate system X1 − X2 − X3, as shown in
Fig. 5, is introduced. In order to show schematics clearly, the origins of different
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1X

2X

3X

ˆ (2)
1xˆ (2)

2x

ˆ (1)
2x

ˆ (1)
1x

Θ
ϕ
ϕ

(1)

Θ(2)

1 2X Xin - plane

1 2X Xbehind - plane

1 2X Xin front of - plane

Fig. 5. The two STF standardized coordinate systems with identical STF standardized compli-
ance matrices.

coordinate systems are sometimes translationally shifted in this paper. Without loss
of generality, it is assumed that X1-axis is the bisector of angle 2ϕ between x̂

(1)
1 -axis

and x̂
(2)
1 -axis, and X2-axis is also within the plane of x̂

(1)
1 -axis and x̂

(2)
1 -axis. The

angle around x̂
(1)
1 -axis from X1 − X2 plane to x̂

(1)
2 -axis is denoted as Θ(1), which

takes a positive value when following the right-hand rule. The angle around x̂
(2)
1 -axis

from X1 − X2 plane to x̂
(2)
2 -axis is denoted as Θ(2).

Because x̂
(1)
1 −x̂

(1)
2 −x̂

(1)
3 and x̂

(2)
1 −x̂

(2)
2 −x̂

(2)
3 are only two STF standardized coor-

dinate systems, it is easy to know that the rotations from the coordinate system
x̂

(1)
1 −x̂

(1)
2 −x̂

(1)
3 to x̂

(2)
1 −x̂

(2)
2 −x̂

(2)
3 should be the same as those from the coordi-

nate system x̂
(2)
1 −x̂

(2)
2 −x̂

(2)
3 to x̂

(1)
1 −x̂

(1)
2 −x̂

(1)
3 , as shown in Fig. 6. Therefore Θ(1)

should be equal to Θ(2) (denoted by Θ later), and this relation can also been proved
analytically as presented in Appendix B.

Through the same rotations (rotating −Θ around first axis and then rotating −ϕ

around the third axis), x̂
(1)
1 −x̂

(1)
2 −x̂

(1)
3 and x̂

(2)
1 −x̂

(2)
2 −x̂

(2)
3 become X1−X2−X3 and

ˆ (1)
1x

ˆ
Θ(1)

(1)
1

Rotate -
around x -axis

ˆ
Θ (2)

(2)
1

Rotate π +
around x -axisˆ

Θ (2)

(2)
1

Rotate -
around x -axis

(1)
3

Rotate - 2
around x -axis

ˆ (1)
2x

ˆ (1)
1x(1)

2x
(1)
3x

ˆ (2)
1xˆ (2)

2x

ˆ (2)
1x

(1)
3x

ˆ (2)
1x

(2)
3x

(2)
3x

ˆ (1)
1x

(1)'
2x

(2)
2x

(2)'
2x

2X

1X
3X

ˆ
Θ(1)

(1)
1

Rotate π +
around x -axis

(2)
3

2Rotate -
around x -axis

ϕ

ϕ

ϕ

Θ(1)

Θ(2)

ϕ

ϕ

ϕ

Fig. 6. The rotation relation between coordinate systems x̂
(1)
1 −x̂

(1)
2 −x̂

(1)
3 and x̂

(2)
1 −x̂

(2)
2 −x̂

(2)
3 .
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ˆ (1)
1x

ˆ (1)
2x

ˆ (2)
1xˆ (2)

2x

Θ

Θ

ˆ
Θ

(1)
1

Rotate -
around x -axis

ˆ
Θ

(2)
1

Rotate -
around x -axis

ˆ (1)
1x(1)

2x
(1)
3x ϕ ϕ

ϕϕ ϕ

ˆ (2)
1x

(2)
3x

(2)
2x

(1)
3

Rotate -
around x -axis

(2)
3

Rotate -
around x -axis

2X

1X
3X

1X(-)
3X

(-)
2X

Fig. 7. Schematics of obtaining the coordinate systems through the same rotations from coordi-

nate systems x̂
(1)
1 −x̂

(1)
2 −x̂

(1)
3 and x̂

(2)
1 −x̂

(2)
2 −x̂

(2)
3 .

X1−X
(−)
2 −X

(−)
3 , respectively, as shown in Fig. 7. Obviously, the compliance matri-

ces under X1−X2−X3 and X1−X
(−)
2 −X

(−)
3 coordinate systems are the same. It

also noted that X1−X2−X3 can be obtained by rotating X1−X
(−)
2 −X

(−)
3 π around

X1-axis, which leads eight opposite values in the components for two corresponding
compliance matrices, similar to Eqs. (2.1) and (2.2). From these relations, the com-
pliance matrix under X1−X2−X3 should therefore have eight zeroes in the upper
triangle as,

SX1−X2−X3 =




S
(0)
11 S

(0)
12 S

(0)
13 S

(0)
14 0 0

S
(0)
22 S

(0)
23 S

(0)
24 0 0

S
(0)
33 S

(0)
34 0 0

(sym) S
(0)
44 0 0

S
(0)
55 S

(0)
56

S
(0)
66




(3.1)

which implies that X2−X3 plane is a symmetry plane for this material and is normal
to the angle bisector between x̂

(1)
1 -axis and x̂

(2)
1 -axis.

3.2. Identification of the material symmetry through

the orientational variation of S11

According to Condition I for a STF standardized coordinate system, determining
x̂1-axis needs to search for the global minimum S11 over all possible orientations.
Therefore, a sphere of orientation colored by the values of S11 as shown in Fig. 8
can be naturally obtained during the searching process. By observing this sphere,
we can find the symmetry of S11 if there is any. Our question is that, does the
symmetry of S11 definitely imply the same symmetry of material elastic properties?
In specific, three types of symmetries, i.e., mirror symmetry, transversely isotropic
symmetry and isotropic symmetry, are discussed as follows. Euler angles α, β and
γ shown in Fig. 8(a) are adopted to describe spatial orientations with respect to a
reference coordinate system X1−X2−X3.
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3.2.1. A mirror symmetry in the orientational variation of S11

If a sphere of orientation colored by S11 possesses a mirror symmetry, without loss
of generality, we assume that X2−X3 plane is the symmetry plane, as shown in
Fig. 8(b). Obviously, for any α and β, the direction expressed by Euler angles (α, β)
and the direction (α, π − β) are symmetrical about the X2−X3 plane, and their
corresponding S11 are the same, i.e.,

S11(α, β, S
(0)
ij ) = S11(α, π − β, S

(0)
ij ), (3.2)

where S
(0)
ij are the components of the compliance matrix under X1−X2−X3 coor-

dinate system. From the relation between the original compliance matrix and the
rotated one (see Appendix A), the detailed expression of Eq. (3.2) can be obtained as

0 = S11(α, β, S
(0)
ij ) − S11(α, π − β, S

(0)
ij )

= −4 sin(β) cos(β){cos2(β)[cos(α)S(0)
15 − sin(α)S(0)

16 ]

+ cos(α) sin2(β)[sin2(α)(S(0)
25 + S

(0)
46 ) + cos2(α)S(0)

35 ]

− sin(α) sin2(β)[sin2(α)S(0)
26 + cos2(α)(S(0)

36 + S
(0)
45 )]}. (3.3)

Because the above equation holds for any α and β, it can be inferred that

S
(0)
15 = S

(0)
16 = S

(0)
26 = S

(0)
35 = S

(0)
25 + S

(0)
46 = S

(0)
36 + S

(0)
45 = 0 (3.4)

which are not consistent with the conditions as shown in Eq. (3.1) for the material
elastic properties with mirror symmetry about X2−X3 plane. This implies that a
material with the mirror symmetry of the tensile stiffness does not definitely possess
the same symmetry in its elastic properties.

3X

1X

2X

( )direction α,β

( )direction α,π -β

1X

(0 )direction ,β
( )direction α,β

x1

1X

2X

3X
'x2

α

'x3

1X

2X

3X
'x2

'x1
''x3

β

x2

x3

x1

1X

2X

3X
1

Rotate α
around x -axis

2
'

Rotate β
around x -axis

1X

2X

3X
''2x

'x1

'''3x

γ

1
'

Rotate γ
around x -axis

(a)

(b) (c) (d)

Fig. 8. Schematics of S11 orientational variation with different symmetries. (a) Euler angles α,
β and γ, (b) mirror symmetry case, (c) transversely isotropic symmetry case and (d) isotropic
symmetry case.
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3.2.2. A transversely isotropic symmetry in the orientational variation of S11

A transversely isotropic symmetry is a much higher symmetry than a mirror symme-
try discussed above. If a sphere of orientation colored by S11 possesses a transversely
isotropic symmetry, without loss of generality, X2−X3 plane is assumed to be the
transversely isotropic plane, as shown in Fig. 8(c). For any α and β, the direction
expressed by Euler angles (α, β) and the direction (0, β) have the same S11, i.e.,

S11(α, β, S
(0)
ij ) = S11(0, β, S

(0)
ij ). (3.5)

From the relation between the original compliance matrix and the rotated one (see
Appendix A), the detailed expression of Eq. (3.5) can be obtained as

0 = S11(α, β, S
(0)
ij ) − S11(0, β, S

(0)
ij )

= sin4(α) sin4(β)S(0)
22 + [cos4(α) − 1] sin4(β)S(0)

33

+ sin2(α) cos2(α) sin4(β)(S(0)
44 + 2S

(0)
23 )

− sin2(α) sin2(β) cos2(β)[S(0)
55 − S

(0)
66 − 2(S(0)

12 − S
(0)
13 )]

− 2 sin(α) cos(α) sin2(β) cos2(β)(S(0)
14 + S

(0)
56 )

− 2 sin2(α) cos(α) sin3(β) cos(β)(S(0)
25 + S

(0)
46 )

+ 2 sin(α) cos2(α) sin3(β) cos(β)(S(0)
36 + S

(0)
45 )

+ 2[1 − cos(α)] sin(β) cos3(β)S(0)
15 + 2 sin(α) sin(β) cos3(β)S(0)

16

− 2 sin3(α) cos(α) sin4(β)S(0)
24 + 2 sin3(α) sin3(β) cos(β)S(0)

26

− 2 sin(α) cos3(α) sin4(β)S(0)
34 + 2[1 − cos3(α)] sin3(β) cos(β)S(0)

35 . (3.6)

For any α and β, the following relations can satisfy Eq. (3.6),

S
(0)
22 = S

(0)
33 , S

(0)
55 − S

(0)
66 = 2(S(0)

12 − S
(0)
13 ), S

(0)
44 = 2(S(0)

22 − S
(0)
23 ),

S
(0)
14 + S

(0)
56 = S

(0)
25 + S

(0)
46 = S

(0)
36 + S

(0)
45 = 0,

S
(0)
15 = S

(0)
16 = S

(0)
24 = S

(0)
26 = S

(0)
34 = S

(0)
35 = 0.

(3.7)

However, Eq. (3.7) is not consistent with the following conditions for the trans-
versely isotropic symmetry with the isotropic X2−X3 plane on material elastic
properties,

S
(0)
22 = S

(0)
33 , S

(0)
55 = S

(0)
66 , S

(0)
12 = S

(0)
13 , S

(0)
44 = 2(S(0)

22 − S
(0)
23 ),

S
(0)
14 = S

(0)
56 = S

(0)
25 = S

(0)
46 = S

(0)
36 = S

(0)
45 = 0,

S
(0)
15 = S

(0)
16 = S

(0)
24 = S

(0)
26 = S

(0)
34 = S

(0)
35 = 0.

(3.8)
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This also implies that a material with the transversely isotropic symmetry of
the tensile stiffness does not definitely possess the same symmetry in its elastic
properties.

3.2.3. An isotropic symmetry in the orientational variation of S11

An isotropic symmetry is the highest symmetry. If a sphere of orientation colored
by S11 possesses an isotropic symmetry, for any α and β, the direction expressed
by Euler angles (α, β) have identical S11, i.e.,

S11(α, β, S
(0)
ij ) = S

(0)
11 . (3.9)

From the relation between the original compliance matrix and the rotated one (see
Appendix A), the detailed expression of Eq. (3.9) can be obtained as

0 = S11(α, β, S
(0)
ij ) − S

(0)
11

= (cos4(β) − 1)S(0)
11 + [1 − cos2(α)]2[1 − cos2(β)]2S(0)

22 + cos4(α)[1 − cos2(β)]2S(0)
33

+ sin2(α) cos2(α)[1 − cos2(β)]2(S(0)
44 + 2S

(0)
23 )

+ cos2(α) sin2(β) cos2(β)(S(0)
55 + 2S

(0)
13 )

+ sin2(α) sin2(β) cos2(β)(S(0)
66 + 2S

(0)
12 )

− 2 sin(α) cos(α) sin2(β) cos2(β)(S(0)
14 + S

(0)
56 )

− 2 sin2(α) cos(α) sin3(β) cos(β)(S(0)
25 + S

(0)
46 )

+ 2 sin(α) cos2(α) sin3(β) cos(β)(S(0)
36 + S

(0)
45 )

− 2 cos(α) sin(β) cos3(β)S(0)
15 + 2 sin(α) sin(β) cos3(β)S(0)

16

− 2 sin3(α) cos(α)[1 − cos2(β)]2S(0)
24

+ 2 sin3(α) sin3(β) cos(β)S(0)
26 − 2 sin(α) cos3(α)[1 − cos2(β)]2S(0)

34

− 2 cos3(α) sin3(β) cos(β)S(0)
35 . (3.10)

For any α and β, the following relations can satisfy Eq. (3.10),

S
(0)
11 = S

(0)
22 = S

(0)
33 , S

(0)
15 = S

(0)
16 = S

(0)
24 = S

(0)
26 = S

(0)
34 = S

(0)
35 = 0,

S
(0)
14 + S

(0)
56 = S

(0)
25 + S

(0)
46 = S

(0)
36 + S

(0)
45 = 0,

S
(0)
44 = 2(S(0)

11 − S
(0)
23 ), S

(0)
55 = 2(S(0)

11 − S
(0)
13 ), S

(0)
66 = 2(S(0)

11 − S
(0)
12 ),

(3.11)
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or expressed in the compliance matrix form

SX1–X2–X3

=




S
(0)
11 S

(0)
12 S

(0)
13 S

(0)
14 0 0

S
(0)
11 S

(0)
23 0 S

(0)
25 0

S
(0)
11 0 0 S

(0)
36

(sym) 2(S(0)
11 − S

(0)
23 ) −S

(0)
36 −S

(0)
25

2(S(0)
11 − S

(0)
13 ) −S

(0)
14

2(S(0)
11 − S

(0)
12 )




.

(3.12)

Obviously, Eq. (3.12) is not consistent with the following compliance matrix for the
isotropic symmetry of material elastic properties.

Sisotropic =




S
(0)
11 S

(0)
12 S

(0)
12 0 0 0

S
(0)
11 S

(0)
12 0 0 0

S
(0)
11 0 0 0

(sym) 2(S(0)
11 − S

(0)
12 ) 0 0

2(S(0)
11 − S

(0)
12 ) 0

2(S(0)
11 − S

(0)
12 )




.

(3.13)

It is very interesting to note from Eqs. (3.12) and (3.13) that a material with
isotropic tensile stiffness is not definitely an isotropic elastic material. In another
word, the symmetry of the material elastic properties cannot be completely identi-
fied by only measuring the tensile stiffness of all directions. More interestingly, these
statements are only correct for three-dimensional elastic constitutive relations, but
do not hold for two-dimensional ones. Namely, an isotropic symmetry of tensile stiff-
ness in two dimensions is definitely equivalent to an isotropic symmetry of material
elastic properties. The detailed analytic proof on two-dimensional cases is presented
in Appendix C.

σ11

σ11

1x

3x

2x

Fig. 9. The deformation of a cuboid RVE subject to a uniaxial tensile stress σ11.
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For three-dimensional materials with an isotropic symmetry of tensile stiff-
ness, Fig. 9 shows a schematic example, a cuboid RVE subject to a uniaxial
tensile stress σ11. From the interpretation context related to Fig. 3, we know
S15 = S16 = 0, since every direction is the stiffest direction when the RVE
possesses isotropic symmetry of tensile stiffness. However, a nonvanishing shear
deformation γ23 normal to the tensile stress σ11 cannot be excluded by those condi-
tions, resulting in a nonvanishing compliance component S14 and anisotropy of the
material.

4. A Simple and Correct Measure of Anisotropy Degree

The last part of the previous section exhibits a possibility that, at least in mathemat-
ical sense, a material with isotropic tensile stiffness does not have isotropic elastic
properties. In some studies based on representative volume element [e.g., Segurado
and Llorca, 2002; Guo et al., 2014], the isotropy of elastic properties is required, and
a proper measure is needed to evaluate it quickly. However, many researchers have
incorrectly adopted the ratio between the maximum and minimum tensile stiffnesses
as the measure of anisotropy degree [Ni and Chiang, 2007; Margenov et al., 2014].
In the following, we will construct a periodical lattice structure to demonstrate the
failure of this measure in identifying the anisotropy.

4.1. An anisotropic material with isotropic tensile stiffness

Figure 10 shows a periodic cubic unit cell (or a representative volume element) of a
lattice structure with side length l, which consists of two-force bars and connecting
nodes. One node is inside the cube and eight other nodes are located at the corners.
An optimization is carried out on the stiffnesses of bars and the position of the
inside node to make its tensile stiffness isotropic while keeping the anisotropy of
material elasticity, and the results are given in Table 1. The corresponding effective
compliance matrix S of this latticed material is given in X1−X2−X3 coordinate

a

e
f

g

cd
h

k b X1

X2

X3

Fig. 10. A periodic cubic unit cell of a lattice structure with two-force bars and connecting nodes.
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Table 1. The optimization results of the stiffnesses of bars and the position of the inside node.

The position of the inside node

„
xk
1
l

,
xk
2
l

,
xk
3
l

«
= (0.7866, 0.6736, 0.2795)

The bar stiffness kab = kab kac = 0.3727kab kak = 0.6465kab

kbc = 0.9566kab kbd = 0.2918kab kbk = 1.8602kab

kae = 0.9781kab kch = 0.3782kab kck = 1.1756kab

kag = 0.8179kab kdg = 0.3114kab kdk = 1.6885kab

kbh = 0.8451kab kah = 0.2173kab kek = 1.6332kab

kce = 0.4116kab kde = 0.3331kab kfk = 1.0263kab

kdf = 0.7512kab kgk = 2.0571kab

khk = 0.5734kab

system as

S =
l

kab




0.1763 −0.0434 −0.0426 −0.0111 0 0
0.1763 −0.0436 0 −0.0066 0

0.1763 0 0 0.0080
(sym) 0.4399 −0.0080 0.0066

0.4378 0.0111
0.4395




, (4.1)

where kab is the stiffness of the bar connecting node a and node b.
Obviously, the tensile stiffnesses along X1-, X2- and X3-directions are the same,

but this compliance matrix is not an isotropic one. Furthermore, the finite element
software ABAQUS is adopted to test the isotropy of the tensile stiffness along
any direction. Four arbitrary directions denoted by Euler angles (α, β, γ as shown
in Fig. 8) are chosen to simulate the uniaxial tensile tests, and the stresses and
strains both in the reference X1−X2−X3 coordinate system and corresponding
rotated coordinate systems are given in Table 2. It is easy to apply loading in the
reference X1–X2−X3 coordinate system and to obtain the tensile stiffness in the
rotated coordinate system. The first component of the strain matrix in the rotated
coordinate system clearly exhibits the isotropy of the tensile stiffness. Hence, this
is a counter example that demonstrates the invalidity of the measure of anisotropy
degree based on the ratio between the maximum and minimum tensile stiffnesses.
A more proper measure is needed.

4.2. A measure of anisotropy degree based on the maximum

shear-extension coupling coefficient

As mentioned in Sec. 3, a nonvanishing shear deformation γ23 cannot be excluded
in a material with only isotropic tensile stiffness. In this paper, we therefore propose
the maximum ratio between the shear and tensile strain under uniaxial tension in
all orientations, i.e., the maximum shear-extension coupling coefficient, as a simple
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measure of anisotropy degree,

ηmax = max
(

γnormal

εtensile
,
γin-plane

εtensile

)
for all orientations

, (4.2)

where γnormal = γ23 and γin-plane = γ12 are shear strains normal to and in the plane
of the uniaxial tensile direction (x1-direction), respectively, and εtensile = ε11 is the
tensile strain. ηmax can also be expressed with components of compliance matrix as

ηmax = max
(

S14

S11
,
S16

S11

)
for all coordinate systems

. (4.3)

When a material subject to uniaxial stretcthing in any direction has no shear defor-
mation, ηmax is zero, and we will prove in the following that the material has
isotropic elaticity.

According to the relevant analysis of Fig. 3 and Eqs. (2.6) and (2.7), no in-plane
shear strain for uniaxial stretcthing in any direction implies that the derivative
of the tensile stiffness along any direction with respect to the orientation angle is
zero, and the material has isotropic tensile stiffness. Therefore, the corresponding
compliance matrix has the form as Eq. (3.12). Still based on zero shear strain,

S
(0)
14 = S

(0)
25 = S

(0)
36 = 0. (4.4)

The compliance matrix becomes

SX1–X2–X3

=




S
(0)
11 S

(0)
12 S

(0)
13 0 0 0

S
(0)
11 S

(0)
23 0 0 0

S
(0)
11 0 0 0

(sym) 2(S(0)
11 − S

(0)
23 ) 0 0

2(S(0)
11 − S

(0)
13 ) 0

2(S(0)
11 − S

(0)
12 )




.

(4.5)

If S
(0)
12 �= S

(0)
13 , ε22 �= ε33 for the material under X1-direction tension, and non-

zero shear strain will appear when the coordinate system rotates around X1-axis.
Therefore, S

(0)
12 = S

(0)
13 . Similarly, S

(0)
12 = S

(0)
23 . Equation (4.5) is then the same

as the isotropic elastic compliance matrix equation (3.13). It is proved that this
maximum shear-extension coupling coefficient ηmax is a correct and simple measure
of anisotropy degree.

It must be pointed out that all the conclusions in this paper are achieved through
simple matrix operations, without using other advanced knowledge such as the sym-
metry of point group and tensor analysis, which is therefore easy to understand.
These related issues have also been investigated via tensor analysis. For example,
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He [2004], Ting [2006] and Ting and He [2006] discussed the general forms of elas-
tic tensors with orientation-independent tensile stiffness through decomposition of
elasticity tensors. Moreover, He [2004] pointed out that the elastic properties is
isotropic if only the Young’s modulus and traction-associated bulk modulus are
both isotropic, which may serve as another measure of anisotropy degree. There are
also some measures based on the norm of elastic tensor [Norris, 2006; Alhayek and
Gaith, 2010]. It is easy to find that among all these measures, the proposed measure
of anisotropy degree based on the maximum shear-extension coupling coefficient is
simpler and has more straightforward physical meanings.

5. Conclusion

In this paper, standardized compliance matrices for general anisotropic materials
and a new measure of anisotropy degree have been proposed and discussed. The
following conclusions are achieved.

(1) For a general anisotropic material, a unique stiffest orientation-based standard-
ized compliance matrix is proposed, which clearly exhibits 18 independent elas-
tic material constants and makes it convenient to compare the elastic properties
between different materials.

(2) If a material has some orientational symmetry, the symmetry orientation-based
standardized compliance matrix can also be obtained, which can show the
reduced independent elastic material constants. During the searching process
for the symmetry, it is interesting to find that a material with some symmetry
of the tensile stiffness, such as isotropic symmetry, does not definitely possess
the same symmetry in its elastic properties.

(3) It is important to find that the ratio between the maximum and minimum
tensile stiffnesses is not a correct measure of anisotropy degree. The maximum
shear-extension coupling coefficient in all orientations is proposed to serve as a
simple and correct measure of anisotropy degree. Therefore, the most essential
feature of isotropic elasticity is no shear-extension coupling, not isotropic tensile
stiffness. However, for a two-dimensional constitutive relation, both the stiffness
ratio and the shear-extension coupling coefficient can be adopted as proper
measures of anisotropy degree.
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Appendix A

Assume the reference coordinate system is denoted as X1−X2−X3, and the rotated
coordinate system denoted as x

(1)
1 −x

(1)
2 −x

(1)
3 is obtained by rotating the reference

coordinate system angle θ1 around X1-axis. The corresponding stress and strain
matrices in these two coordinate systems have the following relation,

σ(1) = Tσ
θ1

· σ(0), ε(1) = Tε
θ1

· ε(0), (A.1)

where Tσ
θ1

and Tε
θ1

are the stress and strain transformation matrices, respectively,
and can be written as

Tσ
θ1

=




1 0 0 0 0 0

0 cos2(θ1) sin2(θ1) 2 sin(θ1) cos(θ1) 0 0

0 sin2(θ1) cos2(θ1) −2 sin(θ1) cos(θ1) 0 0

0 −sin(θ1) cos(θ1) sin(θ1) cos(θ1) cos2(θ1) − sin2(θ1) 0 0

0 0 0 0 cos(θ1) −sin(θ1)

0 0 0 0 sin(θ1) cos(θ1)



,

Tε
θ1

=




1 0 0 0 0 0

0 cos2(θ1) sin2(θ1) sin(θ1) cos(θ1) 0 0

0 sin2(θ1) cos2(θ1) −sin(θ1) cos(θ1) 0 0

0 −2 sin(θ1) cos(θ1) 2 sin(θ1) cos(θ1) cos2(θ1) − sin2(θ1) 0 0

0 0 0 0 cos(θ1) −sin(θ1)

0 0 0 0 sin(θ1) cos(θ1)



.

(A.2)

Similarly, when rotating the coordinate system X1−X2−X3 around X2-axis by an
angle θ2, the stress and strain transformation matrices in the rotated coordinate

system x
(2)
1 −x

(2)
2 −x

(2)
3 , Tσ

θ2
and Tε

θ2
, can be written

Tσ
θ2 =

2
66666666664

cos2(θ2) 0 sin2(θ2) 0 −2 sin(θ2) cos(θ2) 0

0 1 0 0 0 0

sin2(θ2) 0 cos2(θ2) 0 2 sin(θ2) cos(θ2) 0

0 0 0 cos(θ2) 0 sin(θ2)

sin(θ2) cos(θ2) 0 −sin(θ2) cos(θ2) 0 cos2(θ2) − sin2(θ2) 0

0 0 0 −sin(θ2) 0 cos(θ2)

3
77777777775

,
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Tε
θ2 =

2
666666666664

cos2(θ2) 0 sin2(θ2) 0 −sin(θ2) cos(θ2) 0

0 1 0 0 0 0

sin2(θ2) 0 cos2(θ2) 0 sin(θ2) cos(θ2) 0

0 0 0 cos(θ2) 0 sin(θ2)

2 sin(θ2) cos(θ2) 0 −2 sin(θ2) cos(θ2) 0 cos2(θ2) − sin2(θ2) 0

0 0 0 −sin(θ2) 0 cos(θ2)

3
777777777775

.

(A.3)

When rotating the coordinate system X1−X2−X3 around X3-axis by an angle
θ3, the stress and strain transformation matrices in the rotated coordinate system

x
(3)
1 −x

(3)
2 −x

(3)
3 , Tσ

θ3
and Tε

θ3
, can be written as

Tσ
θ3 =

2
666666666664

cos2(θ3) sin2(θ3) 0 0 0 2 sin(θ3) cos(θ3)

sin2(θ3) cos2(θ3) 0 0 0 −2 sin(θ3) cos(θ3)

0 0 1 0 0 0

0 0 0 cos(θ3) −sin(θ3) 0

0 0 0 sin(θ3) cos(θ3) 0

−sin(θ3) cos(θ3) sin(θ3) cos(θ3) 0 0 0 cos2(θ3) − sin2(θ3)

3
777777777775

,

Tε
θ3 =

2
666666666664

cos2(θ3) sin2(θ3) 0 0 0 sin(θ3) cos(θ3)

sin2(θ3) cos2(θ3) 0 0 0 −sin(θ3) cos(θ3)

0 0 1 0 0 0

0 0 0 cos(θ3) −sin(θ3) 0

0 0 0 sin(θ3) cos(θ3) 0

−2 sin(θ3) cos(θ3) 2 sin(θ3) cos(θ3) 0 0 0 cos2(θ3) − sin2(θ3)

3
777777777775

.

(A.4)

According to Eq. (1.1), the relation between compliance matrices S(0) in
X1−X2−X3 and S(i) in x

(i)
1 −x

(i)
2 −x

(i)
3 can be obtained as

S(i) = Tε
θi
· S(0) · (Tσ

θi
)−1. (A.5)

In Sec. 2.1, Coordinate system (b), (c) and (d) can be obtained through rotating
Coordinate system (a) π angle around x̂a

1-, x̂a
2- and x̂a

3-axis, respectively. Therefore,
the compliance matrices Sb, Sc and Sd can be expressed as

Sb = Tε
θ1=π · Sa · (Tσ

θ1=π)−1,

Sc = Tε
θ2=π · Sa · (Tσ

θ2=π)−1,

Sd = Tε
θ3=π · Sa · (Tσ

θ3=π)−1.

(A.6)
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In Sec. 3.2, S11(α, β, S
(0)
ij ) is the tensile compliance component along the direc-

tion expressed by Euler angles (α, β) and the corresponding compliance matrix is

S(α, β, S
(0)
ij ) = (Tε

θ2=β) · (Tε
θ1=α) · S(0) · (Tσ

θ1=α)−1 · (Tσ
θ2=β)−1. (A.7)

Appendix B

From Fig. 6, the process of rotating the coordinate system x̂
(1)
1 −x̂

(1)
2 −x̂

(1)
3 to

x̂
(2)
1 −x̂

(2)
2 −x̂

(2)
3 is as follows: firstly, rotating coordinate system x̂

(1)
1 −x̂

(1)
2 −x̂

(1)
3

around x̂
(1)
1 -axis by an angle −Θ(1); then, rotating coordinate system

x̂
(1)
1 −x

(1)
2 −x

(1)
3 around x

(1)
3 -axis by an angle −2ϕ; finally, rotating coordinate sys-

tem x̂
(2)
1 −x

(1)′
2 −x

(1)
3 around x̂

(2)
1 -axis by an angle π + Θ(2). Considering that the

compliance matrix Ŝ under the two STF standardized coordinate systems are iden-
tical, according to transformation relation of compliance matrices under different
coordinate systems Eq. (A.5), we have

Ŝ = (Tε
θ1=π+Θ(2)) · (Tε

θ3=−2ϕ) · (Tε
θ1=−Θ(1)) · Ŝ · (Tσ

θ1=−Θ(1))−1

· (Tσ
θ3=−2ϕ)−1 · (Tσ

θ1=π+Θ(2))−1. (B.1)

Similarly, rotating the coordinate system x̂
(2)
1 −x̂

(2)
2 −x̂

(2)
3 to x̂

(1)
1 −x̂

(1)
2 −x̂

(1)
3 leads

to the following relation

Ŝ = (Tε
θ1=π+Θ(1)) · (Tε

θ3=−2ϕ) · (Tε
θ1=−Θ(2)) · Ŝ · (Tσ

θ1=−Θ(2))−1

· (Tσ
θ3=−2ϕ)−1 · (Tσ

θ1=π+Θ(1))−1. (B.2)

From Eqs. (B.1) and (B.2), it can be inferred that

(Tε
θ1=π+Θ(2)) · (Tε

θ3=−2ϕ) · (Tε
θ1=−Θ(1)) = (Tε

θ1=π+Θ(1)) · (Tε
θ3=−2ϕ) · (Tε

θ1=−Θ(2))

(B.3)

and

Θ1 = Θ2. (B.4)

Appendix C

Assume that a two-dimensional material is in the plane X1−X2 and the orienta-
tional variation of S11 in the plane X1−X2 is isotropic. When rotating the coordi-
nate system X1−X2 by any angle θ3, according to Eq. (A.5), the rotated compliance
matrix S2D(θ3, S

(0)
ij ) can be written as

S2D(θ3, S
(0)
ij ) = Tε

θ3
· S(0)

2D · (Tσ
θ3

)−1 (C.1)

and the value of component S11 is always the same, i.e.,

S11(θ3, S
(0)
ij ) = S

(0)
11 . (C.2)
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From Eq. (A.5), the above equation can be expressed in detail as

0 = S11(θ3, S
(0)
ij ) − S

(0)
11

= [cos4(θ3) − 1]S(0)
11 + sin4(θ3)S

(0)
22 + 2 sin(θ3) cos3(θ3)S

(0)
16

+ 2 sin3(θ3) cos(θ3)S
(0)
26 + sin2(θ3) cos2(θ3)(S

(0)
66 + 2S

(0)
12 ). (C.3)

When θ3 = π/2, it can be easily inferred that S
(0)
11 = S

(0)
22 . Thus, Eq. (C.3) can be

simplified as

0 = sin(θ3) cos(θ3)(S
(0)
66 + 2S

(0)
12 − 2S

(0)
11 ) + 2 cos2(θ3)S

(0)
16 + 2 sin2(θ3)S

(0)
26 . (C.4)

Then, the following relations can be inferred

S
(0)
11 = S

(0)
22 , S

(0)
66 = 2(S(0)

11 − S
(0)
12 ), S

(0)
16 = S

(0)
26 = 0. (C.5)

This implies that a two-dimensional material with the isotropic symmetry of
the tensile stiffness definitely possess the same isotropic symmetry in its elastic
properties.
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