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A refined CLNA model in fretting fatigue using asymptotic
characterization of the contact stress fields
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A B S T R A C T Using the Atzori–Lazzarin criterion, the first author has recently proposed a unified
model for fretting fatigue (FF), called the crack-like notch analogue (CLNA) model. Two
possible types of behaviour were suggested: either ‘crack-like’ or ‘large blunt notch,’ and
these are immediately studied in the typical condition of constant normal load and in phase
oscillating tangential and bulk loads. The former condition (‘crack-like’) was treated by
approximating the geometry to the perfectly flat one of the crack analogue (CA), improved
in some details, reducing all possible geometries to a single contact problem. The latter
(‘large blunt notch’), with a simple peak stress condition i.e. a simple notch analogue model.
In the present paper, the calculation of the ‘crack-like’ behaviour is improved using the
recent asymptotic characterisation developed by Dini, Hills and Sackfield, which extracts
the asymptotic singular stress field of the fretting contact. A significant difference is found
in the ‘equivalent’ geometric factor obtained for the Hertzian geometry, particularly near
full sliding, where the new criterion is more conservative, but still not large enough to
permit to find, for example in Nowell’s FF experimental data, if the refinement is an
improvement of predictive capabilities. In flatter geometries, the difference is expected to
be even smaller than in the case of the Hertzian geometry, and in this case, the original
CLNA model, for its simplicity, remains a very convenient simple closed form criterion.

Keywords fretting fatigue; HCF fatigue; safe-life design.

N O M E N C L A T U R E a = crack half-width
a∗ = transitional size between ‘crack-like’ and ‘notch-like’ behaviour
a0 = El Haddad ‘intrinsic crack size’
ac = transitional size between ‘crack-like’ and ‘notch-like’ behaviour for Lucàs-Kesnil
b = contact half-width

cH = Heywood material constant
cN = Neuber material constant
cP = Peterson material constant
d = partial slip contact size
E = Young’s modulus
f = coefficient of friction
k = geometrical contact factor

K f = strength reduction factor for notched specimens
K ff = fretting strength reduction factor
K ft = fretting stress concentration factor
K P = generalised mode I stress intensity factor
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K Q = generalised mode II stress intensity factor
K t = Stress concentration factor

p = pressure
p = average pressure
P = normal load

p0 = peak pressure
q = shear traction
q = average shear traction
Q = tangential load
t = local coordinate for the asymptotic solutions
ν = Poisson’s ratio
Y = geometrical factor for normal cracks

Y FF = original CLNA equivalent geometrical factor
Y FF, Dini = refined CLNA equivalent geometrical factor
Y FF, slip = original CLNA equivalent geometrical factor—slip

Y FF, stick = original CLNA equivalent geometrical factor—stick
γ = body compliance factor

σ b = remote bulk stress
σcon = stress induced by the contact
σmax = maximum axial stress

σ y = axial stress
�K th = long crack stress intensity threshold

�σ = fatigue limit

I N T R O D U C T I O N

Background

The Atzori–Lazzarin1 criterion has recently been used
by Ciavarella2 within the context of fretting fatigue. The
Atzori–Lazzarin criterion obtains the strength reduction
factor for notched specimens in fatigue, K f, in specimen
with cracks, or blunt and sharp notches, as the minimum
between the stress concentration factor K t, and the ‘crack-
like’ strength reduction factor, written in the most general
case including geometrical factors (Atzori et al.3)

Kf =




√
1 + Y2 a

a0
, for a < a∗

Kt, for a > a∗


 or

Kf = Min
(√

1 + Y2 a
a0

, Kt

)
,

(1)

where a is the crack half-width for an internal crack, or
the width for an edge crack (see also Fig. 1), Y is the ge-
ometrical factor correcting with respect to the ideal case
of central crack in a infinite plate. The transition from
uncracked material to long crack (or crack-like notch) oc-
curs at the size a0/Y 2 defined as a function of the size a0,
which in turn is sometimes denominated ‘intrinsic crack
size’ (ElHaddad et al.4),

a0 = 1
π

(
�Kth

�σl

)2

, (2)

where �K th is threshold stress intensity range and �σ l

fatigue limit range of the material.
Similarly, a∗ is the transitional size where the ‘crack-like

notch’ behaviour gives place to the ‘large blunt notch’
behaviour∗

a∗ = a0

Y2 K 2
t , (3)

i.e. this size is K2
t times larger than the size a0/Y 2. This

clearly indicates that for large enough stress concentration
factors K t, the size becomes extremely large and it is not
easy to observe in practice (which explains the widespread
use of standard linear elastic fracture mechanics (LEFM)
even if at every crack tip there is always some degree of
blunting).

It is interesting to note the generality of the proposed
approach. Ciavarella and Meneghetti5 have, for example,
recently compared the Atzori–Lazzarin1 criterion with
classical formulations for the fatigue strength reduction
factor of notched specimen, K f, such as those by Neuber,
Peterson and Heywood, which were developed long be-
fore fracture mechanics, and hence their material con-
stants (cP, cN, cH, respectively) were originally connected
with the material’s tensile strength only. They also at-
tempted a more refined criterion that was capable of deal-
ing with the abrupt transition in the Atzori–Lazzarin crite-
rion in the region of transition from long crack threshold

∗For Y 2a∗ � a0
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Fig. 1 Schematic of the Atzori–Lazzarin1,3

criterion (indicated with a bold solid line),
Eq. (1).

to blunt notch behaviour (point C in Fig. 1) is unlikely to
be justified experimentally. In particular, they introduced
in this region the Lukàs–Klesnil criterion, having a sound
interpretation in terms of self-arrested cracks ahead of a
rounded notch for which the Creager–Paris stress field is
valid, noting that this criterion has a very smooth link to
the El Haddad branch of the curve at the size ac which is
readily seen to be

ac = a0

Y2 (Kt − 1). (4)

However, a large number of notches-related experimental
data taken from the literature were examined in Ciavarella
and Meneghetti,5 showing no significant advantage of the
new criterion over the Atzori–Lazzarin1 criterion. More-
over, while in general there is no special reason to prefer
one over the other, the greater simplicity of the Atzori–
Lazzarin1 criterion turns out particularly helpful in the
case of fretting fatigue, since it permits evaluation of the
effect of fretting using either a crack or notch analogue.
This implies that either a contact stress intensity factor or
a contact stress concentration factor is required to predict
fretting thresholds, avoiding the need to compute an in-
ternal stress field induced by the contact/fatigue loading
interaction. This is a very important result, considering
that most of the present alternative lifing approaches seem
to require the knowledge of the full stress field in order
for fretting thresholds to be assessed.

Extension of the model to fretting fatigue

Let us consider a fretting fatigue (FF) test configuration.
The cylindrical indenter pressed against a plane speci-
men (see Fig. 2) is the prototypical example used to study
fretting problems, and it is also convenient as an exam-
ple of very remote geometry from the flat indenter. If the
specimen thickness is much larger than the contact width,

R 

P 

Q 

σb-σQ/2 σb+σQ/2 

Stress concentration 

Fig. 2 Fretting fatigue test configuration.

half-plane theory can be applied for the solution of the
problem. A well-known result among fretting researchers
is that in such (or similar) configurations, contact loading
induces a stress concentration with the half-plane, without
the half-plane being a proper geometrical notch. A limit
case is when the shape of the indenter is sharp ended and
the stress field at the edge of the contact is singular. In
that case, as suggested with the MIT so-called crack ana-
logue (CA) model,6 it is relatively easy to see the connection
with LEFM, because the contact-induced singularity has

c© 2005 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 28, 1099–1112
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Fig. 3 The so-called crack analogue (CA)
model,6 where a fretting fatigue contact is
approximated with an external crack under
oscillating generalised mode II, K Q (the
generalised mode I, K P, is neglected because
it is constant and also because it is negative).

exactly the same form as crack-induced singularity.
Obviously, the equivalent fretting mode I loading (induced
by the normal compressive force P) may now be consid-
ered as an obstacle for crack propagation. Therefore, in
most cases, the FF effect is due to mode II singularity, or
to mixed mode (Fig. 3).

The ‘crack-like’ together with the ‘notch-like’ behaviour
(typical of large contacts characterised by weaker stress
gradients) are both taken into account within the CLNA
model.2 In particular, for the crack-like behaviour, the
simplest path is followed, namely to approximate the ge-
ometry altogether with a flat and sharp geometry, thereby
obtaining the reduction of all possible contact configura-
tions to a single, well-know case, which in turn is solved
for once and then gives the CLNA model independent
on geometry in this range. The other possible range, that
of stress concentration factor, remains geometry depen-
dent. Here, we should just point out that the crack analogy
could be only used as an approximation when applied to
study some fretting configurations. Difficulties may arise
from the fact that no perfectly sharp geometry or no exact
square root singularity is achieved in practical FF condi-
tions, whereas cracks are sharp because they arise natu-
rally by initiation. Moreover, the contact pressure in gen-
eral goes to zero at the edges (any real contact shows in
fact some rounding at the edges of the contact), and con-
sequently Coulomb friction also predicts bounded shear
tractions. Hence, one may wonder if there could be alter-
native, more refined calculations of the stress field when a
non-sharp geometry is concerned, to compute the equiva-
lent stress singularity induced. Dini, Hills and Sackfield7,8

recently did a detailed analysis of the contact stress field,
dividing its local asymptotic values into a generalised stress
intensity factor contribution, and a local perturbation: this
permits to find an alternative extraction of the equivalent
stress intensities, which we here call ‘refined.’ However,
it should be borne in mind that, ‘refined’ here means that

we extract the stress intensities from the actual stress field,
rather than from an approximation of the geometry (as in
the original CLNA model), but eventually we will only use
either the stress intensities or the stress concentrations as
parameters entering into the fatigue model, and hence the
characterisation will remain approximate from an experi-
mental point of view. In fact, since and only experimental
investigations can confirm the independence on geome-
try of the ‘crack-like’ regime predicted by CLNA, or the
mild dependence, expected in the ‘refined’ model. In fact,
the crack-like regime is essentially based on the idea that
cracks will self-arrest at a size large enough to neglect local
differences in the stress field in the absence of the crack.
Hence, the answer in general depends on subtle compe-
tition between length scales associated to either the stress
field or to the crack size. Notice that in the contact case,
length scales are not immediately defined as in the case
of the notch, as friction induces an additional length scale
in the stick-slip transition region. Detailed experimental
comparisons and test cases would be extremely expensive
and difficult to conduct, and hence it remains simpler to
ascertain how large the difference between the two mod-
els can be, in order to have a better understanding, and
perhaps plan experiments in the regions where the differ-
ences are largest.

Refined method based on asymptotics

To study the contact singularity in detail, Dini, Hills and
Sackfield7,8 wrote a general solution for the stress field
expansion in the contact loading configuration of tangen-
tial and bulk stress oscillating in phase, with normal load
kept constant. The results can be applied to any ‘bounded’
problem: this means that a generalised stress intensity fac-
tor for complete contacts can be used to characterise the
‘crack-like’ behaviour described in the CLNA model. The

c© 2005 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 28, 1099–1112
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expansion works like in the Creager and Paris equation for
a rounded crack, i.e. such that intrinsic length scales in the
stress fields are retrieved, and the corresponding equiva-
lent singular stress field found.

It should be noted that the FF reduction of strength fac-
tor, K ff, in the CLNA model is the ratio between fatigue
limit and bulk stress load. For the ‘crack-like’ model part,
the contact loadings largely affect the value of the equiv-
alent geometrical factor of Eq. (1). For the ‘blunt notch’
model part, the contact loading, again, largely affects the
exact value of the peak stress, and the two dependencies
are not exactly similar. Therefore, the combined effects
result in a complicated dependence of the transition size
(equivalent to a∗ in the crack–notch analogy), from load-
ing condition.

The scope of the present paper is to incorporate the find-
ings of Dini, Hills and Sackfield within the CLNA model,
in particular comparing the resulting prediction of the
‘crack-like’ behaviour with the simplified account in the
original CLNA model.

T H E O R I G I N A L C L N A M O D E L

A generic FF problem is a much more complex situation
than the standard geometric notch or crack subject to a re-
mote uniaxial tensile fatigue loading. For a ‘remote stress’
condition (equivalent to the tensile stress in uniaxial fa-
tigue) we could consider the bulk load, σ b, the contact
pressure, p, or the shear traction, q. There might also be
various mode singularities (possibly mode I, II and III) un-
der non-proportional loading. However, by limiting our
attention to constant normal load and oscillating tangen-
tial load, the most significant contribution to fatigue life

Fig. 4 The fretting fatigue CLNA fictitious geometrical factor Y FF,
given by the minimum between Y FF, slip and Y FF, stick from Eq. (6).

corresponds to oscillating axial stresses induced by the re-
mote bulk load.

Considering the fretting pad as a square-ended foot
pressing over a fatigue specimen, for a constant mode I
normal load P, and a varying mode II load Q, the appro-
priate stress intensity factors (SIFs) were obtained without
considering the details of the contact problem (for a 2D
geometry and a R = −1 loading ratio). Mean pressure and
mean shear traction, p = P

2b and q = Q
2b , respectively, were

considered by Ciavarella and Macina9 as main loading pa-
rameters, Dundurs’ mismatch constant, β, was assumed
to be zero, and half-plane elasticity was used for both ma-
terials. Notice that this is rigorously valid only in the case
of a rigid punch indenting an incompressible material, i.e.
when E1 → ∞ and ν1 → 1/2, and the constant γ → 1,
where

γ =
(

E∗
2

E∗
1

+ 1
)

=
((

1 − ν2
1

)
E2

E1
(
1 − ν2

2

)
)

+ 1. (5)

The extension of the Atzori–Lazzarin diagram to fret-
ting is achieved by defining Y FF, a fictitious geometrical fac-
tor. As already stated above, Y is normally used to include
geometrical effects with respect to the classical central
crack in the infinite plate solution. In the CLNA model,
the mode II SIF has been written in terms of the bulk
stress and the factor Y FF, differently from a true geomet-
rical factor in standard fracture mechanics, is here a factor
depending on loading conditions (the dependence on con-
tact geometry is also considered in the original model us-
ing a contact geometrical factor but this is not discussed in
this paper).2 Specifically, considering Hertzian contacts,
the resulting fictitious geometrical factor is the minimum
between

YFF, stick

(
σb, p,

Q
P

)
= 2

π

p
σb

Q/P + 1
2γ

YFF, slip (σb, p, f ) = 2
π

f p
σb

. (6)

The improvement over the original MIT so-called CA
model6 is larger for large bulk loads and low Q/fP, when
the effect of bulk load dominates over the tangential load,
i.e. away from the frictional limit behaviour, which is ob-
tained for relatively large values of Q/fP. The resulting
minimum value of Y FF, min(Y FF) is plotted in Fig. 4, for
three example cases. Here, γ = 2 (i.e. elastically simi-
lar contacts) as it is clear from the starting point of the
curves on the plot, and the limit values are chosen as
Y FF, slip = 0.5,1,2. Notice that the point of transition from
Eq. (6) is

Q
f P

YFF, slip + 1
4

= YFF, slip, (7)
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and therefore it occurs at Q
f P = 0.5,0.75,0.875, respec-

tively. By introducing the definition of min(Y FF) into the
crack-like part of Eq. (1) (i.e. that for a < a∗ in Fig. 1 for
the equivalent crack–notch problem), we obtain the FF
strength reduction factor as

Kff

(
p
σb

,
Q
P

; f ,
b
a0

)

=
√

1 +
〈

2
π

p
σb

Q
P

+ 1
2γ

;
2
π

p
σb

f
〉2 b

a0
, (8)

where <A; B> indicates the minimum between A and
B. Notice that K ff in the final form of Eq. (8) depends
on three non-dimensional factors only: the pressure ratio
p
σb

, either the load ratio Q/P or the friction coefficient f ,
and the contact width ratio, b/a0. One comment could be
added to this discussion by noting that the factor Y FF

is generally a geometrical factor and, hence, is usually
Y FF > 1. Here, since Y FF takes into account of many
loading factors, it can be much lower than one as indeed in
the example case of Fig. 4, and particularly for low values
of Q/fP when the lower limit is due mainly to the constant
γ induced by the bulk stress not being symmetrical in the
contacting pair of materials. This was explained in detail
by Ciavarella and Macina.10

R E F I N E D M O D E L : F O R M U L AT I O N

A refined solution for the fictitious geometrical factor for
incomplete contacts can be obtained by characterising
pressure and shear traction distributions by the means of
local asymptotic solutions as developed by Dini, Hills and
Sackfield.7,8 First, it should be stated that this set of so-
lutions are intended to describe, fully, the state of stress
adjacent to the edge of a general incomplete contact suf-
fering, in general, normal loading, shear loading in partial
slip and bulk tension. In very general terms, the magni-
tude of the state of stress in this region (Fig. 5), may be less
severe than it is at remote points in a corresponding finite
contact. This is in stark contrast to complete contacts,
where the contact edge is a singular point, and hence
the asymptotes are themselves singular, decaying, usu-
ally, to zero at infinitely remote points from the contact
corner. The point is made because, for an incomplete
contact, the solutions are locally correct, but diverge at
remote points; this is an acceptable limitation of the so-
lutions, because they are required to model only the local
behaviour.

Details of the solutions are given in Dini, Hills and
Sackfield; 7,8 the first develops the theory ab initio, whilst
the second includes detailed considerations of shakedown,
bulk tension and internal properties of the asymptote. For
brevity, only the results are given here. The contact pres-

Fig. 5 Bounded asymptote for partial slip contacts. Here d is the
portion of contact undergoing partial slip.

sure, p(t), is represented by the distribution

p(t) = KP
√

t t > 0

= 0 t < 0,
(9)

where the mode I generalised stress intensity factor K P

has dimensions [FL−5/2], and may be found by matching
the local state of stress at the edge of any finite contact
to the form implied by the asymptote. If the extent of the
slip zone is d, the shearing traction, q(t), may be written
in the form

q(t) = 2KQ

d
√

t 0 < t < d

= 2KQ

d
(
√

t −
√

t − d) t > d

= KQ√
t

t � d

= 0 t < 0, (10)

where the mode II generalised stress intensity factor K Q

has dimensions [FL−3/2], and continuity of tractions at the
stick–slip interface indicates that

KQ

KP
= f d

2
. (11)

The whole point of deducing the family of solutions
described above is, of course, to provide a completely
portable stress environment that may be matched into the
edge of any incomplete contact problem. In this paper,
they will be used with Hertzian contacts. Figure 6 shows a
Hertzian contact, suffering partial slip, and subject to ten-
sion, σb, in the form it is usually encountered in a FF test.
For simplicity, here, it is assumed that the contacting body

c© 2005 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 28, 1099–1112
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Fig. 6 Hertzian contact: partial slip configuration in the presence
of remote bulk tension.

is sufficiently thick for half-plane theory to be appropri-
ate (although this is not essential for the whole process to
be valid), and for the contact to extend to (−b ≤ x ≤ b).
The central region is stick (but not symmetrically, because
of the effect of the tension), while the outer regions are in
slip. With the shearing force having the sense shown, the
critical region for the nucleation of cracks, is the trailing
edge of the contact, and the values of the stress intensity
factor may be found by taking the contact pressure and
shearing traction distributions induced by various contact
conditions, and matching them to the forms implied by
the asymptotes, viz.

KP = lim
t→0

σyy√
t
,

KQ = f dKP/2. (12)

These give∗ ∗

KP = 2
√

2P

π
√

b3
,

KQ =
√

2 f P
π

√
b

{
1 + σbπb

8 f P
−

√
1 − Q

f P

}
. (13)

Thus, the state of stress adjacent to the nucleation region
in the well-known Hertzian FF tests can be encapsulated
in these two constants. The spatial distribution of stress
is given by the sum of the corresponding Muskhelishvili’s
potentials, and their variation with time.7,8

Going back to the CLNA formulation, applying the so-
lution obtained by Dini, Hills and Sackfield7,8, in the most
general case for Hertzian contact under constant normal
load, but oscillating in phase bulk and tangential loads, the

∗∗Note that the analytical formula is only rigorously valid for moderate values
of bulk loads. A numerical value for KQ needs to be computed numerically for
large value of remote bulk stress11.

equivalent geometrical factor is obtained as

YFF, Dini

(
σb, p, f ,

Q
P

)

= 4√
2π

YFF, slip(1 −
√

1 − Q/ f P) + 1
2
√

2π
.

(14)

Note that the original Y FF can be written as

Y
(
σb, p, f ,

Q
P

)
= YFF, slip Q/ f P + 1

2γ
. (15)

At Q/fP = 0, we get respectively,

YFF, Dini = 1
2
√

2π
and YFF, stick = 1

2γ
, (16)

and these hardly differ since for γ = 2 the numeri-
cal values are 1/5 and 1/4 (the coefficient Y FF, Dini is
here slightly lower than the Y FF, stick in the original
CLNA theory). It is clear that the two formulations differ
since the details of the geometry mainly affects the tran-
sition from stick to slip in the contact areas, and in
turn this is particularly important when the frictional
tractions are highest with respect to the bulk load, and
when they occur near the edge of the contact, i.e. near full
sliding. In fact, the largest differences occur when Q/fP
approaches unity, when YFF, Dini = 4√

2π
YFF, slip + 1

2
√

2π
∼=

1.6YFF, slip + 0.2, and hence YFF, Dini
YFF

∼= 1.6YFF, slip+0.2
YFF, slip

, which
clearly is particularly large for low Y FF, slip, and then tends
to 1.6 (the coefficient Y FF, Dini being always lager). This
indicates that the Y FF, Dini crosses the original Y FF for
a given Q/fP, and then becomes larger than the original
Y FF. In terms of relative percentage error again for Q/fP =
1, i.e. near full slip YFF − YFF, Dini

YFF, Dini
100 ∼= −0.6YFF, slip − 0.2

1.6YFF, slip + 0.2 100
(Fig. 7), it is clear that the error† we made in the original
Y FF can be considered as a underestimate (for the limit
case of Q/fP = 1) of up to 100% (for negligible Y FF, slip)
or to a mere overestimate of 37.5% for very large Y FF, slip.
Clearly, the old CLNA is conservative at small Q/fP ratios,
and underconservative near full slip.

Figure 8 gives a complete picture of the results in partial
slip, for Y FF, slip = 0.5,1,2, where it is clear that a signifi-
cant discrepancy only occurs near the full sliding case. In
the intermediate ranges of Q/fP (quite commonly used for
experimental analyses as describing realistic loading con-
ditions) the results are similar, as it is made clear in Fig. 8b,
where the relative error is found to lay within a mismatch
range of ±20% for intermediate load ratios ranging be-
tween 0.25 and 0.75. Nevertheless, the difference in the
refined model is considerable.

†We write ‘error’ here, assuming the present formulation is more refined. As
discussed in the introduction, however, this is not necessarily the case.
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Fig. 7 The relative percentage error for
Q/fP = 1, i.e., YFF − YFF, Dini

YFF, Dini
100 ∼=

−0.6YFF,slip − 0.2
1.6YFF, slip + 0.2 100 near full slip, as a

function of Y FF, slip. This is where the error
is largest, and gives the upper bound for
partial slip conditions.

Fig. 8 Partial slip: the original fretting
fatigue CLNA fictitious geometrical factor
from Eq. (6), compared with the new YDini
factor, given in Eq. (14), for three example
cases with Yslip = 0.5,1,2. (a) absolute values
(b) percentage error in the original CLNA
formulation with respect to the present one.
Clearly, the old CLNA is conservative at
small Q/fP ratios, and underconservative
near full slip.
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Moving to the ‘large blunt notch’ equivalent fretting
problem, we follow the original CLNA model, as the
asymptotic theory does not help here. In order to find
the equivalent fretting stress concentration factor, Kft, and
hence define the (horizontal) threshold for large contacts,
we need a good estimate of the peak stress. A number of
exact results are known from detailed analyses (Ciavarella
et al.10,12), and in particular a simple (but yet accurate)
formula for Hertzian, or rounded flat geometry, subject
to constant pressure and oscillating tangential load is

σmax = σb + σcont = σb + 8
π

pk
√

f Q/P . (17)

Here k is a contact geometrical factor equal to one in the
Hertz contact case, and increasingly greater for rounded
flat geometries towards the flat indenter case. The above
formula is only exact when no bulk stress is considered,
and an approximate, linear superposition is used here

Fig. 9 Partial slip: the fretting fatigue stress concentration factor
K ft, given approximately by Eq. (20). Here represented are three
cases, with Hertzian geometry (k = 1), showing the effect of partial
slip on K ft for Kft,,lim( p

σb
, f ) = 3, 5, 9.

Fig. 10 Comparison of Nowell co-workers’
experiments13,14 (a0 = 91 µm, 25 µm for
Al- and Ti-alloys, respectively, with
predictions of both the original and the
refined CLNA model.

for simplicity, in the general case. In terms of the non-
dimensional ratios

Kft

(
p
σb

,
Q
P

, f, k
)

= 1 + 8
π

p
σb

k

√
f

Q
P

, (18)

showing that K ft depends on all three non-dimensional
factors, plus a geometrical factor, but obviously does not
depend on the size of the contact. Finally, for full sliding,
Q = fP, the stress concentration reaches the maximum
value. Figure 9 shows an example plot of the stress con-
centration factor K ft. It should be noted that for full sliding
on a Hertzian contact,

Kft,lim

(
p
σb

, f
)

= 1 + 8
π

p
σb

f, (19)

and hence we can write the Kft as a function of the limit
full sliding value for Hertzian contact as

Kft

(
p
σb

,
Q
P

, f, k
)

= 1 +
[

Kft,lim

(
p
σb

, f
)

− 1
]

k

√
Q
f P

.

(20)

The former shows that the effect of partial slip on K ft

is different from that of the Y FF factor in the CA model
above (see Fig. 8). This shows, in fact, a square-root de-
pendence on Q/fP, whereas Y FF follows a linear variation
followed by a constant function of Q/fP. This difference
will, therefore, cause a different effect of partial slip in the
CA and in the NA regimes, suggesting that the transition
point will not occur at a constant value. In particular, the
curves in Fig. 9 show the variation of K ft as a function of
Q/fP forKft,lim( p

σb
, f ) = 3,5,9, and for Hertzian geometry,

i.e. k = 1.
By equating the K ft with the K ff predictions we get an

estimate of the size separating the ‘crack-like’ from the
‘blunt notch’ behaviours. However, this is not described
in detail in this paper for brevity.
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Turning now to the validation of the model, in the orig-
inal paper2 Ciavarella presented the data of experimental
results in the literature. Here, we simply repeat the com-
parison for the classical Hertzian results of Nowell and
coworkers13,14 (see Fig. 10). Details of materials, geome-
tries and loading conditions used to generate the data set
are given by Araújo and Nowell14 and are also summarised
in Tables 1–3.

In the plot of Fig. 10, the x-axis is Y FF
2b/a0. This makes

the El Haddad curve of the (fretting equivalent) Atzori–
Lazzarin diagram a single curve, and only the blunt notch
behaviour may change. It should be noted that the intro-
duction of the corrective term YFF does not corespond
to a significant improvement of the data fit. In fact, only

Table 1 Mechanical properties of Al4%Cu and T1–6Al-4V

Young modulus Poisson’s 0.2% yield
Material E (GPa) ratio, n strength (MPa)

Al4%Cu 74 0.33 465
Ti-6Al-4V 110 0.32 974

Table 2 Experimental parameters used in the fretting fatigue tests

Peak pressure Friction
Material p0 (MPa) Q/P σ b (MPa) coefficient, f

Al Series 1 157 0.45 92.7 0.75
Al Series 3 143 0.45 92.7 0.75
Al Series 4 143 0.45 77.2 0.75
Al Series 5 120 0.45 61.8 0.75
Ti-6Al-4V 650 0.16 280 0.55

Table 3 Geometrical properties and fretting fatigue total life

Al Series 1
Pad radius, R (mm) 12.5 25 37.5 50 75 100 125 150
Contact half-width, b (mm) 0.10 0.19 0.28 0.38 0.57 0.76 0.95 1.14
Life (106 cycles) >10 >10 >10 1.29 0.67 0.85 0.73 0.67
Al Series 3
Pad radius, R (mm) 12.5 25 37.5 50 75 100 125 150
Contact half-width, b (mm) 0.09 0.18 0.27 0.36 0.54 0.72 0.9 1.08
Life (106 cycles) >10 >10 4.04 1.50 0.80 0.61 1.24 0.69
Al Series 4
Pad radius, R (mm) 12.5 25 50 75 100 125
Contact half-width, b (mm) 0.09 0.18 0.36 0.54 0.72 0.9
Life (106 cycles) >10 >10 1.2 1.42 0.61 1.24
Al Series 5
Pad radius, R (mm) 25 37.5 50 75 100 125 150
Contact half-width, b (mm) 0.14 0.21 0.28 0.42 0.57 0.71 0.85
Life (106 cycles) >10 >10 >10 >10 >10 1.57 1.23
Ti-6Al-4V
Pad radius, R (mm) 25 37.5 50 60 70
Contact half-width, b (mm) 0.25 0.76 1.01 1.22 1.42
Life (105 cycles) >14 5.21 3.74 1.96 1.73

two data points are particularly affected by the refine-
ment. On one hand, one of the tests from Al series 1–3,
which was not falling in the area of the plot indicating safe
life according to the original CLNA model, moves closer
to the threshold curve, hence indicating an improvement
of the prediction achieved using the refined model. On
the other hand, one of the tests from Al series 4, which
seemed to lay on the right region of the diagram accord-
ing to the original CLNA prediction, moves to the other
area of the plot. Evidently the data set available for this
geometry is not sufficient to estimate the improvement
induced by the embedment of the asymptotic formulation
within the CLNA model. This is because most of the data
generated in literature using cylindrical indenters are not
thought of as a way to determine the FF threshold (see
for example Szolwinski and Farris15 where all the spec-
imen were broken within 106 cycles) and the difference
between the two methods is almost negligible for the data
set presented here. Further experiments using Hertzian
geometry should be carried out to assess the improvement
introduced by the new formulation.

However, in order to explore the differences between
the original and the new formulation and, hence, help
to devise experimental tests that should shed some light
on this issue, we can now show the effect of changing
the various parameters directly on a single diagram. In-
stead of plotting the 1/K ff factor as a function of Y FF

2b/a0,
which makes the El Haddad curves collapse, we plot the
diagram as a function of b/a0 only, and change the load
parameters in different manners. In Fig. 11(a), we keep
Rq = Q/P constant and equal to the friction coefficient
f , so that full sliding is obtained, but for different values
f = 0.2,0.4,0.6,0.8,1. The geometry is Hertzian and the
pressure factor Rp = p

σb
= 1. The difference between the
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Fig. 11 The effect of varying Rq = f (a)
(while Rp = 1), or only Rq = Q/P (b) (while
Rp = 1 and f = 1), in the CLNA diagram
using the original Y FF or the new improved
version Y FF, Dini.

original and the improved CLNA model is large, because
Rq/f = Q/fP is large.

In the Fig. 11(b), we fix friction coefficient, and equal to
one, but we vary the factor Rq = Q/P = 0.2,0.4,0.6,0.8,1.
Here, we clearly see that the difference is smaller for the
lower Rq ratios.

Furthermore, in Fig. 12(a), the effect of changing the Rp

factor is shown, where Rq = 1 and f = 1, and the difference
is large again. Fig. 12(b) keeps Rq = 0.2 and f = 1, but vary
the pressure ratio, showing the largest effect of all, and a
small difference with respect to the original treatment, as
expected. Finally, Fig. 13 shows the effect of varying f ,

while Rq = 0.2 and Rp = 1, and hence the Rq/f = Q/fP
factor changes again, showing initially larger differences
than for the final case, where Q/fP is only 0.2.

Some of these loading conditions would represent ideal
test configurations to assess the improvement of the
methodology and check the accuracy of the new formula-
tion with respect to the original model.

D I S C U S S I O N

As we have seen, the older CLNA model is more conser-
vative than the ‘refined’ model at small Q/fP ratios, and,
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Fig. 12 The effect of varying Rp = p
σb

(a)
(with Rq = 1) or (b) with Rq = 0.2 and f = 1,
in the CLNA diagram, using the original
Y FF or the new improved version Y FF, Dini.

viceversa, less conservative near full slip. Hence, the cor-
rection is suggested, lacking a definitive answer over which
criterion is more reliable, near full slip. The difference re-
ally comes from the way the asymptotes are found. In the
old CLNA model, the geometry is abruptly approximated
with a flat one, and this geometry has a very simple re-
sponse in terms of stress intensity factors. A little more
complicated is to understand how the asymptotic method
of Dini, Hills and Sackfield works; essentially, because the
geometry is locally bounded, the shear tractions near the
edges are very limited, and in order to support the given
total load, the stress intensity factor, which is a measure
of the strength of the stress field at the transition stick to

slip, needs to be larger and continues to grow up to full
sliding. This is the reason behind the differences. Now,
as we have briefly mentioned already in the Introduction,
the real problem has probably not much to do with either
of the formulations! In fact, both approaches tend to sim-
plify the problem of fatigue crack initiation or early prop-
agation and self-arrest. This problem would be probably
best formulated by actually considering a small crack in
the contact edge zone, and computing the stress intensity
factors experienced. Naturally, following the evolution of
this actual crack would be extremely difficult; not only
we would need to compute the stress intensity factors,
also depending on the possible orientation of this crack,
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Fig. 13 The effect of varying f (with Rq =
Q/P = 0.2 and Rp = p

σb
= 1 in the CLNA

diagram, using the original Y FF or the new
improved version Y FF, Dini.

immersed in the entire stress field (which we would then
need to compute in detail), but its presence would affect
slightly the contact traction distributions. Also, the ini-
tiation/early propagation would be that of a short crack
which depends on many other factors than those consid-
ered here, including plasticity at the crack tip, and mi-
crostructural parameters. However, certainly from the ge-
ometrical point of view, it is very likely that the details of
the geometry of the contact near the edge would loose
importance and it is unclear if either of the parameters
found in the original CLNA model, or the new refined
model, would be most correct.

One additional advantage of the original CLNA model
was that the crack-like behaviour reduced all possible ge-
ometries to a single contact problem, whereas the new
refined model predicts a certain dependence on the actual
contact geometry. We have only studied here the Hertzian
geometry, which is perhaps the most interesting and the
one for which many data are available. Also, it is quite
remote from the flat geometry, and hence it was inter-
esting to see how large the differences were in the two
asymptotics. Admittedly, we found the difference much
smaller than expected. However, in many components,
a much flatter geometry is often used (flat or rounded-
flat geometries). It would be interesting to compare if the
actual threshold in experiments depends significantly on
geometry alone or not, but to the best of the authors’
knowledge, there are no appropriate data so far. In those
cases, however, the differences in the two models would
be much smaller than what found here and hence, the
original CLNA model, for its simplicity, remains a very
convenient simple closed form criterion.

C O N C L U S I O N S

An improvement of the original CLNA model has been
suggested, where the stress field asymptotics extracted
by Dini, Hills and Sackfield7,8 have been used instead
of the crude ‘sharp’ geometry approximation adopted
in the original CLNA model. The differences in the
‘fretting fatigue’ equivalent Y corrective factor, Y FF, for
the generalised mode II stress intensity range have been
found, and have been shown to be small except near the
full sliding limit. In particular, the percentage error can
vary in principle between +25% and −100%, the for-
mer limit being constant and at low Q/fP ratios, the
second limit depending on the Y FF factor in full slid-
ing, where the new criterion would be more conservative
and is hence suggested. A comparison with the classi-
cal Nowell and coworkers13,14 experiments in the liter-
ature does not permit to judge if better agreement with
this correction with respect to the original formulation
is achieved. New tests using different loading conditions
have, therefore, been proposed for future validation of the
improved accuracy of the method. Clearly, in flatter ge-
ometries than Hertzian, we do not expect the refinements
using asymptotics would be significant, and we there-
fore maintain the original CLNA model as a convenient
alternative.
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