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Large deformations of solids are an important practical problem, most challenging for com-
putational predictions. The main difficulty is to characterize the rate of stress change at various
points of the solid in a way that gives correct work of deformation and describes the material
deformation objectively, i.e., independently of the rigid-body rotations material elements. Com-
mercial softwares such as ABAQUS, LS-DYNA, ANSYS and NASTRAN have traditionally used
an objective stress rate or increment which involves a convenient simplification that makes a
certain error in energy conservation. For most applications this error is negligible. However,
the authors show that large errors, of the order of 30% to 100%, can arise in certain problems of
highly compressible materials, or soft-in-shear highly orthotropic materials, or materials which
develop a highly orthotropic damage due to oriented cracking. This article explains the concept
of energy-consistent objective stress rates, and cites examples of large errors that can be caused
by using commercial codes with an objective stress rate definition that is not energy consistent.
The article also describes a simple remedy which can be made in the user’s material subroutine
of commercial software to obtain the correct results.

Strains and Stress Rates for Incremental Loading Procedure
In many practical problems of solid mechanics, it is sufficient to characterize material de-

formation by the small (or linearized) strain tensor eij = 1
2
(ui,j + uj,i) where ui are the com-

ponents of the displacements of continuum points, the subscripts refer to Cartesian coordi-
nates xi (i = 1, 2, 3), and the subscripts preceded by a comma denote partial derivatives (e.g.,
ui,j = ∂ui/∂xj). But there are also many problems where the finiteness of strain must be
taken into account. These are of two kinds: 1) Large nonlinear elastic deformations possessing
a potential energy, Π (exhibited, e.g., by rubber), in which the stress tensor components are
obtained as the partial derivatives of Π with respect to the finite strain tensor components; and
2) inelastic deformations possessing no potential, in which the stress-strain relation is defined
incrementally. In the former kind, the total strain formulation described in another article on
Finite Strain is appropriate [1], and need not be described here.

In the latter kind, which is what is reviewed here, an incremental (or rate) formulation is
necessary and must be used in every load or time step of a finite element computer program
using updated Lagrangian procedure. The absence of a potential raises intricate questions due
to the freedom in the choice of finite strain measure.

For a sufficiently small loading step (or increment), one may use the deformation rate tensor
(or velocity strain) ėij = 1

2
(vi,j + vj,i) or increment ∆eij = ėij∆t representing the linearized

strain increment from the initial (stressed and deformed) state in the step. Here the superior
dot represents the time derivative ∂/∂t, ∆ denotes a small increment over the step, t = time,
and vi = u̇i = material point velocity or displacement rate. However, it would not be objective
to use the time derivative of the Cauchy (or true) stress Sij. This stress, which describes
the forces on a small material element imagined to be cut out from the material as currently
deformed (Fig. 1), is not objective because it varies with rigid body rotations of the material.
The material points must be characterized by their initial coordinates xi (called Lagrangian)
because different material points are contained in the element that is cut out (at the same
location) before and after the incremental deformation.

Consequently, it is necessary to introduce the so-called objective stress rate Ŝij, or the

corresponding increment ∆Sij = Ŝij∆t. The objectivity is necessary for Ŝij to be functionally

related to the element deformation. It means that that Ŝij must be invariant with respect to
coordinate transformations, particularly the rigid-body rotations, and must characterize the
state of the same material element as it deforms.
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Figure 1: Undeformed and deformed material element, and an elemental cube cut out from the
deformed element.

The objective stress rate can be derived in two ways: 1) By tensorial coordinate transfor-
mations [22], which is the standard way in finite element textbooks [9, e.g.], or 2) variationally,
from strain energy density in the material expressed in terms of the strain tensor (which is ob-
jective by definition)[4, 7]. Although the former way may be instructive and provide geometric
insight, it is more complicated and does not readily reveal whether the stress and strain tensors
are work-conjugate, i.e., whether they give the correct expression for the second-order energy
increment. In the variational energy approach, which is explained here, the objectivity and
work-conjugacy are automatic.

Consider incremental finite strain tensors εij relative to the initial (stressed) state at the
beginning of the load step, using the Lagrangian frame of reference with material points of
initial coordinates xi (i = 1, 2, 3). Many different definitions of tensors εij are admissible,
provided that they all satisfy the conditions that: 1) εij vanishes for all rigid-body motions;
2) the dependence of εij on strain gradient tensor ui,j is continuous, continuously differentiable
and monotonic. For convenience, it is also desired that εij reduces to eij as the norm |ui,j| → 0.

A broad class of equally admissible finite strain tensors, which comprises virtually all those
ever used to solve mechanics problems, is represented by the Doyle-Ericksen tensors. In tensor
notation, they are written as ε(m) = (Um − I) /m, where m is a real parameter, I = unit tensor
and U = right-stretch tensor [29, 32, 7, 1]. The second-order approximation of these tensors is

ε
(m)
ij = eij + 1

2
uk,iuk,j − 1

2
(2−m)ekiekj, (1)

The case m = 2 gives the Green-Lagrangian strain tensor, m = 1 gives the Biot strain tensor,
m = 0 gives the Hencky (logarithmic) strain tensor (for which ε(0) = limm→0 ε

(m) = lnU),

and m = −2 gives the Almansi-Lagrangian strain tensor. Note also that the tensors ε
(n)
ij =(

Un −U−n
)
/2n, which do not belong to the foregoing class, have, for all n, the same 2nd-

order approximation as Eq. (1) for m = 0 [8].
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Relation of Objective Stress Rates to Finite Strain Tensors
The work δW done at small deformations of a material element of unit initial volume,

starting from an initial state under initial Cauchy (or true) stress S0
ij, can be expressed (in

Lagrangian coordinates of the initial state) in two ways:

δW = (S0
ij + σ

(m)
ij )δε

(m)
ij or δW = (S0

ij + τij)δui,j (2)

where δε
(m)
ij is an arbitrary strain variation, and τij is a small Lagrangian (or first Piola-

Kirchhoff) stress increment referred to the deformed configuration at the beginning of the
stress increment; τij is nonsymmetric and represents the forces acting at the faces of the in-
crementally deformed material element in the directions of initial Lagrangian coordinates xi
(Fig. 1).

Furthermore, σ
(m)
ij is a small stress increment during the load step which is symmetric and

objective (σ
(m)
ij may be regarded as an increment of the second Piola-Kirchhoff stress referred

to the stressed initial state). The first-order part of the work, S0
ijδui,j, figures in the virtual

work equation of static (or dynamic) equilibrium of the structure, in which it is cancelled out

by the work of loads. The second-order part of the work, σ
(m)
ij δε

(m)
ij , decides stability, as well as

bifurcation of the load path in the stress space.
The objectivity of stress tensor σ

(m)
ij is ensured by its transformation as a second-order

tensor under coordinate rotations (which causes the principal stresses to be independent from

coordinate rotations) and by the correctness of σ
(m)
ij δε

(m)
ij as a second-order energy expression.

Now set the two expressions in Eq. (2) equal, and substitute Sijδui,j = Sijδeij = Sij ėij∆t

(by virtue of symmetry of Sij), σ
(m)
ij δε

(m)
ij ≈ σ

(m)
ij ėij∆t (which suffices for second-order work

accuracy in ui,j), Sijδε
(m)
ij = Spq(∂ε

(m)
pq /∂ui,j)vi,j∆t and σ

(m)
ij = Ŝ

(m)
ij ∆t (where vi,j∆t = δui,j,

and vi = u̇i). Imposing the variational condition that the resulting equation must be valid for
any strain gradient δui,j, one gets the following general expression for the objective stress rate
associated with m [4]:

Ŝ
(m)
ij = Ṫij − Spq

∂

∂t

∂(ε
(m)
pq − epq)
∂ui,j

(3)

Ṫij = Ṡij − Sikvj,k + Sijvk,k (4)

Here Ṡij = ∂Sij/∂t = material rate of Cauchy stress (i.e., the rate in Lagrangian coordinates of
the initial stressed state), and Tij = S0

ij+τij (the Lagrangian stress, aka the first Piola-Kirchhoff

stress), Ṫij = ∂Tij/∂t = ∂τij/∂t.
Eq. (3) is the key equation from the energy viewpoint. There are infinitely many objective

stress rates. But a rate for which there exists no legitimate finite strain tensor εij associated
according to Eq. (3) is energetically inconsistent, i.e., its use violates energy balance or the
first law of thermodynamics.

Evaluating Eq. (3) for general m and for m = 2, one gets a general expression for the
objective stress rate [4, 7]:

Ŝ
(m)
ij = Ŝij + 1

2
(2−m)(Sikėkj + Sjkėki) (5)

where Ŝij = Ŝ
(2)
ij = objective stress rate associated with the Green-Lagrangian strain (m = 2),
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as the reference case. In particular,

Ŝ
(2)
ij = Ṡij − Skjvi,k − Skivj,k + Sijvk,k (Truesdell stress rate) (6)

Ŝ
(0)
ij = Ṡij − Skjω̇ik + Sikω̇kj + Sijvk,k (Jaumann rate of Kirchhoff stress) (7)

where ω̇jk = 1
2
(vi,j − vj,i) = material rotation rate (or spin tensor). Furthermore, m = 1 gives

the Biot stress rate.
Another rate, used in most commercial codes, is

ŜJ
ij = Ṡij − Skjω̇ik + Sikω̇kj (Jaumann, or corotational, rate of Cauchy stress) (8)

It differs from Eq. (7) by missing the term Sijvk,k, in which vk,k = ėkk = rate of relative volume

change of material. This causes that ŜJ
ij is not associated by work with any admissible finite

strain measure. It follows that δ2W = (ŜJ
ij∆t)δε

(0)
ij is generally not the correct expression for the

second-order work of stress increments [4, 7], which is a violation of energy balance. Although
ŜJ
ij is the rate that is (by 2012) used in most commercial programs, its lack of work-conjugacy

is usually not a serious problem since the term Sijvk,k is negligibly small for many materials
and zero for incompressible materials.

The Cotter-Rivlin rate corresponds to m = −2 but it again misses the volumetric term
Sijvk,k. So, this rate, too, is not work-conjugate to any finite strain tensor [7]. Neither are the
Oldroyd rate and the Green-Naghdi rate.

The objective stress rates could also be regarded as the Lie derivatives of various types of
stress tensor (i.e., the associated covariant, contravariant and mixed components of Cauchy
stress) and their linear combinations [40]. The Lie derivative does not include the concept of
work-conjugacy.

Tangential Stiffness Moduli and Their Transformations to Achieve Energy Consis-
tency

The tangential stress-strain relation has generally the form

S
(m)
ij = C

(m)
ijkl ėkl (9)

where C
(m)
ijkl are the tangential moduli (components of a 4th-order tensor) associated with strain

tensor ε
(m)
ij . They are different for different choices of m, and are related as follows:[

C
(m)
ijkl − C

(2)
ijkl − 1

4
(2−m)(Sikδjl + Sjkδil + Silδjk + Sjlδik)

]
vk,l = 0 (10)

Noting that C
(2)
ijklvk,l = Ŝij and vi,j + vj,i = 2ėij, and that C

(m)
ijklvk,l = S

(m)
ij , one can verify that

Eq. (10) is identical to Eq. (9) with (5). Now, from the fact that Eq. (10) must hold true for
any velocity gradient vk,l, it follows that [4, 7]:

C
(m)
ijkl = C

(2)
ijkl + (2−m)[Sikδjl]sym, [Sikδjl]sym = 1

4
(Sikδjl + Sjkδil + Silδjk + Sjlδik) (11)

where C
(2)
ijkl are the tangential moduli associated with the Green-Lagrangian strain (m = 2),

taken as a reference, Sij = current Cauchy stress, and δij = Kronecker delta (unit tensor).
Eq. (11) can be used to convert a black-box commercial finite element program from one

objective stress rate to another. To this end, the transformation in Eq. (11) must be used in
the user’s material subroutine in every load step at each integration point of each finite element.
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Since the loading step is always finite, the best convergence at step refinement is achieved when
Sij in Eq. (11) is taken approximately as the average of the initial and final values in the step,
which requires iterations of each step. To convert an eigenvalue subroutine, an initial guess of
the eigenvalue must be made and then one must iterate using in each subsequent iteration the
C

(m)
ijkl -values updated according to the new stresses obtained for the previous eigenvalue.

Since Sij ėkk = (Sijδkl)δekl, the transformation ([7, Eq. 11.4.6],[4, Eq.19c])

Cconj
ijkl = Cnonconj

ijkl + Sijδkl (12)

can further correct for the absence of the term Sijvk,k (note that the term Sijδkm does not
allow interchanging subscripts ij with kl, which is what breaks the major symmetry of the
tangential moduli tensor). This transformation (whose special case, without consideration of
work-conjugacy, is implied in the relation to Truesdell rate derived in [22]) may be used in the
user’s material subroutine to convert a commercial program from a non-conjugate to a work-
conjugate objective stress rate [39]. It ensures that the results satisfy the energy balance (or the
first law of thermodynamics), i.e., that Ŝij∆tδεij be the correct expression for the second-order
work per unit volume during the loading step. If this transformation is implemented in the
user’s material subroutine in every load step at each integration point of each finite element,
and if also C

(2)
ijkl is expressed in terms of C

(0)
ijkl according to the transformation in Eq. (11) for

m = 0, any commercial program using the Jaumann rate of Cauchy stress can be converted
to simulate a program using the Truesdell rate, a rate that is work-conjugate with the Green-
Lagrangian strain (m = 2). Since the transformation in Eq. (12) breaks or restores major
symmetry (i.e., invariance when subscripts ij and kl are interchanged), the constitutive law for
Jaumann rate of Cauchy stress should be specified such that it would acquire major symmetry
after the transformation.

Often Sij are so much smaller than Cijkl that the differences among different objective stress
rates cause only negligible errors which do not matter in most engineering applications. There
are nevertheless some important cases where this is not so. In [39], an example is given of an
indentation of a thick sandwich plate with a polymeric (vinyl) foam core, in which the non-
conjugacy error reaches 29% of the reaction force predicted by commercial software. Generally,
similar errors must be expected for metallic and ceramic foams, honeycomb, snow, loess, silt,
clay, loose sand, organic soils, tuff, pumice, many insulation materials (including space shuttle
tiles), lightweight concretes, light wood, carton, osteoporotic bone and various biologic tissues.

Large strain often develops when the material behavior becomes nonlinear, due to plasticity
of damage. Then the primary cause of stress dependence of the tangential moduli is the
physical behavior of material. What Eq. (11) means is that the nonlinear dependence of Cijkl

on the stress must be different for different objective stress rates. Yet none of them is more
convenient than another—except if there exists one stress rate, one m, for which the moduli
can be considered constant. This exception occurs for orthotropic soft-in-shear structures.

The Special Case of Structures Very Soft in Shear
Examples of such structures are highly orthotropic fiber-polymer composites, sandwich

plates or shells with foam or honeycomb cores, homogenized lattice columns, and layered bear-
ings. Under axial or in-plane compressive loads, these structures typically reach the critical
(or bifurcation) load of buckling while all the material is still at small strain, often a strain
much smaller than the limit of linearity. So one would expect that constant elastic moduli, as
measured in laboratory tests, would be appropriate. Not necessarily, though.

According to Eq. (11), the elastic moduli can, at small strain, be considered constant for
only one m-value, i.e., for one objective strain rate only. But for which one?—For the Truesdell
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Figure 2: Work of forces applied in the strong direction of orthotropy on the shear deformation of
a material element.

rate (m = 2), if the the structure is highly orthotropic and compressed in the strong direction
[6]. Only for this rate, the work of in-plane forces on lateral deflections of a soft-in-shear plate
can be captured correctly while the tangential moduli are kept constant [5, 6]. On the other
hand, when the highly orthotropic body is compressed transversely to the strong direction,
energy consistency requires the objective rate corresponding to m = −2.

To explain it, consider the example in Fig. 2 which shows a stocky soft-in-shear sandwich
column compressed axially and centrically by force P , and imagine stages of the deformations of
a short element of the column during buckling from initial position (a). Stage(b) shows a small
rotation ψ of the element without shear (equal to the slope w′ = dw/dx of the deflection curve
w(x)). Stage (c) shows subsequent small shearing by angle γ while keeping the skin rotation
constant (γ = w′ = dw/dx of deflection curve w(x)). Stage (c) shows the final shear deformation
with small angle γ (Fig. 2d). The work of P due to rotation ψ is P (1 − cosw′)dx ' Pw′2/2
(with second-order accuracy in w′), and the strain energy of the deformed element is bhGγ2/2,
where G = elastic shear modulus of the sandwich core, h = its thickness, and b = thickness of
the skins (b� h). So, when the buckling begins, the change of potential energy of the column
per unit length is

δ2W = bhGγ2/2− Pw′2/2 (13)

based on first principles. But δ2W can also be calculated from Cijkl using Eq. (11) and making
the usual simplifying assumption that the cross section of core remains plane and the skin
thickness is negligible. If consideration is restricted to homogeneous strain fields in the core
and skins, the result [5] is

δ2W = [bhG+ P (2−m)/4] γ2/2− Pw′2/2 (14)

Since this equation must be identical to Eq. (13), it is necessary that m = 2, which corresponds
to the Truesdell rate, associated with the Green-Lagrangian finite strain. Generally, this is the
rate that is required for axially or in-plane loaded beams, plates and shells if a constant shear
modulus is used. When the energy of axial strains in the skins during buckling is included,
Eq. (13) leads to the classical Engesser formula for shear buckling of columns, which has been
extensively verified by experiments.
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When m = −2 is used in Eq. (14), one gets for shear buckling of columns the Haringx
formula. This formula faithfully describes the buckling of layered elastomeric bearings used
for bridge supports or for seismic isolation, in which horizontal steel plates are alternated with
rubber layers. A similar argument as in Fig. 2, in which the rotation of column element is
followed by the shearing of the horizontal rubber layer, shows that m must be equal to −2. In
Biot’s more general problem of buckling of soft-in-shear layered bodies initially loaded biaxially
by compressive stresses S11 and S22 parallel and normal to the layers, the correct m-value is a
function of the ratio S11/S22 if buckling occurs at constant homogenized elastic moduli [6].

For the critical load of buckling of short bulky columns, the critical load difference between
the Engesser and Haringx formulas, associated with m = or m = −2, can exceed 100% even if
the material is in the small-strain linear range [27, 4, 7]. This discrepancy shows that choosing
the correct objective stress rate can be extremely important.

In thin plates and shells in which the transverse shear strains are negligible compared to the
axial or in-plane strains, the in-plane rotations and in-plane strains are negligible compared to
the out-of-plane rotations. In that case the distinction among all finite strains, and thus also
among all objective stress rates, disappears, and the incompressibility does not matter. All the
rates are then equivalent, and one can use, e.g., Eq. (8). The same applies to slender columns
without shear.

Another case where the differences between the objective stress rates for different m are
important occurs for the damage constitutive laws in which some of the tangential moduli C

(m)
ijkl

gradually decrease during loading and, on approach to peak load, become of the same order of
magnitude as some stress components. Then the peak load indicated by a check for singularity
of the matrix of tangential moduli can be rather different for different m. In the constitutive
models for quasibrittle materials, capturing the damage due to distributed parallel splitting
cracks, the material can become incrementally strongly orthotropic, with a very low shear-to-
normal stiffness ratio. Big differences due to the choice of m, similar to those mentioned above
for shear-buckling of columns and plates, may then be encountered.

The main reason for preferring the Hencky (logarithmic) strain has been the additivity
of subsequent strains and the tension-compression symmetry, features that are convenient for
generalizing small-strain constitutive laws to large strains. However, it is no problem to use one
strain measure in developing a constitutive law and then make a conversion to another strain
measure for the purpose of structural analysis.

To sum up the main points, there are two kinds of violation of energy consistency, leading
to two kinds of error. Violating work conjugacy of the objective stress rate causes an error of
the first kind, which can be corrected by applying Eq. (12) in the user’s material subroutine.
Using an incorrect m for a soft-in-shear orthotropic structure when the strains are small and
the elastic moduli are kept constant causes an error of the second kind, which can be corrected
by Eq. (11).
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