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Abstract. A short overview of micromechanical models of hierarchical materials (hybrid
composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of
strength and damage in hierarchical materials are summarized, among them, 3D FE model of
hybrid composites with nanoengineered matrix, fiber bundle model of UD composites with
hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular
material with layered composite cell walls. The main areas of research in micromechanics of
hierarchical materials are identified, among them, the investigations of the effects of load
redistribution between reinforcing elements at different scale levels, of the possibilities to control
different material properties and to ensure synergy of strengthening effects at different scale
levels and using the nanoreinforcement effects. The main future directions of the mechanics of
hierarchical materials are listed, among them, the development of “concurrent” modeling
techniques for hierarchical materials, optimal microstructure design at multiple scale levels

using synergy effects, and the mechanical modeling of atomistic effects.

1. INTRODUCTION

Hierarchical, multiscale composites and methods
of their modeling attract a growing interest of the
scientific community. This interest was initially
stimulated by investigations of biomaterials (wood,
bones, etc.), which suggested that the hierarchical
architectures of the materials is one of the sources
of their extraordinary properties (high strength,
fracture toughness, etc.) [1-5]. Further, the reserves
of the optimization of composite properties by
varying their structures at only microscale level, first
of all, volume content and properties of
reinforcement are approaching their limits. While
some properties (e.g., stiffness) are improved by
increasing the volume content of hard reinforcement
in composites, other properties (fracture toughness)
degrade in this case. To overcome these limits and
to design materials with required competing

properties, the properties control at several scale
levels was suggested (see, e.g. [6]).

In his classical paper, Lakes [4] summarized the
main ideas of hierarchical material structure as a
“basis for synthesizing new microstructures which
give rise to enhanced or useful physical properties”.
In many works, efforts to create new materials with
improved properties on the basis of the hierarchical
materials design are described. In the framework of
the Japanese “Synergy Ceramics Projects” [6],
Kanzaki et al. [6] presented an example of an
improved material which has both high strength and
toughness achieved by combination of aligned
anisotropic grains (at microlevel) with the
intragranular dispersion of nanoparticles (at
nanolevel). Another example of a material with an
hierarchical microstructure, and excellent properties
(extremely high compressive yield strength) is a
“trimodal” Al-composite developed by Ye et al. [6].
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Fig. 1. Schemes: Microstructures of several groups of hierarchical materials: (a) self-similar particle reinforced
composites, (b) early wood [84], (c) nanoparticle reinforced ceramics with elongated grains, see [6,5].

Other examples of the successful multiscale de-
sign of materials can be listed, among them, the
carbon fiber reinforced epoxy/clay hanocomposites,
with 85% higher fracture toughness achieved by intro-
ducing 4 phr nanoclay in the matrix [8], 30% higher
fracture toughness of tool steels achieved by re-
placing coarse primary carbides by clusters of fine
carbides [9], 80% improvement of fracture toughness
of carbon fiber reinforced epoxy composites
achieved as a result of 0.5 wt.% CNT addition of
carbon nanotubes (CNTSs) [10], drastic improvements
in elastic modulus, compressive strength and
interlaminar strength of carbon fiber/polymer
composites caused by dispersed carbon nanofibers
[12], 30% enhancement of the interlaminar shear
strength of woven carbon fabric in epoxy matrix due
to the deposition of multi and single walled CNT on
fibers [13], 45% increase in shear strength of glass
fiber reinforced vinyl ester composite with 0.015 wt.%
nanotubes [14], interlaminar toughness improved by

76% and 9% strength improvement in alumina fiber
reinforced plastic laminates due to the radially
aligned CNTs in both interlaminar and intralaminar
regions [11], 80% higher tensile strength in
hierarchical Mg matrix reinforced by composite
consisting of Al matrix and nanoalumina particles
at 0.9%/0.6% reinforcement as compared with
monolithic Mg [15].

From these and other investigations in this area,
one can conclude that the multiscale composite
design, hierarchical structures and tailoring of
material properties by controlling structures at
different scale levels have a potential to improve
different mechanical properties of materials
qualitatively.

In order to utilize the potential of multiscale
structure design, and to develop the materials with
required properties, computational models linking
the structures at corresponding scales to the
mechanical properties of materials, taking into
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account the interaction between scales, are neces-
sary.

In this paper, a brief overview of micromechanical
models of hierarchical materials, linking the
multiscale structures of the materials with their
mechanical properties and strength, is given.

2. MICROMECHANICAL MULTISCALE
MODELLING OF HIERARCHICAL
MATERIALS: AN BRIEF OVERVIEW

In several reviews [1,17,18], the microstructures and
sources of unusual mechanical properties of
biological materials have been analysed and
discussed. In these and other works, some
peculiarities of microstructures of these materials
have been identified (e.g., multilayer configuration,
structural gradients, hierarchical structures), which
can be considered as promising recipes for the
bioinspired design of industrial materials. In order
to transfer these recipes to man-made, industrial
materials, with metallic, polymer or ceramic
components (instead of proteins or cellulose, e.g.),
computational, quantitative models are necessary
which allow to carry out virtual testing and
computational design of hierarchical materials.

A number of mathematical models of hierarchical
materials have been developed in the last decades.
These models can be grouped according to the
materials (and thus typical structures) considered:
self-similar particle reinforced composites, bio-and
bioinspired materials (bones, nacre, wood, as well
materials mimicking these groups), special groups
of ceramic, nanoparticle toughened nanocomposites
as well as according to the degree of idealization
(fractal versus real microstructures) and on
“sequential” (with one-sided upper scale-lower scale
relationships) and “concurrent” models (with
simultaneous upper scale-lower scale or global-local
analysis at several levels) [17]. Let us consider some
of these groups (see Fig. 1).

Self-similar and multiple reinforced composites. The
hierarchical, fractal composite, in which reinforcing
elements are recursively composed of matrix and
smaller, lower level reinforcements (which are
therefore itself composites at a finer scale) were
studied in many works. Carpinteri and Paggi [19]
used top down approach, the rule of mixture and
the generalized Hall-Petch relationship (for
hardness), and demonstrated that “a hierarchical
material is tougher than its conventional counterpart”,
and that the material hardness increases with
increasing the amount of hierarchy levels. Pugno
and Carpinteri [20] employed “quantized fracture
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mechanics” (an energy-based theory, in which dif-
ferentials in Griffith’s criterion are substituted with
finite differences) to analyze a self-similar particle-
reinforced composite with fractal-like structure, and
derived formulas for fracture energy and failure stress
depending on size scales. Joshi and Ramesh [21]
used the multiscale secant Mori-Tanaka method
(with subscale terms, in particular, grain size,
particle size and dispersoid strengthening) to analyze
the “trimodal” composites, and computed overall
response of the materials. Habibi et al. [15]
calculated the overall yield strength of hierarchical
Mg matrix composites , as a square root of a sum
of squared strength contributions from the GND, Hall-
Petch and Orowan strengthening. Some groups of
hierarchical materials can be considered also as
multiple reinforced materials, with reinforcing
inclusions of qualitatively different properties and
sizes [22]. Gorbatikh et al. [23] modeled composites
with bimodal size reinforcement (which should
represent “two levels of hierarchy”) using the rigid
inhomogeneities model, and observed that the
interaction between hierarchical levels can change
the failure mechanism of the material, shifting the
potential damage suites from the higher to lower
level.

On the basis of the fiber bundle model, Newman
and Gabrielov [24] developed the model of hierarchical
materials which takes into account the hierarchical
microstructural effects not via microstructural
description, but via pre-defined hierarchical load
sharing rule (HLSR). In the HLSR, the load is
localized inside reinforcing elements at each scale
level (the reinforcing elements /fibers at each level
consist in turn of many elements of lower level).
The application of hierarchical load sharing rule is
demonstrated on an example in the section 3.2
below.

Nacre. Nacre has been traditionally most apparent
and well studied example of biomaterial, whose
extraordinary strength is in clear contrast to the
brittleness of its components. Among the
microstructural peculiarities of nacre, responsible
for its unusual properties, the brick and mortar
structure, interlocking of platelets, layered
configuration, thin organic layers, etc can be
mentioned [25]. After the initial period of the
experimental-analytical studies of the microstructural
sources of nacre strength in 70s-80s [e.g.,26], a
number of micromechanical models of nacre have
been developed in last decade. Among others, one
can mention the 3D micromechanical model of nacre
with 1000 hexagonal aragonic platelets each
surrounded by organic layers in [27], the discrete
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lattice model based on continuous damage random
threshold fuse network [28], 3D FE unit cell model
of nacre (two layers with 150 tablets in each layer)
with actual tablet contours obtained from
micrographs [29], homogenization model for
anisotropic and biomodular mechanical behavior of
nacre, based on the BM unit cell in [30], etc.

Bone. The microstructures of bones are much more

complex than those of nacre. Bone is a porous,

cellular materials consisting of multilayered lamellas,
builtin turn of fibrous layers with different orientations
and thicknesses and with various microgeometries
for different types of bones (cortical and cancellous).

At the nanolevel, the bone is seen as the collagen

fibers, surrounded by mineral [31]. Among widely

used approaches to the modeling of the
microstructure-properties relationships of bones, one
can mention:

- multiscale homogenization based models which
include typical microstructures at different scale
levels. An example of this approach is the
multiscale micromechanical model of bones from
[32,33], which is based on random homogenization
theory and includes bone microstructures via 6
step homogenization procedure (at the scales from
10 nmto 1 mm).

- direct reproduction of complex real microstructures
in FE models using high resolution finite element
programs. This approach allows to analyze the
bone properties at the mesolevel, including the
effect of porosity, other microstructural parameters
on the mechanical properties and strength of
bones. Example of this approach are the voxel-
based micro finite element (WFE) model from [34],
or works by Niebur et al. [35], in which 3D models
of bones were rendered from real images.

- nanoscale bone microstructure model, e.g. “fractal
bone” model (multiple level self-similar composite
structure) by Gao [36]. On the basis of this model,
Gao demonstrated that a hierarchical material with
different properties at different length scales “can
be designed to tolerate crack-like flaws”. Zuo and
Wei [37] analyzed this model with the use of shear-
lag approach (as differed with the “tension-shear
chain approach” used by Gao) and FEM, and
demonstrated that while flaw-insensitivity is still
observed in this formulation. Ghanbari and
Naghdabadi [38] used the unit cell model with
staggered aligned mineral platelets in collagen
matrix at the microscale level, for the determination
of macro-scale elastic properties of the bone.

Wood and other hierarchical cellular materials.

Wood, similarly to bones, represents multiscale,

graded, cellular materials with different types of

reinforcements at different levels (see Fig. 1b).
Hofstetter et al. [39-40] developed a
micromechanical model based on a three [40] and
four-step [39] homogenization schemes for wood.
Their approach includes two continuum
homogenization steps (random homogenization),
and one step based on the unit cell method (periodic
homogenization). The elastic properties are
determined using the self-consistent scheme and
the Mori-Tanaka scheme for the two continuum
homogenization steps, respectively. The unit cell
method is applied to analyze the assembly of tube-
like cellular into the softwood structure. This
approach takes into account the microstructure of
wood, covering several orders of magnitude, from
the cell wall structure, to the structure of fibers, to
the macroscopic defects. However, the
homogenization method has some limitations when
applied to the analysis of damage, and non-linear
deformation of wood. Astley and colleagues [41,42]
developed multi-scale models and carried out three-
dimensional finite element simulations of
representative sections of the softwood cell structure.
Considering cell walls as 7-layered material, each
layer consisting of concentric orthotropic lamellae,
they analyzed interrelationships between the
macroscopic elastic properties of softwood and the
local microstructural characteristics of cells. Further
micromechanical models of elastic properties of
wood were developed by Bergander and Salmén
[43,44] (using the classical lamination theory and
semi-empirical Halpin-Tsai equations), Perré [45]
(microstructure based FE meshes,
homogenisation), and others (see detailed review
elsewhere [46]). As different from the
homogenization-based models, the discrete
multiscale continuum mechanical models make it
possible to model damage and strongly nonlinear
and time-dependent behaviour of the elements of
the wood microstructures.

Analytical models can be used to analyze
artificial hierarchical cellular materials, as
honeycombs with sandwich walls. So, Fan et al.
[47] obtained an analytical closed form solution for
the strength of hierarchical honeycomb and
demonstrated that honeycombs with sandwich walls
are much more damage tolerant and stiff than those
with solid walls.

Ceramic matrix nanocomposites. According to
Sergueeva et al. [48], “large majority of so-called
nanocomposites developed to date are micro-
nanocomposites” (in which grain sizes are in the
microscale range, while the inclusions are in the
nanoscale) i.e., in fact, hierarchical materials. These
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micro-nanocomposites includes two of three groups
of nanocomposites following the classification by
Niihara et al. [49] (intra-granular, inter-granular, nano-
nano types). Since one of the main mechanism of
the nanoreinforcement in these cases is toughening
of ceramic matrix, due to additional stresses created
by nanoparticles, many models of nanocomposites
are based on the fracture mechanics, stress field
analysis around the crack/nanoparticles or models
of dislocation evolution [51-54]. Awaji et al. [53]
analyzed the nanoparticle toughening and the
residual thermal stresses in intra-type
nanocomposites, using a spherical particle inside
concentric matrix sphere model, and demonstrated
that the thermal expansion coefficients mismatch
has a strong effect on the toughening of ceramic
nanocomposites.

Hybrid or nanoeingineered fiber reinforced
composites. In these composites, additions of small
amount of nanoreinforcements (e.g., hanoclay or
carbon nanotubes) ensure the strong improvement
in the matrix dominated composite properties (like
compressive or fatigue strength), additionally to the
high stiffness and axial strength provided by strong
fibers [56]. Most often, the nanoreinforcements is
distributed in the matrix, or grown on the fiber
surfaces (or in fiber sizing). While the methods of
modeling of mechanical behavior and strength of fiber
reinforced composites are well known [55], the main
challenges in the modeling of such hierarchical
composites lie in the modeling nanoreinforcement
clusters and in taking into account the atomistic
properties of nanoreinforcement and its interface/
interphase with the matrix. To take into account
atomic structure of nanoreinforcement, interphase
and polymer matrix in the micromechanical models
of nanocomposites, atomistic, molecular mechanics
or molecular dynamics based representative
equivalent elements models and materials laws are
used [57-59]. Multiphase (e.g., 3 phase) models
including the matrix, interfacial region, and fillers,
or matrix, the exfoliated clay nanolayers and the
nanolayer clusters [58,60], as well as the effective
particle idealization [62] and the dilute dispersion of
clusters models [61] can be employed to take into
account both the nanoreinforcement clustering and
the interphase effects.

Multiscale computation techniques. The models
listed above were developed mainly with the goal to
reflect the specific microstructures of given groups
of materials. A series of approaches coming “from
the other end”, namely, multiscale computation
techniques, seek to carry out simultaneous upper
scale-lower scale or global-local analysis at several
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levels, and should be applicable ultimately to arbi-
trary multiscale structures. A lot of scientific efforts
were directed at the development of truly multiscale
computational techniques, starting from the global-
local finite element, introduced in [63], and other
versions of the global-local method (see [64,65]).
According to [66], the multiscale computational
techniques can be grouped into domain decompo-
sition techniques, multiple scale expansion (homog-
enization) methods, and superposition based meth-
ods. In the framework of the domain decomposi-
tion techniques, a macroscale model is decom-
posed into a series of connected sub-domains, what
drastically reduces the the computational costs of
the problem solution. In the superposition based
methods, the hierarchical decomposition of the
solution space into global and local effects is used.
Belytschko et al. [67] proposed to overlay arbitrary
local mesh on the global mesh to enhance the ac-
curacy of solutions of problems with high gradients.
Fish [68] developed the s-version of the finite ele-
ment method, based on the adaptive FEM and error
estimation, which idea is to increase the resolution
by superimposing an additional, refined local mesh
on a coarse global mesh. Several other adaptive
versions of FEM have been developed recently: h-
version (where convergence is achieved by mesh
refinement), p-version (in which the convergence is
achieved by increasing polynomial degree), hp-d
version (combination of h-and p-extensions in a hi-
erarchical domain decomposition), generalized
FEM. Afurther superposition technique, called “com-
posite grid method” was suggested by Fish and
colleagues [69,70]. Using the decomposition of a
hybrid system into a hierarchical global-local prob-
lem and an indefinite local system, they analyzed
the deformation of laminated composite shells. In
the framework of the multiscale finite element ap-
proach (called FE2) [71], the microstructure of a
material is introduced into the macroscopic models
of the material at the level of the Gauss points. The
material behavior in each Gauss point of the macro-
scopic mesh is determined in finer FE simulations.
The method is implemented on the basis of inter-
leaved FE algorithms, which constitute a sequence
of Newton-Raphson algorithms, and includes local
steps on macroscopic and microscopic scales. The
simulations are carried out using FETI (domain
decomposition) method and parallel computation.
Takano et al. [72] developed the finite element
mesh superposition technique, which allows to
overlay arbitrarily local fine mesh on the global rough
mesh. Using this approach, together with the
asymptotic homogenization method, Takano and
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colleagues developed a four level hierarchical FE
model of textile composite materials, and carried
out the stress analysis in this material. Vernerey et
al. [73] developed a multiscale micromorphic
continuum theory, based on the decomposition of
the deformation across scales. In the theory, coupled
governing equations representing particular scales
are derived.

Still, the multiscale modeling techniques are
used currently mainly to analyze mechanical
behavior and strength of common composites, not
hierarchical materials. Apparently, the numerical
challenges related with both complex model design
and complex computation techniques still do not
allow the efficient analysis of hierarchical materials.

3. EXAMPLES OF HIERARCHICAL
MATERIAL MODELS

In this section, we present several examples of the
modeling of strength and damage in hierarchical
materials. We consider three cases: hierarchical
hybrid composites with long fibers and
nanoengineered matrix; unidirectional fiber reinforced
composites with hierarchically clustered fibers
(bundles of bundles of fibers); wood as a gradient,
cellular material with layered, composite cell walls.
On these examples, one can observe the main areas
of applications of different modeling techniques.

3.1. Hybrid composites: UD fiber
reinforced composites with
nanoeingineered matrix

The development of hybrid composites, with
nanoeingineered phases, is a very promising direction
to design lightweight materials with improved
properties. The fiber reinforced composites with
nanoeingineered matrix have much higher strength
and fatigue resistance than the neat composites. In
order to analyze the effect of the nanoparticle
distribution in the matrix and in the interface on the
strength of the composites, a computational
multiscale model was developed, which includes the
fiber/matrix interaction at the higher scale level
(microlevel) and nanoclay/epoxy matrix interaction
on hanolevel.

On the upper level, the computational unit cell
model of the composite consists of cylindrical fibers,
surrounded by interphase/sizing layers, and
embedded in the matrix. The 3D unit cells with 20
fibers were generated with the use of automatic
software Meso3DFiber [74,75]. The material
properties and geometric parameters (for the case

without nanoparticles) are given in [75]. Fig. 2 shows
the unit cell with 20 fibers and interface layers.

The effect of nanoreinforcement (nanoclay) was
introduced into the upper level model via the
constitutive laws and stress-damage curves
obtained from the lower level models. The 3D
micromechanical models of a polymer reinforced by
nanoclay particles of different shapes were generated
with the use of the program code “Nanocomp3D”
written in ABAQUS Python Development
Environment [76]. The unit cells included
nanoparticles of different shapes and orientations,
surrounded by multilayered effective interfaces. The
term “effective interface” means here the interface/
interphase layer between the matrix and a particle,
reflecting the modified structure of polymer near the
nanoparticles. The generalized effective interface
model (GEIM), developed in [76] considers the
effective interface which consists of several (e.qg.,
two) sublayers, with different properties, typically
the stronger layers are outer layers. The effective
interface layers (or some of their sublayers) are
allowed to overlap, thus, reflecting the fact that the
peculiar properties of these regions are caused by
modified local atomistic structures, molecular
structures or diffusion processes, and do not
represent separate phases.

The overlapping of effective interfaces or sublayers
of the effective interfaces was realized using Boolean
operations in ABAQUS. Fig. 2 shows several
examples of the 3D unit cells of nanoclay reinforced
epoxy considered in our simulations. The
mechanical properties of the phases are given in
[76], with the strengths of effective interfaces
estimated on the basis of [77]. Using the lower level
model, the tensile stress strain curves and stress-
damage curves for the different shapes and
arrangements of the nanoparticles were determined.
These data were used as input parameters (material
law) in the upper level model, realized as ABAQUS
Subroutine User Defined Field. Several cases were
considered: spherical nanoparticles in interface layer
and in the matrix, horizontally aligned (i.e., normally
to the microscale fiber axes) cylindrical
nanopatrticles in interface layers, randomly oriented
nanoparticles in interface layers and in the matrix,
etc. In the comparison of hierarchical
microstructures with different nanoreinforcement
types in the fiber sizing, it was observed that while
the horizontal cylinders give several per cents higher
stiffness of the nanoreinforced material, they have a
lower failure strain than the round nanoparticles. For
the microscale model, it means that the availability
of nanoreinforcements and its shape and orientation
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Fig. 2. Micromechanical micro-nanoscale model of fiber reinforced composite with nanoeingineered interfaces.
Two examples of lower level models: aligned (horizontal) nanoparticles and randomly oriented nanoparticles,

see [76].

can potentially change the overall mechanisms of
composite failure: from interface deboding controlled
(at horizontal cylindrical nanoparticles) to fiber
controlled (at round nanoparticles). Here, an
example of relatively simple hierarchical model,
which allows to analyze the effect of nanoscale
microstructural modifications on the macroscale
properties of a materials is shown. This model can
be used for the virtual testing and optimization of
microstructures of hybrid composites. One could
also observe some challenges in using this model:
large scale difference in the upper and lower unit
cells sizes means numerical difficulties in
implementation of load transfer; one-sided upper-
lower model linkage and simplified mechanical
representation of physical effects (interphases) allow
to get only first approximation results. Further
computational experiments with this model are under
way now.

3.2. Unidirectional fiber reinforced
composites with hierarchically
clustered fibers: Bundles of
bundles and mixed fiber/particle
reinforcements

An interesting feature of hierarchical materials is
the load transfer between the levels, especially when
the microstructure changes (i.e., due to damage or
deformation). In order to study the effect of
hierarchical structures of composites on their
properties, taking into account the peculiarities of
load transfer directly, the hierarchical load sharing
(HLS) rule can be used [24]. According to this rule,

the load is transferred from the upper elements of
the hierarchical “tree” (“roots”) to the lower
(“branches”) and down to the lowest elements of
the material (fibers, in the case of long fiber reinforced
composites). The load is shared equally among all
the sub-elements of a given branch (as long as they
are intact) or among remaining intact sub-elements
after some of them fail. In simplest case, this load
rule can be directly introduced into the analytical
fiber bundle models of composites [5,78,79].

Let us consider a multiscale self-similar com-
posite model (see Fig. 3) subject to a tensile me-
chanical loading. The composite consists of
elements which are either pure matrix or
reinforcements at each level. The reinforcing
elements at the different levels are self-similar: they,
in turn, consist of pure matrix and the lower level
reinforcing elements. Since the strain on the fibers
and matrix in each element is constant, the load is
distributed between the fiber (or strong elements at
the given hierarchy level, which represent
composites, in turn consisting of fibers and matrix)
and matrix proportionally to the Young modulus of a
given element [79].

At the lowest level, the strong elements (i.e.,
fibers) are assigned the strengths according to the
Weibull law. If the strength of a given element is
less than the applied load, the element (fiber, matrix
or bundle) fails and the load is redistributed on the
remaining fibers belonging to the same bundle/
branch. After all the fibers in the branch fail, the
higher level element is considered as failed, and
the load is distributed among all the remaining
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Fig. 3. Hierarchical fiber reinforced composite model,
see [79].

elements belonging to the same higher level branch
(“bundle of bundles”), and so on.

If the volume content (vc) of the reinforcing ele-
ments at each level is constant, the global volume
content of lowest level fibers in the material is given
by vcg,ob=vc“", where M — the amount of hierarchy
levels. Thus, if we define the total volume content of
glass in the composite, the volume content of
stronger phase at each scale level is calculated as
a M-degree root from this number. Determining the
Young modulus of the material at each level using
the rule of mixture, we have the Young module at
the j-th level as [79]:

E=vc' +(1-vc)E, (l+ > vcj,

i=1,j-1
where E,, E,, are the Young moduli of (lowest level)
fibers and pure matrix respectively, vc — volume
content of reinforcing elements at each level
(assumed to be constant).

Using a program code for the analysis of damage
evolution in the multiscale fiber bundle model [79],
the effect of hierarchization and structure of the self-
similar materials on their damage resistance was
investigated. Fig. 4 shows the critical stress (at which
the damage in the whole fiber bundle exceeds 0.9)
plotted versus the amount of hierarchy levels for the
total damage, and separately for fibers and matrix,
for glass fiber reinforced composites.

The important observation is that the damage
resistance of the multiscale self-similar fiber
reinforced composites increases with increasing the
amount of hierarchy levels in the material (as differed
from the case of “hierarchical tree” considered in
[24,79], where increasing the amount of hierarchical
levels means reduced damage resistance).

Further, the hierarchical fiber bundle model was
generalized to include the case of particulate
reinforcement. To do it, the “embedded equivalent
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Fig. 4. Critical stress (at which the damage exceeds
0.9) plotted versus the amount of hierarchy levels
for glass fiber reinforced composites [79].

fiber” model of particles in a matrix [79] was em-
ployed, in which the particle is represented as a
cube embedded into the polymer matrix. In the
simulations of damage growth in self-similar glass
particle reinforced polymer composites, it could be
observed that non-hierarchical particle reinforced
materials have much higher damage-resistance than
hierarchical ones. Still, for the materials with the
amount of hierarchy levels 2 and more, the damage
resistance increases with increasing the amount of
hierarchy levels.

This rather simple model of hierarchical
composites allows to analyze the effects of
hierarchical structures and hierarchical load transfer
in pure form, paying attention only to the hierarchical
structures and disregarding the influence of more
complex, inhomogeneous structures at each scale
level.

3.3. Wood as an hierarchical graded
cellular material with multilayered
cell walls: Modeling mechanical
properties, strength and
fatigue life

As different from the idealized self-similar
composites, natural hierarchical materials have
different structures at different scale levels. As noted
above, wood is characterized by layered and gradient
structures at the macrolevel, cellular structure at
microlevel, with multilayer cell walls, and fiber
composite-like structures at the nanolevel. In order
to simulate such heterogeneous (over scale levels)
structures, complex micromechanical models are
required.

In [80-83], the computational model of wood
which takes into account the different structural
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Modulus (§Pa)

10 15 20 MEA in §52 (deg.) 30 ' 35 ' 40
Fig. 5. Example of the FE unit model of earlywood: Honeycomb with multilayered cell walls and various
reinforcement inclinations in each sublayer (a) and the effect of microfibril angles in the sublayer S2 on the
elastic properties of early wood, see [84,81]. EL and ET the Young’s modulus in the longitudinal direction

(L) and in the transverse (T) plane, GLT and GTR -shear modulus in LT-plane and in TR(radial)-plane of the

wood.

features of the wood at different scale levels, was

developed. The model includes four levels of the

heterogeneous microstructure of wood:

- Macrolevel: annual rings are modeled as
multilayers, using the improved 3D rule-of-mixture,

- Mesolevel: the layered honeycomb-like
microstructure of cells is modelled as a 3D unit
cell with layered walls. The properties of the layers
were taken from the microlevel model,

- Submicro-and microlevel: Each of the layers
forming the cell walls was considered as an
unidirectional, fibril reinforced composite. Taking
into account the experimentally determined
microfibril angles and content of cellulose,
hemicellulose and lignin in each layer, the elastic
properties of the layers were determined with the
use of Halpin-Tsai equations

Fig. 5 (left) gives an example of the FE unit model
of earlywood. Using the developed model, the effect
of microstructural parameters of wood on its
deformation behaviour was studied. In particular, the
influence of microfibril angle (MFA) and wood density
on the deformation behaviour was considered. Fig.

5 (right) shows the influence of microfibril angles

(MFA) in the sublayer S2 (broadest and strongest

layer in the cell wall) on the elastic properties of the

wood. From the computational studies, it was
concluded that the variation of microfibril angles
represents a rather efficient mechanism of the
natural control of stiffness of the main shear load
bearing layer of the cell wall. By increasing the

MFAs, the drastic increase of shear stiffnessin 1-2

direction is achieved, without any sizable losses of

the transverse Young modulus and shear modulus
in the 23 plane.

In order to analyze the effect of wood microstruc-
ture on the fatigue lifetime, the 3D hierarchical model
was extended to include the damage process and
combined with phenomenological approach toward
the fatigue modeling [84]. The progressive damage
models for wood were developed, taking into ac-
count the strength of the cell wall layer components
(lignin, cellulose, polymers) and different strengths
of different layers (see [83] for more details). An
ABAQUS user subroutine CompFailure.f was de-
veloped to describe the failure process of the fibril
reinforced cell wall layers, through combining the
crack band model and viscous regularization
techniques. The damage modelling subroutine
provides as output the amount of damaged elements
N under given loading conditions (i.e., the difference
in damage parameters in the material before and
after loading).

In order to determine the damage growth rate
under cyclic loading, the unit cells (with different
initial damage) were subject to the short cyclic
tensile strain controlled loading (10 cycles) [84]. (The
initial damage can be introduced into the model via
anotch, or, alternatively, as random damage). As a
result, relationships between between the initial
damage level (D _(i)) and damage growth over 10
cycles (AD(i)/AN)) was obtained for various hierar-
chical structures of wood in the form:

200 _ 45 (i)

where AN —amount of loading cycles, here AN =10,
i —the number of the simulation (in each simulation
case, the initial damage level in the model increases,



Micromechanics of hierarchical materials: a brief overview 69

0.009 F T T T T T T T T T

o 5
0.008 - 10

15 D=0.00906d"*"
0007} | v 20

D =0.008024" "

D=0.00581d"*7

D=0.004454""""

Damage increment per cycle,D
3
<
T

0.001

el e

0.0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9 1.0

Damage variable, d

Fig. 6. Fatigue damage accumulation curve (dD/dN
versus D) for different microstructures of wood
(microfibril angle in the cell wall sublayer S2 varied
from 5 o to 20°), calculated using the hierarchical
model of wood,see [84]. The formulas give the power

approximations of the curves.

from O to finally 1), AD(i) — damage growth in i-th
sequence of AN loadings.

Replacing the deltas with differentiating and
approximating the relationship between D, and dD/
dN by a power function, we integrated the formula
and determined the lifetime of the material as:

-b
N, = jD—dD L e
a a(1-b)

where N_-lifetime (amount of loading cycles up to
the failure). Several unit cells with different pre-
damage degrees (i.e., notch lengths) and different
microfibril angle degrees (MFAS) in the cell wall
layers S2 (largest and strongest layer) were
generated and subject to cyclic tensile loading. The
curves of fatigue damage accumulation rate plotted
versus the damage density (crack length) were
approximated by power laws, and the fatigue lifetime
was calculated for given microstructures of the
materials. Fig. 6 shows the calculated fatigue
damage accumulation curve (dD/dN versus D) for
different microstructures of wood (microfibril angle
in the cell wall sublayer S2, varied from 5 to 20°).
The fatigue lifetimes calculated from these curves
are given in [84]. Here, hierarchical micromechanical
model of wood as a material with various structures
and different types of regularity at different scale
levels, and its application to the analysis of the
microstructure-fatigue lifetime relationships is
demonstrated. With such multiscale models, the
effects of different microstructural parameters and
the synergy between microstructures at different
scales can be studied in “virtual experiments”. The

extension of the hierarchical material model to in-
clude the strength and fatigue effects demonstrate
the possibilities of the “virtual testing” of hierarchical
microstructures.

5. DISCUSSION AND CONCLUSIONS

A short overview of micromechanical models of
hierarchical materials (hybrid composites,
biomaterials, fractal materials) is given. Several
examples of the modeling of strength and damage
in hierarchical materials are summarized, among
them, 3D FE model of hybrid composites with
nanoengineered matrix, hierarchical fiber bundle
model of UD composites with hierarchically
clustered fibers and 3D multilevel model of wood
considered as a gradient, cellular material with
layered composite cell walls.

On the basis of the review, the main problems
considered in the framework of micromechanics of
hierarchical materials can be identified, among
them:

(a) Analysis of the load redistribution between
reinforcing elements at different scale levels (see
e.g. [23,79)),

(b) Analysis of possibilities to control different
material properties at different scale levels (e.g.,
if microscale reinforcement ensures high
stiffness, while nanoscale reinforcement ensures
high toughness, see [6]); Combination and
synergy of different strengthening effects at
different scale levels (for instance, honeycomb
cells in wood at the mesolevel, multilayered cell
walls at microlevel, and inclined fibril
reinforcements at nanolevel, all ensure the
increased stiffness and strength of the wood,
using different mechanisms [46,82]),

(c) Effects of nanoreinforcement: using the small
scale effects, as dislocations constraints and
evolution, peculiarities of nanoparticles (e.g., high
strength and very high surface area), to
complement the mechanical reinforcing and
strengthening effects [2,36,76].

In order to analyze the “pure” hierarchical
architecture effects (as clustering or bundles) leading
to the load transfer from one scale level
microstructure to another, or failure localization in
some elements, highly idealized, self-similar, fractal
models of materials can be used, e.g. fractal
composites or hierarchical fiber bundle models
[19,20,24,79].

The models based on real multiscale microstruc-
tures or their partial idealizations (multiscale homog-
enization methods, microstructure-based mesh
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design, ...) allow to explore the sources of extraor-
dinary properties of biomaterials (if applied to wood,
nacre, bones and other biomaterials), to study the
reserves of the material improvement, available in
the multiscale tailoring of microstructures, and to
analyze the interactions between hierarchical archi-
tecture and other microstructural peculiarities of
biomaterials (graded structures, cellular and hon-
eycomb-like structures, porosity, brick and mortar
structure etc.). Further, when applied to man-de-
signed materials (as nanoeingineered hybrid com-
posites), these methods allow to explore the opti-
mal methods of nanoengineering of composites.

For the analysis of the reserves of material im-
provement related to the nanoscaled reinforcement,
the combination of physical (molecular dynamics,
atomistics, etc.) and micromechanical models is
required.

The main questions determining the future
development of micromechanics of hierarchical
materials may be summarized as follows:

- What are effects of hierarchical versus non-
hierarchical architectures of materials in its pure
form (without size effects, microstructure
combination effects, nanoeffects, etc.) (clustering
of reinforcing elements, control of the load transfer,
etc.) and in combination with other effects?

- How different elements should be distributed at
different scale levels to ensure the best synergy
of strengthening effects (on the one side), and
the required combination of material responses
(e.g., toughness and stiffness), on the other side?

- How to model physical, molecular, atomistic level
effects (necessary to study effect of nanoscale
reinforcements) in the framework of
micromechanics?

- How to develop complex microstructural models
of materials with evolving microstructures (e.g.,
damage) using “concurrent” approaches (with
simultaneous upper scale-lower scale or global-
local analysis at several levels) rather than
“sequential” (with one-sided upper scale-lower
scale relationships) models?

Summarizing the above discussion, one can
state that a lot of scientific efforts are still required
in the micromechanics of hierarchical materials,
before these approaches can converge and achieve
the level, at which the computational design of
materials with optimally tailored multiscale
microstructures can be realized.
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