iMechanica - Comments for "Creasing to cratering instability in polymers under ultrahigh electric fields" //m.limpotrade.com/node/9767 Comments for "Creasing to cratering instability in polymers under ultrahigh electric fields" en Reply to Shengqiang's three good points //m.limpotrade.com/comment/16221#comment-16221

In reply to how to understand tensile stress on the free surface

Dear Shengqiang, you raised very good points.

First, you are absolutely right that the total stress is zero on a crater surface and either compressive or zero on crease surface. As the polymer is regarded as an ideal dielectric, the total stress in the polymer is the sum of the mechanical stress and the electrical stress. The mechanical stress normal to the crease surface is compressive, but the electrical stress is tensile becausethe electric field is normal to the crease surface as illustrated on Fig 2(h). Once the tensile electrical stress is high enough, the total stress on a crease surface reduces to 0 and the crease opens into a crater.

Second, We used ABAQUS for analyzing the electro-creasing instability. However, ABAQUS fails to converge in simulating the creasing to cratering transition.

Third, not all the instabilities are reversible. In some cases, we can observe fracture of the polymer especially in the cratering instability as mentioned in the paper.

结婚,09年铁b 2011 04:41:39 +0000 Qiming Wang comment 16221 at //m.limpotrade.com
how to understand tensile stress on the free surface //m.limpotrade.com/comment/16220#comment-16220 <一个id = "评论- 16220 " > < / > < p > < em >回复< href="//m.limpotrade.com/comment/16219#comment-16219">Reply to Shengqiang: the mechanism of cratering instability

Hi Qiming, thanks for your response. I am a little confused about the tensile stress. No matter crease or crater, should not the normal stress near the crease/crater surface be either compressive or zero? I saw your numerical results in the paper, is that possible to get craters? and what is the normal stress around crease/crater in the simulation? The last question, in the experiments, are all creasing and cratering reversible or not? Hope not bother you too much.

结婚,09年铁b 2011 02:45:16 +0000 Cai Shengqiang comment 16220 at //m.limpotrade.com
Reply to Shengqiang: the mechanism of cratering instability //m.limpotrade.com/comment/16219#comment-16219

In reply to Dear Qiming, It's really a

Dear Shengqiang, thank you so much for your comments.

Let us have a look at Fig. 2(g-i) in the paper. When creases form, on the contact surface of the crease, the electric field is perpendicular to the surface, thus developing a tensile stress (Fig. 2(H)). At a critical point, the tensile stress pulls open the contact surface to form craters. With the increasing electric field, the craters become larger and deeper. We can just imagine a competition between the electrostatic energy and elastic energy. This is a qualitative explanation, while the quantitative analysis for the critical point for the cratering is still under study.

结婚,09年铁b 2011 02:09:48 +0000 Qiming Wang comment 16219 at //m.limpotrade.com
Dear Qiming, It's really a //m.limpotrade.com/comment/16217#comment-16217

In reply to Creasing to cratering instability in polymers under ultrahigh electric fields

Dear Qiming, It's really a neat job. Can you propose any mechanism for cratering? qualitative or quantitative

Tue, 08 Feb 2011 22:55:31 +0000 Cai Shengqiang 评论16217年https://imechanic万博manbetx平台a.org