万博manbetx平台iMechanica -对“冲击下简单结构时程分析”的评论 https://万博manbetx平台m.limpotrade.com/node/1228 《冲击作用下简单结构时程分析》述评 爆炸科学与工程:冲击 https://万博manbetx平台m.limpotrade.com/comment/2524#comment-2524 2007年4月25日星期三14:31:55 +0000 亨利·谭 在//m.limpotrade.com上万博manbetx平台发表评论2524 圆盘,圆盘悬架,轴承 https://万博manbetx平台m.limpotrade.com/comment/2522#comment-2522

回复关于磁盘驱动器的更多问题< div class="field- name-comment-body field-type-text-long field-label-hidden">

论文已发送至您的邮箱。

请允许我尽我所能回答你。

我想在这里模拟的实际上很简单:

外径为48 mm,内径为12 mm,厚度为0.5 mm的磁盘在ANSYS中使用8节点十六进制元素建模。材料性能定义为玻璃环氧树脂,E = 90 GPa, ν = 0.24, ρ = 2.53 × 10-6 kg/mm3。圆盘内径处的节点受到半正弦加速度冲击,峰值为500G (G = 9.81 m/s2),持续时间为2毫秒。施加冲击的方向是垂直的或向上的。内径被限制在平移方向上移动,但它可以垂直移动。施加的冲击在2ms时终止,而磁盘响应(变形)是感兴趣的。测量圆盘外径(圆盘尖端)的位移随时间的变化(时程分析)。从这里我们得到了圆盘的冲击响应,用位移表示。 For different element formulation, ANSYS will give different value of displacement. As a benchmark, maximum displacement is 0.1 mm. Damping ratio is not yet included in this simulation. The objective is simply to find tip displacement of the disk with respect to time. The failure of the disk is not yet a consideration, and it is expected that impulse 500G will result in disk deformation only, not failure (break) of the disk.

Second problem is disk with suspension. Below the suspension, between the disk and the suspension, there's a tiny little block called "slider". The slider is flying on the top of the disk when the HDD is in operating condition (meaning: read/write operation is ongoing). The reason why it's flying is because of the air-bearing under the slider. It's built up by the unique contour of air-bearing surface of slider when the air (as a result of spinning disk) is passing it. People may model this air-bearing with spring-damper element. The stiffness (force and moment as well) can be obtained by solving Reynold equations.

The "bearing" that you mentioned could be spindle bearing which holds the disk. Another "bearing" is pivot bearing, where the suspension is attached to.

Zeng and Bogy paper might give you some idea how people use finite element method to solve this problem.

2007年4月25日星期三09:56:47 +0000 Arief Yudhanto 在//m.limpotrade.com上万博manbetx平台发表评论2522
更多关于磁盘驱动器的问题 https://万博manbetx平台m.limpotrade.com/comment/2521#comment-2521

回复论文< div class="field- name-comment-body field-type-text-long field-label-hidden">

按照您的建议,我又去阅读了一些关于磁盘驱动器的文献。我对这个问题的好奇心是由于我在研究中处理的冲击和流体结构相互作用的组合(在一个完全不同的领域)。如果可以,请把Zeng和Bogy的论文发邮件给我。

我想你们主要对便携式机械用的小磁盘感兴趣。在这种情况下,你提到的那种量级的加速度应该会导致明显的变形——特别是因为圆盘很薄。你有关于变形的数字吗?

当你说…振荡是在冲击终止后发生的,你到底是什么意思?很明显,冲击脉冲会继续向外扩散,反射回来,干扰其他脉冲,等等。但如果你用一种完全弹性的材料,它永远不会受潮。然而,如果材料是耗散的,则磁盘的响应将显着不同。 Are you saying that these effects are not of interest as far as your particular problem is concerned?

I don't really understand what it is that you are trying to find out. Is it whether the disk will break under the impulse? If that is the case, what failure criteria do you use. Or are you trying to find out whether the disk will impact other components of the drive system?

I went and looked up some material on air bearings on the web. From what I gather, these bearings are in the spindle subassembly at the center of the disk. However, the air bearing you are talking about is below the slider. I am confused here and an explanation of the situation will be really helpful.

Biswajit

2007年4月25日星期三06:30:39 +0000 Banerjee Biswajit 评论2521:https://imechanic万博manbetx平台a.org
论文 https://万博manbetx平台m.limpotrade.com/comment/2520#comment-2520

回复Re:冲击与thin disk < div class="field- name-comment-body field-type-text-long field-label-hidden">

亲爱的Biswajit,

在材料方面,解决HDD冲击问题有一个简化。这种材料被定义为仅具有弹性。因此,在模拟过程中可能无法捕获弹性波丹阻尼;振荡发生在冲击终止后。

当滑块飞过旋转圆盘时,在滑块下方安装空气轴承。为了表示空气轴承,人们通常使用弹簧-阻尼元件或在滑块的几个点上施加力力矩。

由于我的工作尚未发表,您可以参考以下论文来获得物理问题:

QH Zeng和DB Bogy“硬盘驱动器中磁盘-悬架-滑块空气系统的冲击响应数值模拟”,Mycrosystem Technologies (8), 2002, pp. 289 - 296, Springer Verlag。

加州大学圣地亚哥分校的Eric Jayson和Frank Talke,新加坡南洋理工大学的David Shu Dongwei - Luo Jun等人也做了类似的研究。

谢谢!

2007年4月25日星期三05:14:05 +0000 Arief Yudhanto 在//m.limpotrade.com上万博manbetx平台发表评论2520 Re:冲击和thin硬盘 https://万博manbetx平台m.limpotrade.com/comment/2417#comment-2417

在回复关于休克的回复&thin disk

Arief,

感谢您在注释中的进一步澄清。

在我之前的回复我写过“你提到的8节点砖(选择性减少集成)不是一个固体元素,但实际上是一个'基于连续体的'外壳元素”。这种说法是不正确的。基于连续体的壳元素是二维元素,而不是“砖块”。

你的问题提出了一些有趣的问题。

  • 用弹性材料来模拟这些圆盘有多合适?当你对圆盘施加脉冲时,它会在真空中永远振动吗?我对此表示怀疑。在这种情况下,弹性波衰减需要多长时间? If the damping time is small (say a second or so), some dissipation has to be incorporated into the material model. Could an expert on dissipative elasticity point us to some literature on that subject?
    Since you don't include dissipation in your simulations, how do you determine when the simulation has converged? Do you wait for the motion to reach a steady state? Or do you include some artificial viscosity and damp out the motion?
  • Clearly the air around the disk also damps the motion. If believe this is what you mean by the ``air-bearing''. How strong is this effect compared to the dissipation within the material itself? How would you include this damping effect in a numerical simulation?
  • The rate at which the elastic wave propagates will be affected by the discretization of the mesh. See for example the schematic shown in the figure below.

    The location of the stress front as seen by the mesh at the first timestep is shown by the green dot, the blue dots show the second timestep, and the red dots show the third timestep. Clearly the rate at which the wave propagates depends on the mesh discretization and the chosen timestep. Also reflections from the bottom of the disk will affect the nodes at the top of the disk much earlier if you use only one element across the thickness.

    Hence the issue here is not really whether the element can support bending (though that is part of the issue) but how well you want to represent the stress waves. The accuracy of you results will depend on how finely you discretize the disk in the thickness direction.

2007年4月21日星期六21:58:15 +0000 Banerjee Biswajit 评论2417:https://imechanic万博manbetx平台a.org
Op-shock和实验 https://万博manbetx平台m.limpotrade.com/comment/2281#comment-2281

亲爱的Yudhanto,

很好!我期待着你作品的出现。我们在Shu教授组也做了一些关于上激波建模的工作。但是悬架动力学和空气轴承动力学并没有完全耦合。我想,到目前为止,舒教授的小组在这个问题上应该有更多的进展。舒教授(我的博士后导师)小组也在做一些冲击测试。你知道,这是个很难的话题。要捕捉到磁头-磁盘接口处的冲击行为可不那么容易。我想这就是为什么我们看到这么多的数值模拟,却很少找到相应的实验工作。

你说得对。 The experimental part is essential for several reasons. Firstly, to play with real things help us to understand their function mechanism and thus help we set up meaningful numerical models. Secondly, numerical simulations need experimental verification. Otherwise we may get plenty of beautiful useless results. And vice versa.

Department of Mechanics

Huazhong University of Science and Technology, Wuhan, China.

2007年4月13日星期五01:13:54 +0000 小君罗 //m.limpotrade.com上的万博manbetx平台评论2281
上冲击精度 https://万博manbetx平台m.limpotrade.com/comment/2275#comment-2275

回复亲爱的< div class="field- name-comment-body field-type-text-long field-label-hidden">

亲爱的Jun

我对op-shock有一些初步的模拟结果,但我需要进一步"cook"它们以获得更合理的数据。

你是对的,Jun: Bogy小组(加州大学伯克利分校)是这个问题的主要研究人员。其他还有Talke集团(加州大学圣地亚哥分校),Shu Dongwei(我相信你记得这个名字- NTU), Yap Fook Fah集团(NTU), DSI (S'pore)等。他们每个人都有自己的关注点。所以看到这一领域的不断丰富是非常令人兴奋的。

回答您的问题:您可能知道,在冲击期间和之后的飞行高度调制通常由空气轴承刚度(垂直,滚转和俯仰),酒窝滑块接触,悬架刚度,冲击幅度和持续时间等因素决定。研究认为,空气轴承的非线性对HDD受到高g冲击的影响很大。从数值的角度来看,我想说预处理部分有非常重要的作用;包括为盘状悬挂系统选择合适的元件配方。准确性必须放在第一位; then, we need to make adjustment on solving computational time.

Currently, the gap is in the experimental validation of numerical results. Some people may think that it's not really useful to compare numerical solution and experimental result since both conditions are separated by initial assumptions and unknown factors. Nevertheless, I believe it's still worthwhile to validate numerical results with experiments since we want (at least) to see the trend of the result; not the exact value.

What do you think, Jun?

Indeed, you are again correct. Without any industrial collaboration, the process of getting it done is somehow unsmooth. The research direction may be deflected somewhere else as well.

星期四,2007年4月12日08:16:53 +0000 Arief Yudhanto 评论2275在https://imechanic万博manbetx平台a.org
亲爱的 https://万博manbetx平台m.limpotrade.com/comment/2274#comment-2274

回复 LSDYNA中的联系人属性

亲爱的Yudhanto,

正确!很高兴知道DSI也在做同样的事情。你去上休克课了吗?Bogy教授在这方面做得很好,但我仍然不太确定他们的上激波模型中的一些细节。滑块的跳高在几纳米的量级上,空气轴承动力学与悬架等相对较大的组件相耦合。悬架部分的解怎么能这么精确?你对这一点有什么看法吗?

我于2005年12月离开南洋理工大学。没有行业的支持,我很难继续这项工作。

力学系

华中科技大学,中国武汉

2007年4月12日星期四07:08:28 +0000 小君罗 评论2274:https://imechanic万博manbetx平台a.org LSDYNA中的Contact属性 https://万博manbetx平台m.limpotrade.com/comment/2273#comment-2273

回复亲爱的Yudhanto,谢谢

谢谢,Jun.我可能会尝试使用shell元素来处理双挂case。

对于完全集成的8节点六面体,ANSYS提供了额外的位移形状,我已经向Biswajit解释过了。使用这种技术可以避免剪切锁紧。

你在LSDYNA中使用了什么联系人属性?我知道你定义了"自动地对地"这是基于惩罚方法,不是吗?由于您模拟的是非操作冲击,头部拍打的动态可能由预定义的接触属性控制。换句话说,不同的接触特性会产生不同的头部拍打动力学。

星期四,2007年4月12日05:59:18 +0000 Arief Yudhanto 在//m.limpotrade.com上万博manbetx平台的评论2273 回复关于冲击和薄磁盘 https://万博manbetx平台m.limpotrade.com/comment/2272#comment-2272

关于冲击和薄磁盘

我很欣赏你对问题的"精炼",Biswajit;因为这会让我们更好地理解这个问题。

(1)圆盘的厚度= 0.5 mm

(2)微晶玻璃的密度= 2530 kg/m^3

(3)施加的加速度在ANSYS中定义为位移函数

(4)施加的加速度方向垂直于圆盘;它作用于圆盘的内径。

(5)为8节点六面体单元。在ANSYS中,称之为“SOLID45”。剪切锁定可以通过选择额外的位移形状来“治愈”(公式基于Wilson, Taylor, Doherty和Ghaboussi, 1973)。时间步长是1e-6秒,我相信,对于这个问题来说,它足够小了。当我减少时间步长,例如1e-7秒时,结果与1e-6秒时的结果相同。

在ANSYS/LSDYNA中,当我们选择8节点六面体单元(称为SOLID164)时,有两种单元公式可供选择; they are constant stress (reduced integration) which is one-point integration with viscous hourglass control, and selectively-reduced integration with enhanced strain. The latter is formulated based on Puso's paper "A highly efficient enhanced assumed strain physically stabilized hexahedral element", IJ Num. Meth. Engg., 2000.

Btw, here, I am concerned with the FE software users who are not really aware with the convergence problem that they may encounter during the shock simulation of HDD when they use lower-order hex element.

Thank you again for the references.

2007年4月12日星期四03:20:02 +0000 Arief Yudhanto 评论2272在https://imechanic万博manbetx平台a.org
冲击与薄盘 https://万博manbetx平台m.limpotrade.com/comment/2269#comment-2269

回复震动应用于磁盘的内边界< div class="field- name-comment-body field-type-text-long field-label-hidden">

我想我对这个问题有一个更好的想法,虽然我仍然不理解一些设置的细节。

有几个细节在原来的问题中被遗漏了:

1)磁盘的厚度。如果你想确定为什么你会得到你所做的收敛速度,这是至关重要的。

2)物料的密度。如果你想知道应力波传播的速率以及冲击速度是否比材料中的声速快,这是必需的。

3)将施加的500g加速度转化为力所需的圆盘质量。

4)施加力的方向——是法向圆盘还是径向。因为你用重力的单位来表示它似乎是离心式的。

5)实际使用的元素类型。您提到的8节点砖块(选择性地减少了集成)并不是一个实体元素,而是Belytschko语言中的“基于连续体”的shell元素。参见
连续体和结构的非线性有限元, T. Belytschko, W. K. Liu和B. Moran, John Wiley and Sons, 2000。

让我们假设圆盘的厚度为1mm,材料的密度为5180 kg/m^3(对于某些玻璃陶瓷是如此)。则物料中的横波速度为2650 m/s,体波速度为3340 m/s。 If the impluse is a true shock then it should travel across the thickness and along the plane of the disk at speeds greater than (say) 3340 m/s.

If you want to resolve the shock, the time increment should be appropriately determined. Your convergence results will strongly depend on what time step you choose. Also, depending on the direction of the impulse, you might have to use standard hex elements. In that case, you will have to use a number of elements across the thickness to prevent locking.

From what I've read so far in this thread, it appears that you are indeed using shell elements (even though they have eight nodes). That is why your results converge (do they really converge to the correct solution?) to a solution faster with the fully integrated element. However, I can't recall what selective reduced integration means in the context of continuum-based elements. The book by Belytschko explains the details of some of the formulations that you have looked at in a concise manner. You'll probably find the exact answer you are looking for in that book.

Biswajit

2007年4月11日星期三18:49:10 +0000 Banerjee Biswajit 评论2269:https://imechanic万博manbetx平台a.org
亲爱的尤丹托,谢谢 https://万博manbetx平台m.limpotrade.com/comment/2251#comment-2251

回复稳定化< div class="field- name-comment-body field-type-text-long field-label-hidden">

亲爱的Yudhanto,

感谢您对本文的关注。在该研究中,我采用了ANSYS-DYNA中的默认元素类型:带有沙漏控制的Belytschko-Tsay(默认)元素配方。这个单元使用一点正交。这一直是个问题,因为我们缺乏可比较的冲击试验数据。完全积分公式也可能引入一些数值问题,如加劲。顺便说一句,当有两个悬架时,您仍然可以使用shell元素来模拟磁盘。这就是我在那篇论文中所做的。DYNA中的接触算法考虑了壳体厚度。

中国武汉华中科技大学力学系

2007年4月11日星期三03:13:22 +0000 小君罗 评论2251,网址:https://imecha万博manbetx平台nica.org
稳定 https://万博manbetx平台m.limpotrade.com/comment/2250#comment-2250

回复冲击下简单结构时程分析< div class="field- name-comment-body field-type-text-long field-label-hidden">

亲爱的Biswajit,

半正弦脉冲是用来代替磁盘驱动器的冲击响应的。它通常被定义为半正弦波,否则根据公司的说明书进行不同的描述。

使用LS-DYNA或ANSYS/LSDYNA解决此问题的人通常会被指向默认元素技术,即减少集成(恒定应力)或RI。另一个选择是选择选择性减少的集成或SRI。针对这两种方案,分别介绍了一些减少沙漏效应的策略。对于RI, LSDYNA提供了他们自己的配方加上弗拉纳根-别利奇科的四种变体。对于SRI,在LSDYNA中引入了Puso沙漏控制。我使用了所有的公式,使用Flanagan-Belytschko(刚度形式)的结果比Puso或其他Flanagan-Belytschko的变体收敛得更快。

而在ANSYS中,我们可以有三个选项,包括RI, SRI和FI。对于FI,我们可以自由选择“包含额外位移形状”或“排除额外位移形状”。排除额外的位移形状通常会得到更合理的结果。

Dear Luo,

Yes, I've read several papers published by you and coworkers (at NTU) on shock of HDD. My question is what was the element formulation did you use when you model the disk? Since you're using ANSYS-LSDYNA, you can have two options: RI or SRI. (Referring to a paper "Study of shock response of the HDD with ANSYS-LSDYNA", J. Magn. & Magnetic Mat'ls, 2006).

Indeed, shell element will give faster convergency when we compare the displacement of disk-tip. However, solid element is used whenever two contact surfaces are to be defined for lower and upper suspensions.

Thanks, Biswajit and Luo.

Yudhanto

星期三,2007年4月11日02:16:48 +0000 Arief Yudhanto 评论2250在https://imechanic万博manbetx平台a.org
在圆盘的内边界处施加激波 https://万博manbetx平台m.limpotrade.com/comment/2248#comment-2248