User login

Navigation

You are here

arash_yavari's blog

arash_yavari's picture

Optimal Elastostatic Cloaks

An elastic cloak hides a hole (or an inhomogeneity) from elastic fields. In this paper, a formulation of the optimal design of elastic cloaks based on the adjoint state method, in which the balance of linear momentum is enforced as a constraint, is presented. The design parameters are the elastic moduli of the cloak, and the objective function is a measure of the distance between the solutions in the physical and in the virtual bodies. Both the elastic medium and the cloak are assumed to be made of isotropic linear elastic materials.

arash_yavari's picture

Finite Extension of Accreting Nonlinear Elastic Solid Circular Cylinders

In this paper we formulate and solve the initial-boundary value problem of accreting circular cylindrical bars under finite extension. We assume that the bar grows by printing stress-free cylindrical layers on its boundary cylinder while it is undergoing a time-dependent finite extension. Accretion induces eigenstrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar. This metric explicitly depends on the history of deformation during the accretion process.

arash_yavari's picture

Accretion Mechanics of Nonlinear Elastic Circular Cylindrical Bars Under Finite Torsion

In this paper we formulate the initial-boundary value problem of accreting circular cylindrical bars under finite torsion. It is assumed that the bar grows as a result of printing stress-free cylindrical layers on its boundary while it is under a time-dependent torque (or a time-dependent twist) and is free to deform axially. In a deforming body, accretion induces eigenetrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar.

arash_yavari's picture

On the Direct and Reverse Multiplicative Decompositions of Deformation Gradient in Nonlinear Anisotropic Anelasticity

In this paper we discuss nonlinear anisotropic anelasticity formulated based on the two multiplicative decompositionsF=FeFa andF=FaFe. Using the Bilby-Kroner-Lee decompositionF=FeFa one can define a Riemannian material manifold (the natural configuration of an anelastic body) whose metric explicitly depends on the anelastic deformationFa.

arash_yavari's picture

Universality in Anisotropic Linear Anelasticity

In linear elasticity, universal displacements for a given symmetry class are those displacements that can be maintained by only applying boundary tractions (no body forces) and for arbitrary elastic constants in the symmetry class. In a previous work, we showed that the larger the symmetry group, the larger the space of universal displacements. Here, we generalize these ideas to the case of anelasticity. In linear anelasticity, the total strain is additively decomposed into elastic strain and anelastic strain, often referred to as an eigenstrain.

arash_yavari's picture

The Universal Program of Nonlinear Hyperelasticity

For a given class of materials, universal deformations are those that can be maintained in the absence of body forces by applying only boundary tractions. Universal deformations play a crucial role in nonlinear elasticity. To date, their classification has been accomplished for homogeneous isotropic solids following Ericksen's seminal work, and homogeneous anisotropic solids and inhomogeneous isotropic solids in our recent works. In this paper we study universal deformations for inhomogeneous anisotropic solids defined as materials whose energy function depends on position.

arash_yavari's picture

The Universal Program of Linear Elasticity

Universal displacements are those displacements that can be maintained, in the absence of body forces, by applying only boundary tractions for any material in a given class of materials. Therefore, equilibrium equations must be satisfied for arbitrary elastic moduli for a given anisotropy class. These conditions can be expressed as a set of partial differential equations for the displacement field that we call universality constraints.

arash_yavari's picture

Universal Deformations in Inhomogeneous Isotropic Nonlinear Elastic Solids

Universal (controllable) deformations of an elastic solid are those deformations that can be maintained for all possible strain-energy density functions and suitable boundary tractions. Universal deformations have played a central role in nonlinear elasticity and anelasticity. However, their classification has been mostly established for homogeneous isotropic solids following the seminal works of Ericksen. In this paper, we extend Ericksen's analysis of universal deformations to inhomogeneous compressible and incompressible isotropic solids.

arash_yavari's picture

On Hashin's Hollow Cylinder and Sphere Assemblages in Anisotropic Nonlinear Elasticity

We generalize Hashin's nonlinear isotropic hollow cylinder and sphere assemblages to nonlinear anisotropic solids. More specifically, we find the effective hydrostatic constitutive equation of nonlinear transversely isotropic hollow sphere assemblages with radial material preferred directions. We also derive the effective constitutive equations of finite and infinitely-long hollow cylinder assemblages made of incompressible orthotropic solids with axial, radial, and circumferential material preferred directions.

arash_yavari's picture

Universal Deformations in Anisotropic Nonlinear Elastic Solids

普遍的弹性固体的变形deformations that can be achieved for all possible strain-energy density functions and suitable boundary conditions. They play a central role in nonlinear elasticity and their classification has been mostly accomplished for isotropic solids following Ericksen's seminal work. Here, we address the same problem for transversely isotropic, orthotropic, and monoclinic solids.

arash_yavari's picture

On Eshelby's Inclusion Problem in Nonlinear Anisotropic Elasticity

The recent literature of finite eignestrains in nonlinear elastic solids is reviewed, and Eshelby's inclusion problem at finite strains is revisited. The subtleties of the analysis of combinations of finite eigenstrains for the example of combined finite radial, azimuthal, axial, and twist eigenstrains in a finite circular cylindrical bar are discussed. The stress field of a spherical inclusion with uniform pure dilatational eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible isotropic solids is analyzed.

arash_yavari's picture

On Nye's Lattice Curvature Tensor

We revisit Nye's lattice curvature tensor in the light of Cartan's moving frames. Nye's definition of lattice curvature is based on the assumption that the dislocated body is stress-free, and therefore, it makes sense only for zero-stress (impotent) dislocation distributions. Motivated by the works of Bilby and others, Nye's construction is extended to arbitrary dislocation distributions. We provide a material definition of the lattice curvature in the form of a triplet of vectors, that are obtained from the material covariant derivative of the lattice frame along its integral curves.

arash_yavari's picture

弹性动态转换为Non-Cent隐身rosymmetric Gradient Solids

In this paper we investigate the possibility of elastodynamic transformation cloaking in bodies made of non-centrosymmetric gradient solids. The goal of transformation cloaking is to hide a hole from elastic disturbances in the sense that the mechanical response of a homogeneous and isotropic body with a hole covered by a cloak would be identical to that of the corresponding homogeneous and isotropic body outside the cloak.

arash_yavari's picture

滞弹性的数学基础:食物tence of smooth global intermediate configurations

集中工具非线性滞弹性μltiplicative decomposition of the deformation tensor that assumes that the deformation gradient can be decomposed as a product of an elastic and an anelastic tensor. It is usually justified by the existence of an intermediate configuration. Yet, this configuration cannot exist in Euclidean space, in general, and the mathematical basis for this assumption is on unsatisfactory ground.

arash_yavari's picture

The Anelastic Ericksen Problem: Universal Deformations and Universal Eigenstrains in Incompressible Nonlinear Anelasticity

修建的问题包括确定所有装备ilibrium deformations that can be sustained solely by the application of boundary tractions for an arbitrary incompressible isotropic hyperelastic material whose stress-free configuration is geometrically flat. We generalize this by first, using a geometric formulation of this problem to show that all the known universal solutions are symmetric with respect to Lie subgroups of the special Euclidean group. Second, we extend this problem to its anelastic version, where the stress-free configuration of the body is a Riemannian manifold.

arash_yavari's picture

Transformation Cloaking in Elastic Plates

In this paper we formulate the problem of elastodynamic transformation cloaking for Kirchhoff-Love plates and elastic plates with both in-plane and out-of-plane displacements. A cloaking transformation maps the boundary-value problem of an isotropic and homogeneous elastic plate (virtual problem) to that of an anisotropic and inhomogeneous elastic plate with a hole surrounded by a cloak that is to be designed (physical problem). For Kirchhoff-Love plates, the governing equation of the virtual plate is transformed to that of the physical plate up to an unknown scalar field.

arash_yavari's picture

Nonlinear Mechanics of Thermoelastic Accretion

In this paper, we formulate a theory for the coupling of accretion mechanics and thermoelasticity. We present an analytical formulation of the thermoelastic accretion of an infinite cylinder and of a two-dimensional block.

arash_yavari's picture

Universal Displacements in Linear Elasticity

In nonlinear elasticity, universal deformations are the deformations that exist for arbitrary strain-energy density functions and suitable tractions at the boundaries. Here, we discuss the equivalent problem for linear elasticity. We characterize the universal displacements of linear elasticity: those displacement fields that can be maintained by applying boundary tractions in the absence of body forces for any linear elastic solid in a given anisotropy class.

arash_yavari's picture

Riemannian and Euclidean Material Structures in Anelasticty

In this paper we discuss the mechanics of anelastic bodies with respect to a Riemannian and a Euclidean geometric structure on the material manifold. These two structures provide two equivalent sets of governing equations that correspond to the geometrical and classical approaches to nonlinear anelasticity. This paper provides a parallelism between the two approaches and explains how to go from one to the other. We work in the setting of the multiplicative decomposition of deformation gradient seen as a non-holonomic change of frame in the material manifold.

arash_yavari's picture

Applications of Algebraic Topology in Elasticity

In this book chapter we discuss some applications of algebraic topology in elasticity. This includes the necessary and sufficient compatibility equations of nonlinear elasticity for non-simply-connected bodies when the ambient space is Euclidean. Algebraic topology is the natural tool to understand the topological obstructions to compatibility for both the deformation gradientFand the right Cauchy-Green strainC. We will investigate the relevance of homology, cohomology, and homotopy groups in elasticity.

arash_yavari's picture

Compatible-Strain Mixed Finite Element Methods for 3D Compressible and Incompressible Nonlinear Elasticity

A new family of mixed finite element methods ---compatible-strain mixed finite element methods(CSFEMs) --- are introduced for three-dimensional compressible and incompressible nonlinear elasticity. A Hu-Washizu-type functional is extremized in order to obtain a mixed formulation for nonlinear elasticity. The independent fields of the mixed formulations are the displacement, the displacement gradient, and the first Piola-Kirchhoff stress. A pressure-like field is also introduced in the case of incompressible elasticity.

arash_yavari's picture

The 55th Meeting of the Society for Natural Philosophy (support for graduate students and postdoctoral researchers)

The 55th Meeting of the Society for Natural Philosophy: Microstructure, defects, and growth in mechanics will be from September 13-15, 2019 at Loyola University Chicago.

http://webpages.math.luc.edu/55SNP.html

A very limited number of openings to give Roundtable (25 min) talks are available. Special consideration will be given to young researchers. Two nights of lodging will be funded for these speakers. If you are interested in giving a Roundtable talk, you must submit an abstract.

arash_yavari's picture

The 55th Meeting of the Society for Natural Philosophy Call for Roundtable Talks

The 55th Meeting of the Society for Natural Philosophy: Microstructure, defects, and growth in mechanics
September 13-15, 2019, Loyola University Chicago

http://webpages.math.luc.edu/55SNP.html

arash_yavari's picture

Nonlinear and Linear Elastodynamic Transformation Cloaking

In this paper we formulate the problems of nonlinear and linear elastodynamic transformation cloaking in a geometric framework. In particular, it is noted that a cloaking transformation is neither a spatial nor a referential change of frame (coordinates); a cloaking transformation maps the boundary-value problem of an isotropic and homogeneous elastic body (virtual problem) to that of an anisotropic and inhomogeneous elastic body with a hole surrounded by a cloak that is to be designed (physical problem).

arash_yavari's picture

Nonlinear Mechanics of Accretion

We formulate a geometric nonlinear theory of the mechanics of accretion. In this theory the reference configuration of an accreting body is represented by a time-dependent Riemannian manifold with a time-independent metric that at each point depends on the state of deformation at that point at its time of attachment to the body, and on the way the new material is added to the body. We study the incompatibilities induced by accretion through the analysis of the material metric and its curvature in relation to the foliated structure of the accreted body.

Pages

Subscribe to RSS - arash_yavari's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate